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1. - INTRODUCTION

The heterotic string with EgxEg gauge symmetry is the most promising candidate
to unify all the fundamental interactions [l]. Low energy effective Lagrangians
have been very useful to discover the anomaly cancellation [2] and to explore
possible compactified ground states of the ten—-dimensional space-time [3-10]. The
effective Lagrangians can most directly be obtained by matching scattering
amplitudes of the string theory with those in the corresponding field theory
involving only massless particles {11-13, 6-8]. The result can be given in a double
series in powers of a'k? and g, where a', k and g are the slope parameter, a
typical momentum, and the string loop expansion parameter. Using the general
co-ordinate and other invariances, the effective Lagranglan can be expressed in
terms of Riemann curvature tensors and gauge field strengths. At the string tree
level, quartic terms have been obtained from the heterotic string and the type-II
superstring [4-8], and the most thorough study has been done by Gross and Sloan
[14]. One-loop corrections to the quartic curvature terms have been obtained for
the type-I11 superstring [15] and the heterotic string [16,17]. Terms dinvolving

gauge fields have also been worked out for Spin(32)/Z; gauge group [17].

The purpose of our paper is to obtain the string one-loop (torus topology)
corrections to the quartic terms of gauge fleld strengths and curvature tensors in
the EgxFEg heterotic string theory. In constructing the effective Lagrangian, we
shall take into account the non-polynomial couplings of the dilaton by invoking the
ten~-dimensional dilatational symmetry and non-linear o model considerations
[16,1,14,18-20], We find that the one-loop correction to the term quartic in the
gauge field strength is consistent with the form conjectured from the anomaly
cancellation [17]. We shall primarily use the bosonic formulation of current
algebra for the gauge degree of freedom. It is complementary to the fermionic
formulation used in Ref. [17] and seems to be more powerful especially for the
~ EgxEg gauge group. Only the 0(16)x0(16) part of current algebra is realized
linearly in the fermionic formulation and the remaining part is quite non-linear.
In the bosonic formulation, the entire gauge group is realized by vertex operator

constructiocns,

In Section 2 we summarize one-loop amplitudes in the heterotic string theory
for four massless bosons (graviton, antisymmetric tensor, dilaton, and gauge
bosons). The bosonic formulation is employed for gauge degrees of freedom and the
lattice momentum summation is explicitly performed. In Section 3 we derive the
string one-loop corrections to quartic terms in the 1low energy effective
Lagrangian. Appendix A sketches the method to compute the gauge group factor.

Appendix B lists useful formulas in performing the v and 7 integrations.



2. = ONE-LOOP AMPLITUDES AND LATTICE MOMENTUM SUM

The four massless boson amplitudes in the heterotic string theory have been
computed to one-loop order in the 1light-cone gauge by means of the operator
formalism [15,21,22). We follow mostly the convention of Ref. [15]. The vertex
operators for the emission of charged gauge bosons (A) and "gravitons" (G) are

given by
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Here we use the convention a' = %.

We shall refer to the pgraviton, antisymmetric tensor, and dilaton as
"graviton" collectively. A convenient way to deal with these vertex operators is to

use the following vertex operator [21]
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with the understanding that gauge bosons are given by the linear term in [ with

£ = 0, whereas "gravitons' are given by terms linear in { and L with K = 0.

By factorization analysis of tree amplitudes and the sewing procedure, we can
determine the absolute normalization of loop amplitudes [15,16]. The one-loop

four-point amplitude with the vertex (2.2) is then given by [21]:
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where g is the string loop expansion parameter, A} is the weight twelve cusp form,

and ¢ and K are a simplified notation for the product of cocycle factors and the

superstring kinematical factor

%) The gauge boson vertex operator in Eq. (2.7) of Ref. [13] was incorrectly
multiplied by a factor of i.
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Functions doubly periodic in v with periods 1 and 1t are given ) in terms of the

elliptic theta functiom 6 [23]
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whereas ¢ is pseudo-doubly-periedic in v
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The gauge group factor, is defined as a sum over points on the weight lattice A of

the gauge group
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Restoring the slope parameter o' to account for the correct dimension

