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1. - BEAMSTRAHLUNG IN THE QUANTUM REGIME

Electron-positron collisions offer a particularly clean and powerful way to
probe the structure of matter at very small distances. The full energy is available
at the constituent level. However, electrons are far more difficult to accelerate
than protons. It is well known that LEP will be the largest electron-positron ring
ever built. At energies significantly beyond the LEP range, synchroton radiation
would become forbiddingly high. Linear colliders have to be considered. At
present, studies are actively under way to find the proper design for such machines
[1]. We shall here consider linear accelerators which would reach 1 to 5 TeV per

beam.

A gain by an order of magnitude from LEP energy has to be associated with a
gain in luminosity by typically two orders of magnitude, since the annihilatien
cross—sections decrease as s'l, s being the centre-of-mass energy squared. One is

therefore speaking about luminosities at the level of 1033 to 103% em~2s~t [13.

High luminosities imply high bunch densities. The electrons traversing a
positron bunch will therefore undergo an important acceleration, which will imply a
rather large bremsstrahlung. Such a bremsstrahlung, at the level of a beam of par-
ticles, has been dubbed "beamstrahlung”. We shall use the word despite its etymo-

logical weakness.

The nature of the beamstrahlung thus expected can be quite different from the
one known at lower eunergies, and soon to be measured at SLC and at LEP. Indeed,
for the reason given, there is not only a gain in energy, but alsc a big gain in

acceleration during crossing, which is the price to pay for luminosity.

In the well-known approach to synchroton radiation [2], one introduces a para-

meter

1

Y= X
me_

where y = E/m, E and m are the electrom energy and mass respectively, and Pe is the

)

radius of curvature. T is the ratio between the classical energy typically
radiated, which is defined by the cut—off frequency, and the in¢ident electron

energy.

When T << 1, one is in the classical regime and classical relations apply~
When T >> 1, the classical approach clearly breaks down. One is in the deep quantum

regime and the approéch has to be modified accordingly.
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It turns out that, while y increases with energy, Pe may not increase as one
could expect from the rigidity of the trajectory of a very energetic particle. The
luninosity which has to be reached implies a strong bending and therefore prevents
Pe from increasing much. It follows that very high energy linear colliders can

easily lead us into the deep quantum regime (T >> 1).

In the classical approach, which still prevails at present energies, a very
important rdle is played by the coherent radiation length Lc' It is defined as
the length over which the direction of the trajectory changes by an angle 6 = Y“l.
The radiative length Le, namely the length over which an electron cannot be distin-
guished quantum mechanically from an electron dressed with photons, is negligibly
small as compared to Lc. It 1s of course proportional to h, while proportional to
y/m. As the energy increases, however, Le increases, while Lc does not do so as
fast because of the strong bending imposed by the luminosity. As a result, very
high energy linear colliders may well lead us to a new regime where Le > Lc’ which

is in essence a quantum regime.

The purpose of this paper is to discuss beamstrahlung in this new regime
(Le >> Lc)’ which corresponds to T >> 1. 1In so doing we follow an approach which
ig particularly well suited to that problem, namely calculating Feynman graphs.
While calculating Feynman amplitudes with asymptotic free plane wave states is well
known, computation with the particular boundary conditions proper to bunch colli-

sions is somewhat special.

We summarize here calculations following that approach and already presented
to a large extent, with full details, in three papers by T.T. Wu and the author
[3]. We refer the reader to them for explicit calculations which are merely out-
lined here. The purpose of this paper is to present a summary, stressing the

salient points special to the regime considered.

The amount of radiation lost in beamstrahlung is rather large [3,4]-. One may
quote mean energy losses at the level of 20%! This imposes severe constraints on
the machine. One is pushed to consider short eliiptical ribbon bunches in order to
minimize radiation once the energy and the luminosity are both in an acceptable
range [5]. This imposes severe constraints when discussing the physics accessible

with those machines [6].

The most important result refers to the mean fractional energy loss which, in

the case of c¢ylindrical uniform bunches, is written as [3]

>
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c m é,. LU (2)



-3 -

where Ke {for "extermnal”) and Ki (for "internal”) are two numerical factors of

order 1.

