particle Accelerators, 1989, Vol. 24, pp. .1()9—124
Reprints available directly fr.om the publisher
Photocopying permitted by hcepse only -

O 1989 Gordon and Breach Science l.’ubhshers, Inc.
printed in the United States of America

DIFFERENTIAL ALGEBRAIC DESCRIPTION OF BEAM
YYNAMICS TO VERY HIGH ORDERS

M. BERZ

§$C Central Design Group, Universities Research Association, Lawrence Berkeley
Laboratory, University of California, Berkeley, CA 94720

(Received March 14, 1988)

The new method of differential algebras for the description of beam dynamics is presented. It allows a
straightforward and elegant computation of transfer maps of accelerator systems that can be analysed
for data relevant to accelerators. The order of the procedure is unlimited. The theoretical background
of the method is presented in detail. Use of the method in practice is shown.

1. INTRODUCTION

The effect of an accelerator section can be described mathematically by a map
relating the final coordinates z, of a particle to the initial coordinates z;

zp = M(z;, d) (1)

The coordinates z contain positions and momenta of the particle. The vector &
contains other parameters that influence the motion such as particle energy, mass,
or charge or accelerator parameters such as certain multipole strengths. From this
map , quantities of interest for accelerators, such as tune shifts and chromati-
cities, can be extracted. This is described in detail in a companion paper.'

Except for the most trivial cases it is impossible to find a closed analytical
solution for the map . However, expanding ./ in a power series yields a set of
differential equations for the expansion coefficients that in many cases can be
solved analytically up to some order. The complexity of the resulting differential
equations, however, increases dramatically with the order of the expansion
cocefficients. Therefore, this procedure is limited to low or medium orders. In fact,
most widely used codes”™ can only compute the nonlinearities in Eq. (1) through
third order.

Recently it has been possibe to extend this to higher orders using the
custom-made formula manipulator HAMILTON.®> This program produces
FORTRAN code for formulas of nonlinearities compatible with the program
COSY.® At present, COSY can compute all fifth-order nonlinearities of common
beam-line elements, such as bending magnets and magnetic and electrostatic
multipoles, including the dependence on the particle mass.

Since the accuracy of the Taylor series representation of the map in Eq.
(1) is increased by use of higher orders, it is desirable to know . to as high an
order as possible. This certainly holds for the purpose of using the map for

109

110 M. BERZ

subsequent symplectic tracking of simulation particles; but also for the above-
mentioned purely analytical purposes such as computation of tune shifts with
amplitude, chomaticities, invariants, etc., based on Hamiltonian perturbation
theory,"”® this is highly desirable.

In this paper we will present a straightforward way to compute nonlinearities to
arbitrary orders based on differential algebraic techniques. The partial derivatives
are computed to machine precision; the whole procedure is completely independ-
ent of the order and only limited by the power of the computer.

In addition to the elegance with which transfer maps can be produced, the
method is so versatile that it allows the computation of arbitrary derivatives. Here
no analytic formulas for derivatives must be derived; on the other hand, the
method is always accurate to machine precision independent of the order of the
derivative, which is in sharp contrast to methods of numerical differentiation.

2. DIFFERENTIAL ALGEBRAS

In this section we will provide thc mathematical background of the theory of
differential algebras required for the promised study of nonlinearities. It is an
application of the relatively new field of Nonstandard Analysis,”'" which allows
the introduction of arbitrarily small quantities, “infinitesimals,” in a rigorous
theory of anaiysis. There is also some connection to the theories of formal power
series'' and automated differentiation.'” The use of differential algebras for the
field of nonlinear dynamics was first discussed in Ref. 13.

For the sake of clarity, we first address the simplest case of differential
algebras, the structure ,D,.

2.1. The Structure D,

Consider the vector space R’ of ordered pairs (ay, a,), a,, a, € R, in which an
addition and a scalar multiplication are defined in the usual way:

(a9, a;) + (bo, b)) = (ap+ by, a, + b)) (2)
t-(ag, a))=(t-ay, t-a,) 3)

for a,, a,, by, b, € R. Besides the above addition and scalar multiplication a
multiplication between vectors is introduced in the following way:

(ay, ay) - (by, b)) = (ay- by, ay- b, +a,- by) 4)

for ay, a,, by, b, € R. With tnis dennition ot a vector multiplication the set of
ordered pairs becomes an algebra, denoted by ,D,.