- + .
([TC1l,...,N}] = M 4N 10), we obtazin the one-loop four—charged gauge boson amplitude
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The one-loop amplitude with three charged gauge bosons and a graviton is given by
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The one-loop amplitude with two charged gauge bosons and two gravitons is
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The one-loop four graviton amplitude is given by
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*) We have corrected a sign error in Eq. (2.28) of Ref, [15] due to the factor of 1
in the vertex operator. The power of 20" is also corrected compared Lo Egs.
(2.28) and (2.30) of Ref, [15].
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Let us note that our convention for the cocycle is

E(K,~-K)= E(K,K) = &(K,0)=1 . (2.15)

We can perform the sum over the lattice momenta explicitly and express the
gauge group factor & in Eq. (2.10) in terms of the elliptic theta functions. For
EgxEg, oL becomes a product ofaf.l and ‘ZZ corresponding to two Eg factor groups. By
using a set of orthonormal vectors e (i=1,...,8) in the eight-dimensional lattice

space, we can parametrize the discrete momentum vectors L on the Eg weight lattice

as
8 7
L:_f;, miet») my = ng—;’_’wp
L=t cer
- . ) {2.16)
m, = n, + Ng /2, e=t, ", 7

where nj,...,ng run over all integers. Let us take the case with two gauge bosous

(K] and Kp) as an example. Since K} = =Ko is on one of the Eg lattice, we obtain
‘I-‘(tluz.l) = °Z; (T, ‘Uz.l)’or:z_ft) (2.17)

The second Eg gauge group factor simply gives the Eisenstein series of weight four

Ey [24]

= exp(hrt%m:)
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The other Eg gauge group factor with the external lattice momentum Kj = e]-ep

becomes

¥
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As briefly described in Appendix A, we calculate cases with mp, mpy = odd, even,

odd-%, and even-} separately and sum them up to obtain

4 2
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When multiplied by (bl_i as in Eq. (2.13), it becomes

*) The first of our convention (2.15) has an opposite sign compared to Eg. (2.22}
of the second of Ref. [1].
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where the Weierstrass ) -function [23] is given by our T(v)} in Egq. (2.8) as

A
)O(u):-—4Tr"T(U)-'IT7‘EL(T:)/3, (2.23)

A
Here Ez{t) is of weight two under modular transformations, but 1s not holomorphic
(24]

A
E,(t) = E (T)- E,(z)=1-242

TIntr ’ ol "'i" . (2.24)

The term with e, ¢an be expressed by the Eisenstein series of weight six [23,24]
> g5 e = ~2m* E, () /
£, Va ol - & 3
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Hence we find an expression which 1is manifestly covariant under modular

transformations

-2 -2
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An analogous procedure for the gauge group Spin(32)/Zp; gives instead of
Eq. (2.22)
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which agrees with the result of Ref. [17], where the fermionic formulation was

used. Using an identity [17]

4 [
Y B, (0)e, , = -—2m* E,E, /3

a=2

we find that the final result for Spin(32)/Zz case is identical to Eq. (2.26) for
EgxBg. Hence we find that the EgxEg and the Spin{32)/Zz heterotic string theories
give identical scattering amplitude for two gauge bosons and tow gravitons, in
spite of the different pgauge interactions. This is valid before taking any limit

like a' + O and is perhaps more non-trivial that the well-known fact that the
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partition functions (vacuum amplitudes) are ddentical for the EgxEg and the

Spin(32)/Z; theories.

In the case of three gauge bosons, the gauge group factor can similarly be

obtained and reads for EgxEg

~1

- -1
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For the gauge group Spin(32)/Z7, we need to change Gi(O) > 9&6(0) and to delete the
last factor (sum over 8),

For the four gauge bosons we define the lattice momenta invariants

S=(K+K, Y T= (K, +K,), U-=(K+K;)*
S+ T+ U = — %8 = iz kf:'

r= |

and distinguish four cases of charge configurations:

(1) (8, T,U)=(-4,-40), KK,=0 K,=-K, K4=-K
(ii) (8, T,U) = (-4,-2,-2), K, K,=0, K, K;= K, K, =~ |
(2.29)
(i) (5, T, U)= (=§,72,0), K\K, ==, Kz==K,, Kg=-K,,