<EY> is the average energy taken away by the photon and E is the incident

electron energy. Lb is the bunch length and lc, which, as discussed later, plays

the rdle of the ccherent radiation length in the deep quantum regime, is defined

7
2 2
e = Q"‘- L"") | 3)

Relation (2) is accurate provided that

as:

L-e;‘>:> L. (4)
which, as discussed later, is equivalent to T >> 1.

The second term reproduces, in that regime, the more general but less simple
expression arrived at by Blankenbecler and Drell [4,5]. The presence of the first
term has been confirmed by Bell and Bell [7]}, who have also computed non-leading

terms in edge effects.

As we shall see, introducing lc eliminates explicit references to the electron
mass, so important in the standard approach to radiative phenomena, where the clas~
sical radius of the electron ¢/m sets the scale. This is indeed expected in this
new regime where the transverse momentum gained in bunch crossing is very much

larger than the electron mass.

The rest of this paper is organized as follows. In Section 2 we show why and
how the multi-TeV regime differs so much from the regime met at present energy,
namely 50 GeV per beam, and we discuss some consequences, anticipating the results
presented in Section 3. In Section 3, we derive the radiation yileld using the
Feynman graph approach [3]. Finally, in Section 4, we discuss the present outlook.
If one tries to summarize in one sentence the original aspect of the work presented
in Section.3 [3], it is its use of Feynman graph techniques to solve a macroscopic
radiation problem, but more specifically its relying on the fact that the radiative
length Le eventually becomes the largest length. This leads to thelsimple form
(2), with its two different terms and, of course, the introduction of Rc. When it
comes to the actual calculation, our present lowest-order calculation can, of

course, be looked at as a distorted wave Born approximation.



2. - GENERAL FEATURES OF QUANTUM BEAMSTRAHLUNG

The luminosity ¢f a linear electron-positron collider can be written as

2
L NZ4 H
NS ——
2 5
R (5)
In this relation, which is written with a "~" sign, as opposed to an equal sign,
thus neglecting geometrical features which vary from design to design, N is the
number of particles per bunch, f is the bunch frequency, R is the radius of the
bunch and H is a pinch enhancement factor. The latter translates the focusing
effect which one bunch plays on the other. It is related to the disruption para-
meter D. Denoting by ¥ the focal length associated with the focusing of the
incoming electrons (positrons) by the positron (electron) bunch, the disruption
parameter is defined as
p - e
TF ©

A relatively large value of D (D > 1, say) can result in a relatively large value

for H {(H >> 1), while a small value of D (0.1, say) gives H ~ 1.

In order to gain in luminosity, one can increase N and f. This, however, costs

power, technical comstraints notwithstanding! One can increase H. This is the
present CLIC philcsophy [l]. This brings us into the large D regime, where analytic
calculations are not presently possible. This is likely to increase 5§ beyond the
values obtained in the small D regime (2). One can reduce R, which of course
imposes high technological achievements. At present the SLC is based on micron—
size bunches. The extreme, in the "super” [4], would be to go to 10R, at small D.

The CLIC philosophy is to have D~ 1 with larger radii [1]. Some parameters of the

SLC, CLIC and the "Super” are listed in Table 2.1.

E(TeV) Y Ly R N
SLC 0.05 10° 10%m 10~%m 5%1010
CLIC 1 2x10° 4m 6x10~8m 5% 10°
Super 5 107 3m 10~%m Ix 108

Table 2.1




The bunch length L, is here expressed in the bunch frame. It is equal to Y9,

b
where o, (or Lb) is the bunch length in the machine frame of reference.

From these parameters one can easily derive the other two characteristic
lengths, namely the coherent radiation length LC and the radiative length Le' They
are listed together with Lb in Table 2.2. We here denote with a bar quantities
defined in the machine frame. One goes to the bunch frame multiplying them by vy

(Table 2.1). The ratios are, of course, independent of the frame.

fb Ec Ee
SLC 1073m 10~°m 107 m
CLIC 5% 104 m 2x10 % - 2%107%m
Super 107w 10710 10™%m
Table 2.2

This Table shows a very important change when going from the SLC to the "Super”

situation. Whereas for SLC we have
L, <« Lo <« Lg - | (7

for the "Super” we have

Zc << Eg_ << Lo )

CLIC is in a "grey” zone with LC ~ Lé << Lb.