Note that the multiplication is the same one would obtain by multiplying
(ap+a, - x) and (by + b, - x) and keeping terms linear in x.

Similarly, as in the case of complex numbers, one can identify (a,, 0) as the

BEAM DYNAMICS 111

ccal number a,. Although as a complex number, (0, 1) is a root of —1, here it has
another interesung property:

0, 1)-(0, 1)=(0,0), (5)

which follows directly from Eq. (4). So (0, 1) is a root of 0. Such a property
suggests thinking of d = (0, 1) as something infinitely small; so small in fact that
i(grsquare vanishes. Consequently, we call d = (0, 1) the differential unit. The first
component of the pair (ay, a,) is called the real part, and the second component
is called the differential part.

It is easy to verify that (1,0) is a neutral element of multiplication, because
according to Eq. (4)

(1, 0) - (ao, ay) = (ao, a1) - (1, 0) = (ao, a1). (6)

It turns out that (a,, a;) has a multiplicative inverse if and only if a, is nonzero;
so D, is not a field. In case a,# 0 the inverse is

1 a
(ap, a))"' = (;), —;(;)))
It is casy to check that in fact (aq, a,)™" - (a9, a;) = (1, 0).

The space D, is a subspace of the field R* introduced in Nonstandard
Analysis.”'" Besides the usual real numbers, R* contains a variety of infinitely
small and infinitely large quantities. The outstanding result of the theory of
Nonstandard Analysis is that differentiation becomes an algebraic problem: a
function f is differentiable if and only if for any arbitrarily small quantity 6, the

real part of the quotient,
fx+90)-fx)
5) (8)

is independent of the choice of the specific 6. Thus, given any differentiable
function f, we can compute its derivatives just by evaluating the formula for a
special choice of 6. We choose 6 =d = (0, 1) and thus obtain

=l et D10,

f1x)=9[f(x +d) = f()] = D[f(x + D)}, &)

where % denotes the real part, and 9 denotes the differential part. In the last
step use has been made of the fact that f(x) has no differential part. Hence
differential algebras are useful to compute derivatives directly, without requiring
an analytic formula for the derivative and without the inaccuracies of numerical
techniques.
The computation of derivatives will be illustrated in an example using the
following function:
foy=— (10)

x+-.
X

112 M. BERZ

The derivative of the function is

-1

2

X
f'(x)= VEEETER (11)
(+2)
x
Suppose we are interested in the value of the function and its derivative at
x =2. We obtain

=2 o= (12)

Now if one takes the definition of the function f in Eq. (10) and evaluates it at
2+d =(2, 1), one obtains

fl2, D)=

1
(2, 1)+'(2—'—15

)

As we can see, after the evaluation of the function the real part of the result is
just the value of the function at x =2, whercas the differential part is the
derivative of the function at x = 2.

This is exactly what was to be expected from the theory of Nonstandard
Analysis. However, to avoid relying on the quite advanced techniques of this
relatively new field of mathematics, we also present an elementary, but less
elegant, proof of the result.

By our choice of the starting vector (2, 1), initially the vector contains the value
1(2) of the identity function /:x — x in the first component and the derivative of
I'(2) =1 in the second component.

Now assume that in an intermediate step two vectors of value and derivative
[g(2), g'(2)] and [h(2), h'(2)] must be added. According to Eq. (2) one obtains
[g(2) + h(2), g'(2) + h'(2)]. But, according to the rule for the differentiation of
sums, this is just the value and derivative of the sum function (g + h) at x =2.

The same holds for the multiplication. Supposc that two vectors of value and
derivatives [g(2), g'(2)] and (h(2), h'(2)] must be multiplied. Then according to
Eq. (4) one obtains [g(2) - h(2), g(2) - h'(2) +g'® - h(2)]. But, according to the

BEAM DYNAMICS 113

product rule, this is just the value and derivative of the product function (g - k) at
=2

‘The evaluation of the function f at (2, 1) can now be viewed as successively
combining two intermediate functions g and h, starting with the identity function,
and finally arriving at f. At each intermediate step the derivative of the
intermediate function is automatically obtained as the differential part according
to the above reasoning.