(iv) (B, T,U)= (-8,0,0), K,=K = - l<3 = - K, .
1f all four lattice momenta K's belong to the same Eg, the gauge group factor
becomes

’t(t) u“u“ua): ’t.,(t)ul; uz;u.%)"’cz(t). (2.30)

For the case (i), we find the first gauge group factor by a procedure similar to

that in Appendix A (a convenient choice of K's are K} = ej-e; and K3 = ey-ey)
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where we used an identity besides Eqs. (2.23) and (2.25) [23]
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For the case (ii), we find a convenient choice of K's: K; = ej-ez, Kz = -e3z+ey,
K3 = -ej+e3 and Ky = eg-ey, and we obtain
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For the case (iii), a convenient choice is K = -K3 = ej-ey, Ky = -Ky = -ep+ez and

we obtain
-2 -~ =f -
£ (T, Yi, Vo, US)lIJ;:. 11)34 1{);3 1’":_4 1’111-4 “1();-3
= —l—- (._l_)4 i 90‘[”3') 6“(u4")9°' (u4?-+u3l) 9. [U“)ﬁ.(l)q_3)
ST =2 §5(0,,) 6] (0,) 8, (¥g,) 6,(4,) BE (o)

/ 2 4
x(gl (O)) 901 (o) (2.34)
For the case (iv), we can choose Ky = Kp = =Kz = —Ky = ej-ep and find
2 2 -2 -2 -2 -2
czl (z,v, v, v,) 11"’,',_ 1)1"34 ‘-’-"‘3 '4";4 "1‘"’13 'Hb;_q
2
- 1 ( v )4 i ( aﬂ(u4z+u3l) Bl rp;_;) 9; fu43) )

2 b2 a=2 1 0,(v,,) 0,00,,)0, (¥5,06,(1,,) 8, (0) (2.35)

«(8/to1)* 8Zco)



_9__
1f the lattice momenta K's come from two different Eg factor groups, the case

(i) in Eq. (2.29) is the only possibility. Taking Kj = -K3 ¢ Eg and Ky = -Ky & Eg',

we find
-3
oL (z, v, v,, Y, ) 1‘!"',3 .4"'
» L 5;,(0) 9(3{‘)42.)

. / 2
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1f the gauge group is $pin{32}/Zs, we simply need to change 92(0) > 9&6(0) in
Eqs. (2.31) and (2.33)-(2.35), and to delete the second factor &L o6t) in
Eq. (2.30). For instance, one finds for the case (1), instead of Eq. (2.31),

~2 -2 3 Spim(32)/7
[,C(t,u”U“ Us) 13 1#2_4-] *

- - E.xE
= [I(‘C,U;)Uz’vs)"-)("—l;"-’;_:] 27T 234, (2.37)

where A}, is defined in Eq. (2.4) and the following identity [17] is used

4 16 2 3
v 0 e, =2mi(E,-2-34,)/9 (2.38)
=2

We have also confirmed the above results by the fermionic formulation of the
current algebra [1,17], except Eqs. (2.34) and {2.35) which seem to be difficult in

the fermionic formulation.

3. - ONE-LOOP CORRECTIONS TO THE EFFECTIVE LAGRANGIAN

one-loop amplitudes with three or less external massless particles vanish in
the heterotic string theory [1,21]. Hence the ome-loop amplitude with four external
massless particles has no massless particle poles and no subtraction is needed to
obtain the effective Lagrangian., We simply need to expand Egs. (2.110-(2.14) in

powers of o' and to integrate over v and T.