We see that in all cases Lc << L_. This implies that, tc a good approximation,

one can be tempted to consider thebradiatidn as originating 1ndependently from
zones Lc deep within the bunch length Lb’ hence, eventually, the term proportional
to Lb/lc in (2). However, the fact that Le becomes the largest length as the
energy (and the luminosity!) increase, leads to drastic changes, namely, the intro—
duction of a new coherent radiation length lc, which becomes much larger than the

classical one L (3), and to the increasing importance of the first term in (2).
c . :

The scale in both terms is indeed set By ic (3). One readily finds that

(ie = Zhy/m?:
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c < <
hence T »> 1 (quantum regime) corresponds to (lc/Lc)3 >> 1. In the approach of

Blankenbecler and Drell [4], there is a parameter C, the quantum regime correspond-
ing to C << 1. One finds that

3

¢ 15

e, (10)

The quantum regime corresponds to Le becoming the largest length. Radiation over Le
before and after bumch crossing can therefore be considered separately. This is
what was done in the first paper of Ref. [3], where the first term in (2) was

calculated. In the "Super” regime it corresponds to a 3% contribution to 5.

Calculations in Ref. {3] consider a cylindrical bunch with uniform density and

sharp boundary. The charge density is:

Ne
e T wTRZLg (11)

for |zl < Lb/2 and 0 otherwise. One may wish to depart from such an approximation,

considering more realistic bunch profiles.

The longitudinal prefile can be parametrized defining a local densityls(z),
with

Ne
TRZLe.

' v
nf€(%)°‘:='

€3>

e =

(12)

From the local deusity';, one can define a local coherent radiation length Ic(z).

One finds that [8]

6.(3) = € (@’('s))b%

(13)

where £ 1is the nominal coherent length defined for a uniform cylindrical bunch,
c
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with the same radius and the same total number of particles. The smaller the local

coherent length, the higher the local density.

The radiation rate over that coherent length is the higher, the higher the

density is, namely [8] 2
A /2
T(3)~ (6)(3)) (14)

It therefore makes sense, as a first good approximation, to neglect the wvariation
of S over Ec’ while considering different values of p and Ic over the bunch length
Lb >> Xc.

One then finds that the overall radiative loss § over L

(2)]) is then simply multiplied by a factor [5,8]

[or the term K, in

b i

myz
J & 13y

fé"(%)dg (15)

This shows that, with any realistic bunch profile, decreasing at both ends from a

maximum value at the centre, this corresponds to an increase in radiation losses as
compared with a uniform bunch (S = 1). In order to minimize radiation, one should
therefore work with bunches which are as compact as possible. Also, in order to
minimize the field, and hence the radiation loss, one should prefer ribbon bunches

to circulér bunches [5].

Going beyond the approximation of a constant E over IC, and taking inte
account terms of order ;'Ic, (S'Ic)z and E"ii, is technically involved. O(ne may
say that no dramatic effect should occur, since the neglected terms in (13) are
then all weighted down by factors of at least (Rc/Lb)z, which are small [8]. Work
still needs to be done along that line, studying also the effect of transverse

distributions.

3. — THE BEAMSTRAHLUNG RADIATION

We now proceed to the calculation of the radiation rate. In the quantum
regime, most of the radiated energy is found with photons taking away a rather
large fraction of the electron (positron) energy. It is therefore acceptable to
calculate the radiative process proper in perturbation theory, keeping the contri-

bution of order u«.



We consider the radiation of an electron crossing a positron bunch. The
calculated Feynman graph is shown in Fig. 1. The crosses stand for the interaction
of the electron with the bunch which, in practice, corresponds to solving the Dirac
equation in the field created by the bunch (distorted wave Born approximation).
The calculation is performed in the bunch frame of reference, where the incoming
electron experiences only a radial electric field. The geometry 1is sketched in
Fig. 2. 1In practice, Lb >> R. In the classical approximation, the electron
trajectory with incident momentum ki is bent inside the bunch, with a resulting
final momentum kf. A photon, if emitted, as here, leaves (almost) tangentially to

the trajectory with momentum kY. The direction of ki and k. defines the x,z plane,

f
the classical bending plane. The photon has only a small momentum component kY

normal to that plane. In practice, the bending momentum

ZNK
Ao ~
T K

is much larger than RYY and the electron mass, which can be neglected altogether in

(16)

the quantum regime.

