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1. - INTRODUCTION

Very high energy electron-positron linear colliders working in the TeV energy
range, such as those presently envisagedl), have to use bunches of very small
transverse dimensions and very high densities. This 1s necessary in order to
achieve luminosities which have to compensate for the s™! behaviour of potentially
interesting annihilation cross-sections, where s 1is the centre-of-mass energy
squared. One thus has to face a rather intense bremsstrahlung as an electron
{positron) crosses a positron (electrom) bunch. Since the radiated photons can

take a large fraction X of the electromn (positron) incident energy, a quantum

treatment is appropriate.

In a previous paperZ), we discussed the general features of this radiation
process, referred to as beamstrahlpng3). It was argued that the relative values of
the three usual characteristic lengths which come into play, namely the coherent
radiation length LC, the bunch length Lb and the virtual electron length Le, change
in a radical way when energy and design luminosity increase and, in particular,
when one moves from the preseut SLC regime at 100 GeV to a potentially interesting

1)

future machine in the few TeV range . We have shown that the large value of Le/LC

justifies a separate calculation of radiation before bunch-crossing, which was pre-

2)_

sented This is special to such extreme energy colliders. 1In this paper, we

present the calculation of radiation during bunch-crossing. We indeed work under
conditions which are such that Lc/Lb << 12), so that radiation can be considered as
originating independently from different sections of the bunch in a way which we
shall analyze. Here we are considering a highly simplified problem, namely that of
an electron radiating as it is bent by the strong field met in the bunch. The full
treatment of the problem involves a many-body approach which would have to be
treated numerically. In order to proceed analytically, we also consider an
idealized bunch of cylindrical shape and uniform density and neglect its granu-

larity. Our purpose is to point out features which are special to machines in the

TeV range.

Important parameters are NeZ, the number of particles in a bunch times the
square of the electric charge, which is typically of order 10°, and the bunch
radius, which is typically of order 107%m. We are therefore dealing with typical
bending transverse momenta 2Ne2/R of the order of 500 MeV, which are very large
compared to the electron mass, while at such extreme energy the disruption para-
meter remains small. We thus deal with new kinematical conditions. While our
approach shares some common features with previous onesB), and retains many feat-
ures of the classical treatment of syachroton radiationA), it leads to the intro-
duction of a coherent radiation length, independent of the electron mass, XC. It

is defined as:
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where L 1is the classical coherent radiation length, corresponding to the electron
c

being bent by an angle y_l, and Le is the virtual electron length.

In our previous paper we stressed that with the machine parameters proper to
the TeV regime, Le >> Lc' In this case, our coherent radiation length XC is there-
fore larger than the classical one Lb’ and with the machine parameters used, it is

so by a factor of order 202).

Once & is introduced as the relevant coherent radiation length for such a new
c

machine regime, the fractional energy loss is simply given by

x Lle
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where K is a purely numerical factor, sensitive to the approximations made and, in
particular, to our neglecting here complications due to spin. It is of order 1.

2)

The calculation procedure is the one presented in our previous paper It is
a distorted wave Born approximation approach, where we essentially calculate the
rate associated with the Feynman graph of Fig. 1. The radiation amplitude is
written as:

M
M=z M (3)
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£ 1s the polarization vector of the photon with momentum kY. The initial and final

> - . "
momenta of the electron are denoted by ki and k_ respectively. The wave functions

f
b, and by describe the electron in the presence of the bunch in the initial and
final states respectively. These wave functions can be obtained by studying the
Dirac (Klein-Gordon) equation at high energy in the bending field provided by the

bunchS)’6). This was the starting point of our previous paperz).