We have reported [16,17] the result of quartic curvature terms evaluated from

*
Eq. (2.14) up to the a'3 corrections

*) Our result appears to be different from Eq. (3.17) of Ref. [17] by a factor of
16, presumably due to the fact that their convention of Riemann tensor in their
Eq. (3.15) is factor two bigger than our Riemann tensor in Eq. (3.3). Our
convention gives the standard Einstein action at the leading order.
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{2.6) are understood here to run
p = 0,...,9 (the e-tensor does not contribute) and Y is defined as

where the indices of t-tensors defined in Eq,

eea Y —_— —_
Y - tt": [z t | g R ... R (3.2)
Pota Y ¥ HaPsPy¥e -
Here we used the fact that "

gravitons'" appear as a generalized curvature R with a
torsion [8,14,16]

~ AP ~w DAz rP K (A £
= Rr\v + K& V[rHyJ -‘J?‘-‘Z{F ijv D

S AP
RP,
2 - A 2 o
Rpw  p = 3uT7,,+ po L
A
.

)

p = (pep) ,

— Jd Sa

= —2: 3 (argd'-u'féy gr,— "‘Sa-gr_‘,,), grya ‘1!_‘”'1-» z_fchru’
fl‘ (ﬁr\u ﬁnap) —_ -R‘["Uﬂ{a _R_apﬂ «
Hr\v) = Vrr‘ BUAJ = vr\BUa\ + V. BA!" + V;\ Br'u (3.3

where the graviton field is denoted as h v and the gravitational coupling constant

93
k 1s given by the (dimensionless) string

loop expansion parameter g as [1]
k = g(2a')2/2.

The non-pelynomial dilaton coupling in Egq. (3.1} follows from the

ten-dimensional conformal symmetry in the string theory {14,18-20]. 1In

the
non-linear sigma model, the string action contains a background "dilaton field" ¢

whose constant mode couples to the Euler character y of the two-dimensional world
sheet [19]

S 2k 44 [ 1 020 217 RV 00)

1 2 (2) (3.4)
x T f J¥ R
(2)

are two-dimensional metric and curvature, and G_v is a
ten-dimensional metric. Since

where yab and R

string h-loop amplitudes have world sheets

with
. -h
¥ = 2-2h, they are proportional to e(l )

. They are also proportional to g2h where

g 1s the dimensionless string loop expansion parameter. Thus we find that string

h-loop contributions to the effective action are generically of the form
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where 0 is an operator without the ¢ coustant mode. The non-linear sigma model
dilaton ¢ and the metric Guv is related to our dilaton D and metric gp (in the
v

S-matrix approach) through a ten-dimensional conformal rescaling [19]

G'r\u: Sr\ve"P(K—D/J‘i), ¢=-2J2 kD (3.6)

1f the operator D has the weight w under the conformal rescaling

6 - OQXP(WK'D/E) (3.7}

we obtain the general rule of the coupling of the ¢ constant mode for the weight w

contribution at the h-loop order

Y DA h
Ash-—loop :Sdlox‘\[‘—a O e(”’“’ N : (31315 K'D) (3.8)

From the ome-loop amplitude (2.13) with two gauge bosons and two "gravitons",

we can extract the string loop correction up to order a'3 for the effective action

—

30

EgxEg _ - (2a”)3 gfm 3\2 wd/A3 Moo M
2A 2 G - 5 5 (—) e -t ! 4 .
! 2-3m K

AT, R P 7T (g Frspea - 17 (Repag Rt s ) (3.9)

where Tr; (Trp) denotes the trace of the adjoint representation of the first (the
second) Eg factor group and the gauge coupling Byn is given by By = g(2a'33/2. our

matrix T for the Eg generator is antiHermitian and normalized as
% b — o b
T (T*T?) = —-60 & | (3.10)

In the case of S$pin(32)/Z;, we usually express Lhe gauge field in the fundamental

representation whose trace is dencted as tr

F(TTEY) = - 2 sab (3.11

' *
Our result for the Spin(32)/Z2 agrees ) with that of Ref. [17]

%) Apparent discrepancy of a factor of four is presumably due to the difference of
the normalization of the Riemann tensor,
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Spin (32)/21

o= (xa)? o2 9 kDAT  po g
LLA,?-& T s s M (Tc') € t
(=] oy (3.12)
* tr (Fap, Frope ) T (Rugpag quﬁ,) _

The method of v and 1 integrations to obtain the effective Lagrangian L2A,2G is
entirely analogous to that of the four—graviton case. Moreover, the more extensive
and useful exposition of the relevant techniques can be found in Refs. [25] and
[17]. In Appendix B we describe our regularization method briefly and summarize

some of the necessary formulas.