Qur calculation is done in the small D approximation {with the "Super"” para-
meters D =~ (.1), and indeed all analytical approaches made so far [3,4] apply to
that regime. One may then replace the problem of bunch—bunch collision by the much
simpler problem of electron-bunch collisien. An electron radiates in the intense
field provided by the positrons independently of its fellow electrons. This is no
longer the case when D and H are large. One then has to face the full many-body
problem of bunch-bunch collisions. It is our guess that the radiation losses can

only be larger than what they are calculated to be in the low D approximation.

The radiation amplitude is written as

|2
/)M::S- MH" (17)

where ¢ is the polarization wvector of the radiated photon. We shall consider

separately the component in the classical bending plane ¢ and, perpeadicular to

I
it, El. We write
-3 3
. oS _.;£L&.X —
Hl& = - 'efdxx € Ll":r_C") T q’g (") 08

In the integrand we have the electromagnetic current of the electron, for which we

can alsc use (spinless case) the Klein-Gordon expression, namely



fp (¥ = ¢ (‘1’;9»‘1‘2 -3 ‘1’:) %) a9

One may indeed sometimes wish to study the simpler spinless case before facing the

complications due to spin. The calculation proceeds through six successive steps.

i) One calculates by and bi in the presence of the bunch. This is done by solving

ii)

iii)

iv)

the Dirac (Klein—Gordon) equation. One does it in the large E (but rather
small D) approximation, writing

Lf'()Q = A(x) elp(x) (20)

when the equation defining n(x) is defined according to the optical approxima-

tion [9]. We write:

A ()

Alx) = A () +

W6eo = box + 9, (0 + _D;E_CY_). | (21)

and solve the Dirac (Klein—-Gordon) equation with the four different terms thus
determined. It turns out that the same function n{x) applies to both the
Dirac and Klein-Gordon cases. The details are given in the third paper of
Ref. [3]. When we appear to start with a high E approximation (21), we actual-
ly make a low D approximation. This is discussed in the third paper of

Ref. [3].

One studies the conditions for a stationary phase. Once ¢i and ¢f are known,
the phase ¢ of the integrand in M is known. It is clear that most of the
radiation will originate from that region where the phase factor does not vary
appreciably. This leads to the definition of a coherent radiation length. We
thus find the new length Rc previously mentioned. It is the same in the Dirac
and in the Klein-Gordon cases. The details are given in the second paper of
Ref. [3]. When Le >> Lc’ ic can be much larger than the classical coherent

radiation length L . For the "super"” parameters, one has lc = 20 LC.
c

The stationarity conditions define a stationary zone around a point X5 Yo» 2

which is determined by (ii). One then computes the radiation matrix elements

(%,¥,2z) and n

in the neighbourhood of X s Yor Foc One computes separately m |

° |
(X)Y$z)'

One computes the space integrals, as they appear in (18), to obtain the two

radiation amplitudes ”H“ and THL. They are the integrals of the matrix
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vi)
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elements calculated in {iii) with the phase factors obtained in (i). One uses
approximations corresponding to the stationarity conditions obtained in (ii).
The form taken by the amplitudes 1is well known from classical synchroton
radiation [10]. One finds an Airy function in the case of'qnl and its deriva-
tive in the case of 171“. The asymptotic behaviour of these Airy functions
imposes a cut—off on kYY which has a simple physics interpretation. It is the
transverse momentum collected by the electron over the coherent radiation
length Rc. Tt is in practice much smaller than the typical transverse momentum

By~ 2Na/R, collected over the full bunch length L, > A -

Compute the radiation rate per unit area I(X), where X is the fraction of the
incident electron energy taken by the radiated photon. The phase space inte-
grals involving squares of the Airy function can be done analytically expres—
sing the Alry function and its derivative in terms of a Bessel function of
fractional order. The spectrum shape in the Klein-Gordon case is found to be

X Z/3

T () ~v — (22)

and hence does not show any strong peaking. 1In the Dirac case, the non-heli-

city flip contribution dominates in the quantum regime. It has a spectrum
)

X NT 14 (1-%x)®
1)~k (A2X) 2l

(23)

where the last factor results from the spinology. The details of the calcula-

tion are presented in the second and third papers of Ref. [3].
Compute the fractional energy loss
i
d = j XI(X)"[X (24)
o