An interesting sidelight is that, with the search for a multiplicative inverse in
Eq. (7), one has derived a rule to differentiate the function f(x) = 1/x without
explicitly using calculus rules.

After discussing the algebra D, and its virtues for the computation of
derivatives, we now address a more general differential algebra, the structure
.D.. 1t will eventually allow us to compute partial derivatives of functions of v
variables through order n arithmetically.

2.2. The Structure ,,D,

We define N(n, v) to be the number of monomials in v variables through order n.
(n +v)!
n'v!
binomial coefficient. First note that the number of monomials with exact order n
cquals N(n, v — 1) because each monomial of exact order n can be written as a
monomial with one variable less times the last variable to such a power that the
total power equals n. Thus we have N(n, v)=N(n -1, v)+ N(n, v —1): the
number of monomials in v variables through order n equals the number of
monomials of one order less plus the ones of exact order n. This recursive
relation is satisfied by C(n+ v, v). Since also, obviously, C(1+1, 1)=2=

N(1, 1), the formula follows by induction.

Now assume that all these N monomials are arranged in a certain manner order
by order. For each monomial M we call I,, the position of M according to the
ordering. Conversely, with M, we denote the /th monomial of the ordering.
Finally, for an I with M, = x- --- - x* we define F,=i!---- - i,

We now define, in addition, a scalar multiplication and a vector multiplication
on R" in the following way:

We will show that N(n, v) = = C(n + v, v), where C(i, j) is the familiar

@@y, ...,an) +(by, ..., by)=(a, + by, ..., an + by) (14)
t-(ay,...,an)=(-a,,...,t-ay) (15)
(@, ...,an) - (by, ..., b)) =(cy, ..., Cn) (16)
where the coefficients c; are defined as follows:
a,-b
“= E()SV,E,JSN F, - FE:) (17)
M, - M, =M,

To help clarify these definitions, let us look at the case of two variables and second
order. In this case, we have n =2 and v=2. There are N=C(2+2, 2)=6

114 M. BERZ

monomials in two variables, namely,
1, x, y, xx, xy, yy. (18)

As an example, using the ordering in Eq. (18), we have I,, =5 and M;=y. Using
the ordering in Eq. (18), we obtain for ¢, through ¢, in Eq. (17):

c=a;-b

c;=a,-by+a, b,

ci=a,;-by+a;-b,

cs=2-(a,-by/2+a,-b,+a,-b/2)

cs=a, - bs+a,-by+ay-b,+as-b,

C(,=2'(a|'b(,/2+a3‘b3+a(,'b|/2). (19)
On ,D, we introduce a third operation J;:
diay, ..., an) = (cy, ..., cn), (20)
with
0 if M; has order n
C, = { . . (21)
ay,, .., Otherwise

So 9, moves the derivatives around in the vector. Suppose a vector contains the
derivatives of the function f; then applying 9, to it one obtains the derivatives of

J,
—f through one order less. With this third operation, ,D, becomes a Differential

Algebra as defined in Ref. 14.

Although in ,D,, d =(0, 1) was an infinitely small quantity, here we have a
whole variety of infinitely small quantities with the property that high-enough
powers of them vanish. We give special names to the ones in components /
belonging to first-order monomials, denoting them by dM,. In the example of
oD,, we have dx=(0, 1, 0, 0, 0, 0), and dy = (0, 0, 1, 0, 0, 0). It then follows
from the theory of Nonstandard Analysis that instead of Eq. (9) we obtain

of of 3 ¥ Y
flx +dx, y +dy) = (f' dx’ 3y’ ox?’ axay’ ayz) x, y). 22)
In the general case of v variables and order n, after evaluating f in the differential
algebra one obtains

ai..i1+«~-+i,.f
—_— = 23
Bxy Ox - Ay Clus (23)
where I(x{- -+ -xy) is the index of the monomial (x| ----x%), as defined in the

beginning of this section.

3. IMPORTANT FUNCTIONS IN DIFFERENTIAL ALGEBRAS

In this section we will generalize standard functions, such as exponentials and
logarithmic and trigonometric functions, to differential algebra. As we will sce

BEAM DYNAMICS 115

helow, virtually all functions existing on a computer can be generalized

straightforwardly.
We start our discussion by noting that for any differential-algebra vector of the

form (0, a,, ..., ay)€,D,, i.e. with a zero in the component belonging to the
seroth-order monomial, we have the following property:
0,ay,...,ay)'=(0,0,...,0) for i>n, (24)

which follows directly from the definition of the multiplication in ,D, defined in
Eg. (16).