From the one-loop amplitude (2.12) with three gauge bosons and a "graviton",

we find that the possible leading order term is of order «'3k> and proportional to

KT:;T dzu" QJ.“ ed(uu) Ba (¥13) 94(”2—3)
r=1 ImT * 91 (¥,,) 9, (‘),3) 9, (pz.s) (3.13)

upon integration over V.- Therefore we find that the term cubic in va and linear
in vahp does not exist up to the string one-loop order.

We now turn to the case of four gauge bosons. In evaluating Eq. (2.11) to the
leading order a'3k", we note that a matrix X in the adjoint representation of Eg

satisfies [26,2}

Ty )(4 = (Tb“ X")l/loo . (3.14)

Hence the effective Lagrangian quartiec im the gauge field strength at the one~loop
order for EgxEg can have only two independent terms whose coefficients are denoted
as a and b
EgxEy 242 2y2 2 2
Lt = a{ (T F Y+ (T, F*)*} + bT,F* Tr,F

2

2 e
(Tr‘Fl) = tr.l f“‘8 TPI(FFIPZ-F”-‘P4)T?| (F!"‘.rf"bFf"‘J’f"&):

2 2 _ P Hs
TY.F FZF = t TV'.(F{-;,,A;F‘-Q’{‘UQ)T'Z (Fﬁrﬁ‘Frqﬁa). (3.15)
The two coefficients a and b can be determined by evaluating the following two
configurations of lattice momenta., For the case (i) in Eq. (2.29} of the previous
section (KyKy = 0, K3 = -Ky, Ky = -Ky), we have two possibilities: (a) all L
belong to the same Eg as in Eq. (2.31), and (b) K; and Kz belong to different Eg's
as in Eq. (2.36). The cases (a) and (b) determine the coefficients a and b inp

Eq. (3.15), respectively. Using the formulas im Appendix B, we find
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LngE, 4P 35 (_g_. 2o RONT gy (1 g2
O - K) (;_5)

z
{2 T, FrapsFrpe) T (Frep Frape)

- Tr, (Frp, Frapa) Tra (Faepe Frpps) } X (3.16)

This form of L,, 1s different from that for Spin(32)/Z, and is consistent with the

44
conjecture made in Ref. [17] Pbased on the consideration of the Wess~Zumlno term for

the anomaly cancellation [27,25].

As a consistency check, we can alsc evaluate the amplitude for the case (ii)
of the lattice momentum configuration: KjKz = 0, KzK3 = KjK3 = —-1. At least three
dimensions are required to embed this lattice momentum counfiguration as shown in
the Figure, whereas the identity {3.14) for Eg implies that possible counfigurations
in the EgxEg gauge theory are only those that can be embedded in two dimensions (as

a subspace of the eight-dimensional weight lattice space)

(Tv, F2)*= bo> ( T (FO)*+ = FFF7F ) (3.17)
T KeA
where the first sum is over elements I of the Cartan subalgebra and the secoond is
over the weight lattice A of Eg. Hence the configuration such as (ii) should not
occur in the EgxEg gauge group and we find in fact vanishing contributions to order
o'3k* from the configuration (ii) as follows. Since the integrand has at most
simple poleS*) in v, the result of the v integration must be a modular form of
weight twelve because of the modular invariance. Since there are only two
independent modular forms of weight twelve [24], the result can unambiguously be
determined by finding the first two coefficients of the expansion in powers of
_ eZﬂir

. In this way we find from Eqs. (2.30) and (2.33)

2 d'y, L BT BT
S —D: ITmt < (t, Yy u"’ ))3)11(':3 ‘4‘:4 .4-‘-2_3 14;2_4 =0 (3.18)

Another way to see this result is to use identities given in Ref. [17] [Eqs. (E.18)

and (E.28)]

%) If double poles are present, the result need not be purely holomorphic and the
subsequent argument needs modifications,
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3 dy, -1~y =t gt
YT 22 7 gy v, v b A,

r=1 ImT 24

= B, ( 9:@)6:(0) 02 (o) - B, o) §.7(0) 9:(0) ~ 8708, 0) NG /ag

= 0 (3.19)

because of the Riemann identity g,%(0)-834(0) + 9% (0) = 0.