1t is obtained as a sum of beta functions, and is written as

?:%iﬁ(i—e,,lm)ie-) (25)

It is proportional to o (distorted wave Born approximation). It involves a
homogeneous function of the three characteristic lengths, which has the simple
form given in (2), once ic is defined (3)- This altogether gives the fraction-
al energy loss associated with bunch crossing proper, since the phase condi-
tions obtained in (ii) pertain to conditions deep inside the bunch, a length
ic at least away from the edges. It is numerically equal to 17% (1L0%Z in the

Klein-Gordon case), with the “super” parameters.
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One sees that everything is as I{f each coherent radiation length was contri-
buting separately. The radiation rate is proportional to L/Rc. However, it is lc
which matters and not the classical coherent radiation length Lc. The integral
(18) extends over the whole space and not only the bunch volume. While we can
separate out through the phase conditions different slices of the bunch, we can
also separate out the contributions originating from.the region before the bunch
(== ¢ z ¢ ~Lb/2) and after the bunch (Lb/2 { g ¢ »). This is radiation before and
after bunch crossing. One cannot speak about a clear time sequence. We actually
treat a stationary problem and consider rather contributions from different regions
to a unique space integral. Nevertheless, we can have a quantum mechanical inter-—
pretation of that radiation saying that the electron hits or leaves the bunch off-
shell, having emitted, or not yet emitted, a photon. Its off-shell character can
be present over a length Le' As a result, it is natural to find in the rate terms
proportional to (a/1t) in (Lellc) which can be asscciated with radiation before and

after bunch crossing. This is the first term in (2).

The details of the calculation are given in the first paper of Ref. [3], while
the third paper puts together the three contributions referred to as radiation

before, during and after bunch crossing.

We then proceed to some technical points in order to show how the new coherent

radiation length ic originates.

The stationary phase cannot be satisfied in a real sense. While d¢/dx = O and
3¢/dy = 0 define impact co—ordinates, d¢/dz = 0 has no real solution. In the

Klein-Gordon case, one has the particularly simple relation

X | 2, 2
_a.ai;_z -;:- T & 1'”’"(?:), + ,,m-'-{}), (26)

where i, and m, are the two matrix elements calculated in {(iii). They read [3]:

my =~ 28 (Ti(z)-Te (31))

f;fx
m = = By A 27)

The functien ri(z) measures the relative amount of bunch charge met by the incoming

electron up to the distance z, namely

;oo
: _ v
)=, I,,, €3 dy .
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For a uniform bunch, one has simply
Tely) - Tely) = 3-3, 29)

The co-ordinate z; is defined so that the second derivative of the phase vanishes:

37"4’ = O ak ’5”"‘31

(30)
33*
This is always possible, with a real value [3], and one finds
2
- ] -&YxATx4'&ka
. (.31‘) =
)% AL (31)
T

The phase conditions are such that most of the radiation will originate from the
neighbourhood of zj, indeed over a length RC around z}, and z) is determined by the
direction of the final photon and electron. If one neglects kYY’ this is the point
which corresponds to tangential ewmission of the photon, with the x and y co—ordi-

nates being fixed by the statienary phase conditions.

If one first neglects the variation of E(z) inside the bunch, we can obtain

the phase of the amplitude through integration [3]:

2,2 2 ,2
2 - l __f__f_‘_r_ eq,é)(% 3)2_,,_4.33&5_"
- . 1 =~ a8l 2
27 2 X (],x) {ol lLe A%
(32)
db(g) = C& Cg“gl + C, (g-g, + Co
(33)
The coherent radiation length is then defined by C;l/3, explicitly, for'S = 1:
I
¢ - ( RZ (5 4o &
c . (No()z- ) (34}
with
2 NK
Ay v ——— (35)

R

It ig different from the classical coherent radiation length. In terms of the more

familiar centre-of-mass variables (referred to by bars), one has:
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and hence

@O

One sees that the combination of ic and ié which defines Ec eliminates the electron

mass.