Let us begin our discussion of special functions with the exponential function
exp(x). Assume we have to compute the exponential of a differential-algebra
vector that has already been created by previous operations. First we note that
the functional equation exp (x + y) = exp (x) - exp (y) also holds in Nonstandard
Analysis. As we will see, this facilitates considerably the computation of the
exponential. We obtain

exp [(@o, a;, aa, - . ., ay)] = exp (ay) - exp [(0, ay, a,, . . ., an)]

= 0’ ’ y ooty)
= exp (ay) - 2(a,, a ay)

i=0 i!

2 0, a,, as, ...,ay)

i

=exp (a) - (25)

i=0
In the last step Eq. (24) was used. This entails that the sum has to be taken
through only order n, which thus allows the computation of the exponential in a
finitc number of steps. Hence the evaluation of the real number exponential
exp(a,), which internally on a computer requires a power series summation and
hence cannot be done accurately, is more subtle than the rest of the operations in
differential algebra.
A logarithm of a differential-algebra vector exists if and only if a,>0. In this
case one obtains

log [(ay, a;, a,, . . ., ay)] =log {a‘,- [(0 ﬂ an a_)]}

ay an

= [log (a0), 0, . . - 01+}j(1y 1(0‘2 a _._’a_/v)”

L ap ap ag

=[Iog(a(,),0,...*,()]+2(_1).'“%(0 _1 a, ”.,Elj)'.

ap a() ay
(26)

Again use has been made of the fundamental property of the logarithm
log(x - y) =logx + logy, which transforms directly into Nonstandard Analysis
and leads to simplifications by virtue of Eq. (24).

As the last example, we will derive a formula for the root function. Even
though there is a direct method to compute roots by solving a set of linear
equations for the coefficients of the root, here we present a technique based on
power series following an approach similar to the exponential and logarithm. The

116 M. BERZ

root has the following power-series expansion:

o 1-3- -+ -(2i =3)
\/1+x=2(—1)’123_4. ._'(_2221,)).yt (27)

i=0

Using this formula and the definitions of addition and multiplication in Egs.
(14) and (16), one directly obtains for the square root of a differential-algebra
vector:

v(a()r a,az,..., aN)

a0)

’
a, Qo ag

=\/(;;~i(—l)"l'23. .(2,‘_3).(0 a, a, ‘i’!>i

. ’ ’ ’
i=0 4. .- - (26) ap a, ag

n 13- ----(2i=3) a, a, ay\’

a3 1y D (0,2, %) oy

’ :g()() 2-4- - - (2) ap ao ag (28)

Using the addition theorems for sine and cosine, one obtains formulas with

finite sums in a quite-similar way; in general, suppose a function f has an addition
theorem of the form

f(a+b)=g.b), (29)

and g,(b) can be written in a power series, then by the same reasoning its
differential-algebraic extension can be computed exactly in a finite number of
steps. In practice it turns out that this can be done for all commonly supported
functions in a FORTRAN computer environment.

4. THE IMPLEMENTATION OF DIFFERENTIAL ALGEBRA ON A
COMPUTER

The arithmetic and the functions of differential algebra can be implemented on a
computer for arbitrary order and an arbitrary number of variables. As it turns
out, this is not easily done for the field R* of Nonstandard Analysis; hence we
sacrifice the universal existence of multiplicative inverses.

The implementation of the addition and scalar multiplication is trivial.
However, the efficient implementation of a multiplication requires some care.
First we note that we can increase the speed by defining a multiplication that
differs slightly from that in Eq. (17), with the ¢; as

¢= 2 a,-b, (30)

0<v, u=:N
M, M, =M,

This multiplication is the same as in the case of the multiplication of power
series. However, in this arithmetic not all power-series coefficients of the product
are rcomputed; coefficiente helnnaing to terms of orders higher than n are
disregarded. For many cases this view of differential algebras as ‘‘truncated
power-series algebras” is sufficient (see Ref. 13).