Other lattice momentum configurations (iii) and (iv) are more difficult to
deal with. Our result (3.16) implies that these cases should give non-vanishing
results with definite coefficients, In principle one may be able to verify this by
using the theorem that any doubly periodic function with poles can be expanded in
terms of the Weierstrass { function and its derivatives., We have not completed the

analysis of cases (iii) and (iv).

For the gauge group Spin(32)/Zs, the effective Lagrangian quartic in gauge
field strength has been worked out in Ref. [17]. Their result can be reproduced by
using our Eg. (2.37) for the case (i) and another equation for the case (ii)
[obtained from Eq. (2.33) by changing 82(0) > 9;6(0)], since two possible terms
(trF2)2 and trF* correspond to the cases (i) and (ii) respectively. It is
interesting to note that the term of the form (trF2)2 turns out to be absent for
the Spin(32)/Z; gauge group due to the additional contribution ~23A15  in
Eq. (2.37).

It is very interesting to examine the effect of the string loop correction to
compactified solutions of the heterotic string. The kinematical structure of the
loop correction is different from that at tree level, and it depends on the gauge
group. However, we need to analyze more carefully in order to find, for instance,
if the loop-corrected solution can be reduced to a non-local field redefinition of

the Calabi-Yau solution [10] or not. We hope to examine this problem further.
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APPENDIX A - GAUGE GROUP FACTOR

Here we sketch our method to evaluate the lattice momentum summaticn for the
gauge group factor L in Eq. (2.10), by taking the two-gauge boson case as an

example,

First we need to specify the external lattice momenta in terms of the
orthonormal vectors ei (i=1,...,8). In the case of two gauge bosons, we can choose
Kj = -Kg = ej-ep, Taking into account our parametrization of the lattice momenta in

Eq. (2.16), we find Eq. (2.20)

— m —-+Z /r?]]
L (r,»,, )= 2 exp ‘—“t{ Z mh 2 (m=-m,) Ka.1)
NeeZ
Since the lattice momenta are parametrized by eight integers or half-integers w
(i=1,...,8), we need to distinguish sixzteen cases depending on m} {mp)} being odd,

even, odd-3, or even-%.

1f m] and m2 are both integers, Eq. (2.16) implies that ng must be even and
all m, should be also integers. If mj and my are both odd, there must be an even

number of odd m, (k=3,...,8) in order for ng to be an even integer: nug —Ell 105 -

k
Counting the number of possibilities, we obtain a contribution to &£1, in Eq. (A.1)

from the case of both mj, mz being odd

Lz, uﬂ)]add odd

=[ z et “”"-'-'c'*fc'a’][ e””t(m&zma%"* '%‘i)]
= odd m, = ocld
" 2
([ z e ™ 15is [z e”"l][odd S
e|‘..'I'I'I‘|»l 2 L'rmt Z e-L-u.mz & (A.Z)
+[5[;2—-:¢“ J[Ede ] +[“u ] )

We can now recognize the elliptic theta functions [23]

- I.+
25 eurr[-cm__:_mu): (6, ) - 6,(2)) /2 (A.3)
v = odd 7
dr{tm' £ 2m )
o (B, + B,0) /2 (A.4)
mz=even

Hence we obtain an expression in terms of the theta functions

| wiug /e ]2
[otl(-c,u,_,J]odd)odd:[?(93(uzl)-94(u1,))e 21 J

L{of0) +0 0] (a.5)
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Evaluation of other fifteen cases is completely analogous. By summing over all

sixteen cases, we find that cross terms such as 93(vo1)x84(v2;) cancel out and

obtain Eq. (2.21), which exhibits the pattern of the spin structure summation

encountered in the fermiomic formulation.