We have simplified the problem, considering merely the radiation of ome highly
energetic particle in an external field., The bunch is further assumed to be cylin-

drical with uniform density. It has a length Lb and a radius R, and with N



_3_
particles in the bunch (in practice N ~ 10%) the charge density is

Ne
’rrLe_lﬁ.‘2 (5)
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Figure 2 presents the idealized bunch, with constant density (3), together
with the classical path of an incoming electron with a particular impact parameter
r < R. In practice, L, > szg The z axis is taken along the bunch axis with the
origin at the centre of the bunch, the inside region being defined by |z] < Lb/2.
We define the xz plane by the directions of the incident and final electron momen-
ta,-ii and if' The photon momentum'i will in general have a component k v normal
to that plane, but it is relatively small in practice. The classical electron
trajectory is bent in a plane. A photon, when radiated with fractional energy X,
emerges to a good approximation tangentially to the electron path while the elec-
tron, with energy ki(l—x), continues on its bending trajectory. While kfx and ka
result primarily from the bending experienced over the bunch length, kYy implies a
recoil of the electron which, as seen later, is compensated by bending over a cohe-

rent radiation length only, Rc << L, -

Such bunch properties are mot very realistic. A Gaussian distribution should
offer a better approximation, However, our purpose is to treat a simplified, yet
meaningful, problem analytically so that one can more clearly assess the importance
of the different parameters involved. Complications due to spin will also be dis-
cussed separate1y7). The last term in the integral in Eq. (4) is the particle
current at point x im the presence of the bunch, for which we shall here consider

instead the Klein-Gordon version, namely

¢ 00 = ‘%’;( M) + (3»9’:) G (6)

While we therefore do not stress at this stage the actual value found for K, we
emphasize the very simple form found for & [Eq. (2)] in terms of two characteristic

machine parameters, It applies to this new regime of energy and luminosity.

This paper is organized as follows. 1In Section 2, we discuss the coherence
conditions using the high—energy approximation of the electron wave function in the
presence of the bunch., We thus obtain the key properties of the space integral in
Eq. (4). Tnis naturally leads to the introduction of Airy functions in close ana-
logy with the classical treatment of synchroton radiation4). However, and as
previously mentioned, we come upon the coherent radiation length lc [Eq. (1)]. In

Section 3, we introduce the radiation matrix element and perform the space inte-

grals in order to obtain the two radiation amplitudes corresponding to polarization
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in the bending plane and normal to it. We use here the spinless current (6). All
calculations are carried out analytically and explicitly so that a numerical
approach, using more realistic bunch properties, could be implementeds). In Section
4, we compute the radiation rate and the fractionzl energy loss. This is also done

analytically. Our main results have been sumnmarized in Eq. (2).

The present approach should be complemented by a separate treatment of the
Dirac case7) and a separate discussion of radiation at the edges of the bunch, for
which some of the approximations made in the follewing do not apply. Since Rc Ly
in the case of interest, it is legitimate to restrict oneself to radiation "deep"
inside the bunch, a length RC away from the boundary, where some bending has

already occurred. This is what we do in this paper.

2. - COHERENCE CONDITIONS

In the spinless case, the asymptotic plane wave function of the electron has
only to be modified by the introduction of phases in order to obtain ¢i and ¢f. In

the high-energy regime and for small disruption parameters, the full phases are
5),6)
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where V is the potential due to the bunch.
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In our previous paperZ) focusing on radiation before bunch-crossing, we could
neglect the 1/k terms in (7); they have to be kept when strong bending occurs. We
work throughout in the rest system of the bunch. The potential created by the
positrons in the bunch is calculated taking into account the fact that R << L - At

a point of cylindrical co-—ordinates z,r inside the bunch, it is found to be

V(ng) = 22 ("M = (te-43) - —g_

Le (9)

The first term is practically constant when compared to the second and leads to an

overall phase of no consequence., We can thus work with the approximation

Le
O 3 - 5

= N rz L
eV L’:-___P_\_.& [3] < t&

Le
@] 2 > = (10)
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We write Ne = 0 with a value which is in practice typically of the order of 106 7,

From Eq. (10), we obtain ¢, and ¢ as defined by Eqs. (7} and (8). 1Inside the
bunch, namely for [z]| < Lb/Z, they are:

Ly te 2 U Le Y
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(11)

We work with the condition Ly, >> ic and can therefore focus separately on radiation
produced inside the bunch, Tn practice, the radiation originates from a limited
zone, defined according to the final momenta observed if and EY and the coherence
conditions. We can, as is done in the following, consider the radiation "deep"
inside the bunch, avoiding the edge zones and yet extend integrals to infinity in

the calculation.
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The phase of the radiation amplitude {3) is, up to a constant term,

C#:.:C#(;—C?"_.ﬁ—z;';a

(12)

Combining (11) and (12) we obtain, for |z| < Lb/2,

N Y LTy Y
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(13)

The radiation process will be damped out by the rapid variation of the phase but

for a radiation =zone where the phase is stationary.