BEAM DYNAMICS 117

The definition of the multiplication in Eq. (16) requires the knowledge of all

yssible factorizations of a monomial into two submonomials. The computatiqn
of all these factorizations can be quite time consuming. Additionally, in practice it
happens frequently that many of the entries in a differential-algebra vector are
lu;(:) it is advantageous to turn the problem inside out so that no factorizations
in submonimials are searched, but rather each component of the first vector is
multiplied by each component of the second vector, and the product is stored
where the product monomial belongs.

To do that requires an easy way of finding the address of the product
monomial. This is done as follows. First, all N(n, v) monomials M are coded with

an integer C in the following way: let M = xi+ -+ -x™ Then we define C(M) as
follows:
CM)=Clxi- - x)=i,-(n+ 1) +i- (n+ D'+ 4§, - (n+ 1) (31)

This means that the exponents are just ‘“‘decimals” in base (n +1). Note that
sincc i, =n this representation is injective; i.e., different monomials have
different codings. Note also that all codings are always less than (n + 1)°, but not
all such codings occur.

Now suppose two monomais M and N must be multiplied and suppose their
product has an order less than or equal to v. Since the multiplication corresponds
to an addition of the exponents, it follows that

C(M - N) = C(M) + C(N). (32)

To exploit this to find the desired coordinate position I, (see Section 2) of the
product of two monomials, an array D is required that has the property

Iyy = D[C(M))]. (33)

This array can be generated easily by the computer. Since the codings are
bounded by (n +1)*, the array has to have at least this length. With six variables,
this enables orders of eight or nine if one wants to stay inside the boundaries of
computer storage; with eight variables the order would decrease to about four,
which is too strict a limitation. To circumvent this, a slight modification of the
above coding and decoding, will be presented.

Without loss of generality, we assume the number of variables v to be even; if
it is not even, increase it by one, and ignore the additional variable. We define
two coding numbers C, and C, for any monomial in the following way:

Ci(xy- -+ X)) =i (n+ 1)+, (n+ 1) +- - +ig- (n+ 1)ED
Coxp - cxy =iy - (n+ 1) 4y (n+ 1)+ 4, - (n+ DED (34)

Then we store the N(n, v) monomials in the following way. We start with all
monomials that have C,(M) =0 and group them by order; within one order, the
monomials are stored according to ascending values of C,(M). Then we store all
those with C,(M) =1, again by order, and so forth, going through all possible

118

values of C,. Again we obtain
Ci(M-N)=C(M)+ C\(N)
Co(M - N) = C(M) + Cy(N).

M. BERZ

(35)

Finally we introduce some “inverse” arrays D, and D, in the following way:

D\(c,) = (I, of first monomial M with C,(M) =c,)

Dy(c3) = (I, of first monomial M with C,(M)=c;) — 1

Again the arrays D, and D, can be generated by the computer.

TABLE 1

List of the ordering of all the monomials M =x}'- -

.- . xil'

v

for order n =3 and number of variables v =4 and the coding
integers C, and C,

<

i

iy

&

C,

X NN A LN -

W W W W WWNR NN NNNN NN
RO E BB R N R RO NS x I mnrom =2

WN~DN = —

S =2

WA = C NN = - COC mmmm—a—— s SC

-
=y

—
X NN &= O NN LCDRWXXAN & -

AmC NN S =

S &=

SO A -

0
0
0
0
0
0
0
0
0

-~
=2

N LCRAWWXELPBDLNLNULVNNNDNDE DL DS B A == =

(36)

BEAM DYNAMICS 119

with the definitions of C,, C,, D,, and D, and the storage scheme outlined
above, it now follows that the address of the product of the monomials M and N
can be found directly as

Iy n= DI(CI([M) + Cl(lN)] + DZ[CZ(IM) + CZ([N)]' (37)

For the sake of clarity, examples for the arrays c,, c,, d,, and d, are given in
‘Tables 1 and II for n =3 and v =4. These examples also illustrate Eqs. (34)

through (37).

TABLE 11

List of the arrays D, and D, for order n =3
and number of variables v =4

J Dy()) D))
0 1 0
1 2 10
2 4 22
3 7 31
4 3 16
5 5 25
6 8 32
7 0 0
8 6 28
9 9 33
10 0 0
1 0 0
12 10 34

For all M, one has [, =D,[C/(M)]+
D,[Cy(M)].