The gauge group factor of other cases such as three or four gauge boson

amplitudes can be obtained by an analogous method.
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APPENDIX B — FORMULAS FOR v AND t INTEGRATIONS

Here we summarize the most relevant formulas for v and T integrations. Many
useful formulas are contained in Ref. [17], and a more extensive discussion may be

found in Ref, [25]. Some of the formulas are also found in Refs., [15] and [l6&].

Many terms drop out when integrating over v because of the following

identities [15,16]
2 ’ 2 ’
duK(v-u)zo) dv T (v-2)=0 (B.1)
We need a careful evaluation of the integral around the pole at v = v', especially
in the case of double pole in T. We regularize the integral by cutting off an
infinitesimal square of sides 2& around the pole and by letting € » 0 at the end.
Since both K and T can be written as derivatives im v, we obtainm only contributions

from the boundary of the integration regiom (including sides of the infinitesimal

square around the pole) and find that they cancel among themselves.

We can reduce the v integration eventually to either one of the following

types, if it does not vanish due to Eq. (B.1)

2 od, EqlT)
Y, v (W 0K (V)= —
SIL T2 K K ) K 50K (5) = 270 -
A
3 d E,(T)
T 22 Ko KoL) KO Kas) = (=7 (5.3
=1 ImT t2
Equation (B.2) can be obtained by twice using the following formula valid for
vl ¥ vp
d'v | e g )
—_— y-y v-h}= — -2 X cos 2N (¥, ~V,
| 22 KoK= 5 ~2 Z = Vs
Twm ,~¥,) ( Im ¥ -34)\2
+ »v,-V + - |/ (B.4)
Imt K( ! 2.) A T T -
To prove Eq. {B.4), we use the formula [16]
n
| -y . ) Imy
v) = —— my 4 A 2rny | + (B.5)
Ko = o7 (cetmy s e @ 5y e Tt

and expand the integrand in Fourier series such as
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1 g e—- 2L (P -)
z+“=, ) ImU(InUl
|
—_— Cot ™ (U-—v.) -
L 00 .
1 2w (p=y,) {(B.6)
-3 .5, ¢ ;) ImV > Tumy,

and integrate first in Rev in order to exploit the periodicity under v » v+l. We
regularize the v integral arcund poles at v} and vz by cutting off infinitesimal
squares of sides 2¢ around the poles and by letting £ » 0 at the end. We find the
simple poles at v = v3 and v = v; harmless, and obtain Eq. (B.4) for vi % vz. If
vy = vo, however, the double pole at v = v1 {(v2) needs to be treated with care. In

particular, we obtain non-vanishing contributions from an infinitesimal strip I:

IMV,—E ( Imu < Imu,+8

!

1 J
-3 <Rew< Rev -8, ReV+E<Rev < 7. (5.7)

We find a non-holomorphic piece from the strip I

A’V cot mw-v )2 —2 g é'"" . ,
X ( —— | = — T — amaurmeamhmirg
T Imt 20 T Iuwt m=1 m
I
—_y - {(B.8)
” E—=0 ATTTImT "

Thus we obtain the additional comntribution besides those coming from the vy + v;

limit of Eq. (B.4)

A L D -~ ____3-_12 _ !
S-J:;— (K (v=-v,}) = T Z“Z;:, (-97)* AN ImT - (B.9)

The result of the v integration transforms with the weight twelve under the

modular transformation. Hence we only need to know the following T integrals

A

~ i r a-—1
I (P; i; I""A_)Z‘."[ 2 EZP E4 Eé én_

(TmtT) (B.10)
with 2p + 4q + 6r + 12s = 12, They are given for p X 0
I(z,2,00)= 481w, T (ni,1,0)=—-48m (B.11)
For p = 0, two of the following three cases are independent
[(o0,01)= W/3 T(ere, 2,0)=-336M,
T (0,3,0,0)= 240T (B.12)
One should note that our convention is d2¢ = dRetdImt and is a factor of two

smaller compared to Refs. [17] and [25].
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FIGURE CAPTION

The lattice momentum configuration for the case (ii): K Ky = 0,
K1K3 = KpK3 = -1. The plane containing K; and Ky intersects with the plane
containing K3 and Ky, at a right angle. The intersection is denoted by a

dashed line.

K3= -8y + €3 A
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