We first impose that 3¢/dx = Q0 and that 3¢/dy = 0. This defines transverse
radiation co-ordinates which are, to a good approximation, the transverse location
of the radiation with a final electron and photon of momenta-if anchY respect—

ively. They are

Since the initial and final electron momenta define the x,z plane, the radiation
zone is slightly off that plane to the extent that kYy, while small, is in general

different from zero.



The global transverse momentum is
- e d —
A'r = = '!‘:f-r - %y, (15)

The global longitudinal momentum transfer
Az.‘ '32_;‘—’&:{3—&33 (16)

can be written neglecting the electron mass in frount of relatively large bending

momenta, something specific to the regime considered:

2

2
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This is valid away from the front of the bunch, a zone which we neglect here inso-
far as RC << Lb' Approximations made later lead us at this stage to keep clear of

the edges of the bunch.

We now substitute (14} into (13) and obtain the phase at the statiomary point
in x and y. We write it using scaled variables, scaling in particular all tranms-

verse momenta according to the classical bending momentum 2n/R2):

~ AR

b, = e (18)
T 2m
We also write, since it is small,
h  Lle
& = RE g, (19)
and
7=
B Lg. (20)
We neglect terms at order £2 (19) and write
A A 2
"o ~
g 4, b (1-7)
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(21)

the derivative of which with respect to z is
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where all quantities inside the bracket are a priori of order 1. In general, there

is no real point of stationary phase!

f
bunch. We have already mentioned that fact and it will be shown explicitly later.

However, EYY is small as compared to iYX and k X except near the front of the

It therefore makes sense to consider first the special case of RYY = 0. There is

then a real point of stationary phase. It occurs for
v
%J - 1. & T%
© X B (23)
Tx

and we can rewrite (22) as

o _ nE 2X Eff@-g,)&
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(24)
The phase of the amplitude (3) is then, up to a constant term:
N,
(25}
We can use this phase variation to define a coherent radiation length as
2 L
Lo Rng_éJ 3
ec'_:_—.' — —————
@z)-g nh? (26)
This is the length given by (1). It is differeat from the classical coherent radi-

ation length L. Using the explicit form of ic and ie’ the bar referring to centre-

2)

of-mass variables, we have indeed
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which is (26), when also expressed in terms of centre-of-mass variables. Coming

back to bunch frame variables, we can write
K 2
é;; = LEL L.q; (1)

Given Ei and the size of the bunch in its rest frame, ic is independent of the

electron mass, although both LC and Le depend on it.

Radiation coherence thus implies a larger coherence length than the one con-
sidered classically for the radiation of a deflected charge. This is not surpris-
ing, since we are dealing with bending transverse momenta which are large as
compared to the electron mass (2n/R ~ 10%m), and have thus to define a coherent
radiation length independent of the mass. Since coherence occurs over this longer
length RC, this is the cut-off length which should be used for radiation before and
after bunch-crossing, as mentioned in Ref. 2). The condition Rc Ly still applies
to typical multi-TeV machine parameters, since Lb ~ 103Lc, and therefore
2, ~ 10721, .

While the radiation predominantly occurs near the bending plane, the radiation

matrix element involves kTY’ and we must therefore keep the ﬁiy term in (22).

We consider the point where the second derivative of ¢ vanishes. This occurs

for
~N oA ~Z
’g’ |z &—b’xATx-"e“rta
b =0T Y
x Tz o
with
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T

(29
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Up to a constant term, the phase (21) can now be written as

~2 N2 a2
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(30

The radiation amplitude (3), (4) involves an integral over space with a phase which
is a function of z (30) and of r (13). 1Indeed, in the latter case, integration
picks the neighbourhood of the stationary point (14), and in the former case a
length lc around z). We thus remain inside the bunch, provided that we stay away

from the front and back by RC.