The coding defined in Eq. (34) allows the maximum length of the arrays D, and
D, to be chosen much lower, namely as (n + 1)!.If a maximum length of 1 million
is assumed, this entails the limitations on the maximum order given a certain
number of variables that are listed in Table II1.

After addition and multiplication are available, the implementation of

TABLE 111

Maximum order for different numbers of
variables due to a limitation on the length
of the reverse addressing arrays D,, D,

Number of Maximum
variables order
6 99
8 30
10 14

12 10

120 M. BERZ

differential-algebra functions is done quite easily using the fomulas discussed in
Section 3.

For practical purposes it is of importance that in the FORTRAN environment
differential-algebraic operations can only be used by calls to subroutines. For this
reason a precompiler'” was developed that allows the use of a new data type
“differential algebra” in regular FORTRAN formulas. The precompiler parses
the entire program and transforms formulas containing differential-algebraic
quantities into subroutine calls.

5. THE COMPUTATION OF TRANSFER MAPS

5.1. An lllustrating Example

Differential Algebras can be used quite efficiently to compute the transfer map of
Eq. (1) of particle optical systems in its Taylor series representation.

To illustrate this, let us start the discussion with a simple example, the
midplance motion in a 90° homogenous bending magnet. Let x, and q; =sin q,
denote the initial distance and scaled transverse momentum relative to the
reference trajectory (see Fig. 1). Then we are interested in the values x; and
a; =sin ;. Since the trajectories in the magnet are circles, we can readily read
from Fig. 1:

A=Rsina;,=Ra;
B=R(1—cosa;)+x,=R(1 —V1—a?) +x,
. B
af= Sin Q’f = —E
x;=A—R(1-cosa;)=A—-R(1-V1—-aj). (38)

@y

FIGURE 1

BEAM DYNAMICS 121

These cquations allow the computation of the final coordinates x;, a; in terms
of the initial coordinates x;, a;. However, taking thesc equations and performing
all operations in differential algebra even allows us to obtain all derivatives of x,
a, with respect to x;, a;. These so-obtained derivatives, evaluated at x; =0, a; =0,
are then the expansion coefficients of the map of Eq. (1). For the sake of clarity,
let us explicitly show how x, and a, are computed.

Using the ordering in Eq. (18) and identifying the variable a with y, we obtain,
using the arithmetic defined in Egs. (14), (15), and (16),

x,=(0,1,0,0,0,0)
a,=(0,0,1,0,0, 0)
A=(0,0,R,0,0,0,)
B=(0,1,0,0,0, R)

1
a;= (o, ~20.0,0, —1)

1
X,= (0, 0,R, ——.0,0). (39)

Comparing the so-obtained result with any matrix code,” *® we find complete

agrecement; as an example, the fact that the second component of X, is zero

implies that j—;’= 0 and hence (x, x) =0 (or in TRANSPORT notation R, , =0),
which is a well-known property of 90° bends.

In case an additional particle optical element is to follow this bending magnet,
one need not begin evaluating this new element at x,=(0, 1, 0, 0, 0, 0),
a,=(0, 0, 1, 0, 0, 0), but one can start with x; and a; of Eq. (39). This way one
can eliminate the usually quite involved concatenation process and increase
performance significantly.

The example discussed in this section has been implemented on the computer.
Using the Differential Algebra package, one can easily extract all nonlinearities
of this two-dimensional example through order 50.

5.2. Generation of Maps Using Numerical Integration

In this section we will address the general case in which no closed solution of the
problem exists. We will see that even in this case we are actually able to compute
transfer maps of arbitrary order for arbitrary particle optical elements. Even
though we do not have analytical formulas that relate the final coordinates to the
initial coordinates, there is still a way to computationally relate the final
coordinates to the initial coordinates, by numerical integration of the equations of
motion.

In this case, the final coordinates are still computed from the initial coordinates
using standard arithmetic and functions; however, the relations are more complex
than in the case of the homogeneous sector.

Now blindly performing all these operations in differential algebra automati-

122 M. BERZ

cally leads to all desired derivatives of the transfer function, regardless of the
form of the equations of motion.