The caleculation of the radiation amplitude then proceeds through the space
integrals of the matrix elements (27) with the phase factor (33). As already said,
it is the same for the Dirac and Klein-Gordon cases, whereas the matrix elements m
are not. These integrals atre of the type met in the classical theory of synchroton
radiation [10]. In the case of m , one obtains an Alry function Ai(u). In the

1

case of mn, one obtains the first derivative of that Airy function, Ai(u). Up to a

numerical factor, the argument is such that

V. -1 v €. ~h
W~ By Ao Ar?}’\/ R _ECE_ Q GB7)

We see that the exponential dependence of the Airy function imposes a cut—off on
kYY’ the photon momentum component perpendicular to the classical bending plane.
The typical value of k y (corresponding to u = 1) is equal to the bending momentum

collected by the electron over the cohereat radiation length lc.

We have neglected so far the variation of 5. However, our relations remain
valid provided that 3 does not vary appreciably over Ec = Xc 5_2/3, where Ec is the
local coherent radiation lenmgth. This is in general a good approximation over most
of the bunch length, and is the approximation which is used to obtain (15). We
shall keep it in the following, the uniform cylindrical bunch case corresponding to

p = 1.
The radiation rates corresponding to a photon polarization normal IL and
parallel I" to the classical bending plane are then readily obtained [3]. -In the

spinless (Klein-Gordon) case, one finds:
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Le (38)
with
WL S0-% e
- X AZle (39)

where we recall that AT ~ 2Na/R.

The next step is to integrate the integrals over Ai and Aiz. This 1s done

using the relations [1l1]:

’/z.
Ac(vd) =(_‘é’_") Ky, (2v%)
Aﬁ(\rz) = 3 v2 Kz/g (Z\r;_)

(40)

One then readily proceeds with the phase space integrals to obtain the global

radiation rate
%z
LJ&' TF'ELZ - x ’:)
e, X

J(X): K. i'.(...
w (41)

Dividing by nR2 to obtain the rate per unit area, I(X), one finds the coatribution
to & as given by the last term in (2). This is the contribution resulting from
radiation “"during” bunch crossing or, more precisely, from the contribution, inco-—
herent to the rest, coming from the integral over the bunch in the region of valid-

ity of (32), a length Rc away at least from the edges. Since Rc << L this is a

'b,
good approximation to the radiation rate. 1t is propertional to a/n as expected,

but multiplied by a rather large factor Lb/Rc (60, say, with the super parameters).

The quantity K

N is of order unity. In the quantum regime, one finds K1 = 1.38.
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We presented the spinless results for their pedagogical simplicity. Indeed,
the bulk of the contribution in the Dirac case is simply proportional to the result
obtained in the Klein-Gordon case (41). This is the non-helicity flip contribution.
One finds in that case

| o
o =D 1 1+l
NF (-x) K& (X) 2 1_ X “2)

where JKG(X) is given by (41).

The helicity flip term is relatively very smdll with the super parameters. It
is proportional to Lb/Le which is then a small quantity, while Lb/,Qc is a large
quantity. The complications due to spin are discussed in detail in the third paper
of Ref. [3].

The countribution to the amplitude obtained through integration over the bunch
does not interfere with those comlng from the zones before and after the bunch. As
mentioned earliex, they become relevant when Le > RC. The overall contribution to
5, as calculated in the first and third papers of Ref. [3], is the second term in
{(2). The coefficient Ke is of order one. One finds Ke = 4/3.

One can then write & as

X_f_(_(t.zg_%_*.&_&.zf-i +O(§,)
i £, K £, ™/ (43)
The two terms where q/rx is multiplied by a large number have thus been isolated.
This is accurate as long as Rc 3> Lc’ or as long as Le is by far the largest
length, this defining the deep quantum regime. Edge effects not treated at that
level are relatively small, since they are only of order a/n. We stress again the

simplicity of (2) and (43), once the new coherent radiation length RC is defined.

4. — PRACTICAL CONSIDERATIONS

" The radiation intensity and the fractional enérgy loss can be simply expressed
in the quantuﬁ regime, provided that one rewains in the low D approximation. They
are nume}ically large. The value of & is of the order of 20% with the super para-
meter [3,4] and the radiation sPeétrmm is not strongly peaked. Bunch-bunch col-
lisions thus provide a large intensity of very energetic photons. An electron~
posipron linear collider is also an intenée photon-photon c¢ollider, with almost
éomparable energy . Our method, like other analytical approaches [4,5,7], applies to
low values of D. This is not the regime selected by"CLIC T1]. wWith large D and
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large H, the question cannot be approached as a particle-bunch problem. It would

be very surprising if the radiation losses were not then higher.