Differential-algebraic techniques have been implemented in the program
COSY.® They allow the computation of transfer maps of elements, such as
fringing fields, with a dependence on the independent variable for which an
analytic solution cannot be obtained from HAMILTON.? By use of an eighth-
order Runge Kutta integrator, all operations required for a tracking of particles
are performed in differential algebra. This allows the computation of arbitrary
fringing-field effects as soon as the spatial distribution of the electromagnetic
fields is known.'®

In many cases, including the proposed SSC,"” the particle optical system can be
represented very well by a sequence of kicks, as in TEAPOT." The sequence of
kicks can be viewed as a symplectic integrator of second order in the independent
variable. In this case, the execution of all arithmetic in differential algebra is
particularly easy. The so-obtained nonlinear map may be used for very efficient
and accurate computation of tune shifts and chromaticities using normal form
theory.”® This is discussed in detail in Ref. 1.

It is worth mentioning that the maps obtained from TEAPOT and COSY are in
complete agreement for all nonlinearities through fifth order. To show this, we
selected a small ring for which bends and quadrupoles of finite length had to be
split into several hundred drifts and kicks to be computable by TEAPOT.

5.3. Hamiltonian Theory

In this subsection we will outline the usefulness of differential algebras for
Hamiltonian systems. One of the most fundamental concepts of Hamiltonian
theory is the Poisson bracket between two functions of phase space. This requires
the differentiation with respect to phase-space variables.

Suppose a differential-algebra vector is given. Then it can be viewed as a
descriptor of a function, giving its value and derivatives at a certain point. In this
context the required differentiation is just the “‘bookkeeping operation,” moving
derivatives in the vector to different places introduced in Section 2.2. Thus a
Poisson bracket for arbitrary order and an arbitrary number of variables can be
computed.

Using the Poisson bracket, Lic operators, ‘“Poisson brackets waiting to
happen,” can be computed. In fact, as soon as the generator v of the Lie operator
:U: vanishes at the origin and has zero first derivatives, the process is closed in
that no feeddown from higher order occurs.

Using Lie operators, the transfer map or flow of a time-independent Hamil-
tonian system can be computed as

M =exp(—t:H:), (40)

where H is the Hamiltonian of the system. Note that by the proper choice of the
coordinates it can always be achieved that H(0) =0 and also the first derivatives
of H vanish. This entails that each summand in Eq. (40) can be computed in a
closed fashion.

BEAM DYNAMICS 123

Furthermore, it turns out that it suffices to compute only a finite number of
terms of the sum in Eq. (40) if we want the nth-order coefficients of the transfer
map to a certain accuracy. To see this, we show that the norm of the Lie operator
.—tH: is bounded. First note that to obtain the transfer map through order n, it
suffices to know H to order n + 1.

We define a norm on Differential-Algebra vectors in the following way:

I(ay, - - ,a~)l=§ lai]. @1

It is quite easy to show that for arbitrary vectors V;, V, we have |V, V,|=
n-|V|-|Val. Since the ‘‘derivative” 3, defined in Section 2.2 only moves
coefficients around in the vector and drops some, it follows for a vector V that

o, Vi=|V|. (42)

Thus we obtain for the norm of the Lie operator consisting of the two derivatives
in each summand:

|—t:H:V|
|:—tH:| =sup—|‘T—
_ P20 - [(BiH)(Bixv2V) = (3iV)(3isunH)]
Vi
<|t| - |H} - v. (43)
w (—t:HY)

This entails that the sum Y_, converges (in a differential-algebra

v!

sense!), and that it is possible to estimate how many terms must be taken to
obtain a certain accuracy. In general it turns out that these estimates are usually
quite pessimisitc, and the terms in the sum become small more quickly.

This method to obtain the Hamiltonian flow in a computer code has the
additional advantage that it does not require any composition of the maps of two
subsystems; all that is required to compute H by substituting in the z already
obtained and then let this differential-algebraic vector act on z.

In practice it turns out that the savings from the avoided compositions are
more significant than the additional time required for the iterative evaluation of the
exponential sum exp (:—tH:). In fact, a composition routine requires N(n, v)
differential-algebra multiplications, whereas one term in the sum requires v
multiplications per dimension.

In the case where the Hamiltonian is time dependent, the above reasoning
requires a slight modification. In this case it is, in general, not possible to go
through the time-dependent element in one step. However, it is possible to derive
an explicit high-order numerical integrator in the following way. First we note
that for any function of phase space, we have

df IS}

Z=(f, H)+—f =0f. 44

=+ f=of (44)
In our particular case, we are especially interested in the cases in which f are

the components of z. Iterating Eq. (44), we can obtain higher-order derivatives of

124 M. BERZ

f, say up to order u. First we note that even for the f’s of interest,
£y f vanishes, but in the higher derivatives such partial derivatives prevail because

H is time dependent.

To guarantee that all derivatives of the phase-space variables can be computed
to order u, H must be known to order v + u. However, terms with a power of ¢
higher than u can be set to zero. To compute the u derivatives of the phase-space
vector, which is needed for the uth-order integrator, a total of 6-u Poisson
brackets are required. Considering that in many practical cases an element can be
transversed in one step, or very few steps, of an eigth-order integrator and that,
as described above, we still save the composition process, the effort is still very
favorable to the situations in which compositions are required.

ACKNOWLEDGMENTS

For financial support I want to thank the Deutsche Forschungsgemeinschaft, Dr.
Alex Chao of the SSC Central Design Group, and Dr. Edward Heighway of Los
Alamos National Laboratory. For fruitful discussions I want to thank Dr. Etienne
Forest and Professor Dr. Hermann Wollnik.

REFERENCES

1. E. Forest, M. Berz, and J. Irwin, Particle Accelerators 24, 91 (1989).

. K. L. Brown, D. C. Carey, Ch. Iselin, and F. Rothacker, SLAC 91 (1973 rev.), NAL 91, and
CERN 80-84.

3. A.J. Dragt et al., IEEE Trans. Nucl. Sci. NS-32, 2311 (1985).

4. H. Wollnik, J. Brezina, M. Berz, and W. Wendel, Proc. AMCO-7, (GSI-Rep., THD-26, 1984) p.

679.

5. M. Berz and H. Wollnik, Nucl. Inst. Meth. A258, 364 (1987).

6. M. Berz, H. Wollnik, and H. C. Hofmann, Nucl. Inst. Meth. A258, 402 (1987).

7. E. Forest, Particle Acclerators 22, 15 (1987).

8

9

N

. E. Forest, SSC Report SSC-111, Berkeley (1986)
. A. Robinson, Proc. Royal Acad. Amsterdam Ser. A64, 432-440, (1961).
10. D. Laugwitz, J. Ber. Deutsch. Math. Vereinigung 75, 66 (1973).
11. 1. Niven, Am. Math. Monthly 76-8, 871 (1969).
12. L. B. Rall, Math. Magazine 59, 275 (1986).
13. M. Berz, Nucl. Inst. Meth. A258, 431 (1987); M. Berz, Los Alamos Accclerator Theory Note,
AT-6:ATN-86-16 (1986).
14. J. F. Ritt, Differential Algebra, American Mathematical Society, 1950.
15. M. Berz, Los Alamos Report AT-3:TN-87-32 (1987).
16. M. Berz, Dissertation University of Giessen, 1986 (unpublished, in German); B. Hartmann,
Diplomarbeit University of Giessen 1987 (unpublished, in German).
17. SSC Conceptual Design Report, SSC Note SSC-SR 2020, Berkeley.
18. L. Schachinger and R. Talman, Particle Accelerators 22, 35 (1987).

	P063
	063.tif
	064.tif
	065.tif
	066.tif
	067.tif
	068.tif
	069.tif
	070.tif
	071.tif
	072.tif
	073.tif
	074.tif
	075.tif
	076.tif
	077.tif
	078.tif
	079.tif
	080.tif
	081.tif
	082.tif
	083.tif
	084.tif
	085.tif
	086.tif
	087.tif
	088.tif
	089.tif

	P091
	091.tif
	092.tif
	093.tif
	094.tif
	095.tif
	096.tif
	097.tif
	098.tif
	099.tif
	100.tif
	101.tif
	102.tif
	103.tif
	104.tif
	105.tif
	106.tif
	107.tif

	P109
	109.tif
	110.tif
	111.tif
	112.tif
	113.tif
	114.tif
	115.tif
	116.tif
	117.tif
	118.tif
	119.tif
	120.tif
	121.tif
	122.tif
	123.tif
	124.tif