As a first step one could extend our appreoach [3], which keeps only linear
terms in D, to an approximation to order »? to see how important corrections are.
We saw that in order to minimize radiation losses, bunches should be as compact as
possible (15). They should also be as short as possible. Indeed, we can write lc
as (34)

Y.
FLEL 2s LjiL 8

QW)" m (44)

where s is the centre—of-mass energy squared. The luminosity 1s proportional to
N2/R2 and it has to rise as s for any interesting machine. The two first factors

should therefore compensate themselves. It follows that

/2
5~ 2t Lo (45)
2

One should therefore try to minimize the bunch length. This quantum regime behav-

iour is very different from that found in the classical regime where

>y K (N)* Y2
Unoa Y Tz R2 Le (46)

Whatever the machine parameters, radiation losses have to be high. This 1s the

price to pay for high luminosity.

With a high value of § and a very broad radiation spectrum, the possibllity of
tuning on a resomance and getting a very large rate enhancement, so beneficial with
lower energy electron—~positron colliders, is lost. Resonance peaks will be smeared,
or at least greatly eroded, by radiative effects. This is a setback, but not such
a serious one. There is a lot of potential physics at these energies where such
radiative effects are not very relevant. This 1s, for instance, the case for
reactions of the type WW > X, where the W's are radiated by the incoming electron
and positron. This is very ilmportant if the Higgs is very massive and there is a
strong sector for electroweak interactions. Such processes can, of course, also be
studied at pp colliders, but there the background is extremely strong. 1f such
physics 1s relevant, ete— colliders would offer the only way to study it in any

precise way. The machine energy will, of course, have to be high encugh.

One should also stress that the photon—photon collider aspect of such machines
is a priorl very interesting. One could use yy collisions and ey collisions in the

bunch to study the Primakoff-type production of hitherto unknown objects {(axions
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for instance). One would use the interaction of the photons with the very high
electromagnetic field inside the bunch. One could also use an external photon beam

on a fixed target.

Back to the actual study of beamstrahlung: much remains to be done. We worked
in the approximation ¢of a local (over lc) constant bunch density. One should
explicitly study terms of order p', p'? and p“. They come multiplied by a factor
(Rc/Lb)2 and should not provide dramatic effects. Work is in progress [8]. One
should study the effect of realistic transverse density distributions. This may

lead to a rainbow effect in electron {positron) deflection in bunch collision.

One should also study edge effects. They are of order («/n) without a large
factor, as in (2). Nevertheless, one has to understand better how one goes from
the external regime with a in kYY behaviour to the sharp cut—off kYy behaviour of

the internal regime.

We have limited ourselves to single-photon radiation, but with such a high
radiation rate, several-photon radiation should be frequent. The distorted wave

method has to be extended to such multi-photon processes.

We have considered the radiation of an electron crossing a positron bunch, but
have also to study the radiation during an annihilation process. The method must
also be extended to such a case with a proper adaptation of the distorted wave

approach.

Finally, this method should also apply to the study of high-energy channelling
[L2] and alse to the study of transition radiation. In both cases the Feyaman

graph approach should lead to a fruitful formulation.

This shows that the question does not end with relatiom {2), but rather that

the study of beamstrahlung is worth developing further.
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FIGURE CAPTIONS

Fig.

Fig.

1

2

as

Feynman graph for the emission of a photon by an electron in the

presence of a bunch.

Radiation of a photon by an electron while its trajectory is bent by
the presence of the bunch which extends from —Lb/2 to Lb/2. Fixing the
final momenta'if and 17 implies radiation from a zone fixed by the
coherence conditions around x5, yg and zj. The transverse component of
the photon ka is primarily due to the bending of the electrom trajec-
tory before emission. In practice Lb >> R. For "typical” super para-
meters Lb ~ 3m, R ~ 10%m. The disruption effect shown in the figure

is overemphasized. In practice D~ 0.1.



¥
ki ke
-M— 2% —¢
Fig. 1
A X
Kk 4
SIS S U O EU S —— e
R T
" \i\\\’k
' \ » z

_Lb 0z Lb

Fig. 2



	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21