3. — THE RADIATION AMPLITUDES

The radiation matrix element 1s defined as Eu

j“’ where j“ is given by (6). In
order to follow closely the classical approaché), we counsider separately two polar-

ization components in the xz bending plane and perpendicular to it respectively.

L
£, = (l ,o/—;';.;'.)

_ Ly
EL_(OII/-)(A.

We write

.

(31

The photon three-momentum is by definition

Z = ( ’9‘-'2()(/ ‘e"?fa ) X‘L"L)

4 > . . . N . . . .
and the condition ek = 0 is satisfied. Since we are primarily interested in hard
photons (X not small), normalization conditions are satisfied, neglecting terms of

order kT2.
i

Using (7) and (14), while keeping only leading terms in k., we obtain the

three-vector part of the current (6}, namely

';5 = (&:ﬂx (I.;."\%')—r‘&—yx,gv) '&'y?g’, CZ—-OQC

(32)
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From (31) and (32} we get the matrix elements for polarization in the bending plane

and normal to it respectively

my = ‘e’?’x(l‘"'&) f'—b((g- 2—-)(

m, = &wg(%"}_x"

(33)

We now use (28) and keep only the leading components in both terms. We use the

facts that kYy is small compared with kfx and ka and that the relevant range of

;le is of order XC/Lb and therefore also small., This gives

/W||| ~ -*A'r(,gv ) 2A;_<3"3r)

X
X b,

(34)

3
R

{35)

In order to obtain the radiation amplitude (3), we therefore have two space inte-

grals to calculate:

K ("'313,)

[i [y

o4 o4 .
and I ‘*(f*72313;)
:J_L = j{ afg aix'ab3 e
-0l F-o

(36)

(373

where ¢ is given by (30) and (12). One recognizes an Airy integral in (37) and its
derivative in (36). This respective association 1s well known from the classical
caseA). The coherence condition indeed keeps us close to the classical treatment.
Calculating from Eq. {(11) the electron momentum %¢ separately for ¢i and ¢f at the
stationary point (xp, yo, z1), one indeed finds that, except for the fact thar

f 0, everything is as 1f the photon were emitted tangentially at that point,

deflned according to the values of kf and i?' The electron actually takes a recoil
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of order kYy. As shown later, studying the argument of the Airy function, this is

the classical bending momentum which it takes over a distance ﬂc.

We now proceed with the space integrals in (36) and (37). The integrals over
x and y are easily done using the leading term in (13) while integrating over the
whele plane, since one actually picks up only the contribution c¢lose to the
stationary point (14). Up to a global phase, independent of z, this gives a factor

nR?/n. Using Bq. (30), we write (37) as

2 ob
o = If— [J‘g enp ¢ Cs(%-ij—r ¢, (3-31)

z
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Only the even term survives in the integration. J can then be rewritten in terms

9) L
of an Airy function

o
A(;(u) = j dk cos ( [ 31&5)

39
We obtain
L
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SIS (x) ) A
TtE (40)
where r Z. 2 E'..
W — Aﬁx'g’-b"a L’C-A'r 2
- 4 2. .
AT ExZ(1-x) tec
(41)

We can now see the limits on kyy’ which are imposed by the exponential asymptotic
dependence of the Airy function. We can take as an estimate of the typical value

of the component of the photon momentun normal to the bending plane
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which, using (26), is:

¥4
413— ~nJ EEE' =
¢ R Le (43)

It correspounds, as previously said, to the bending mowmentum collected by the elec-
tron over the coherent radiation length KC only and is small as compared to the
transverse momentum of the outgoing electron and of the photon in the bending
plane, provided that we stay away from the front and back of the bunch. With the
machine parameter used, kYY is typically two orders of magnitude smaller than kfx‘
The radiation is therefore stromgly localized in the neighbourhood of the bending
plane. Combining (33) and (37),the radiation amplitude with polarization normal to

the bending plane can now be written, up to a global phase factor, as:

£ TR2 4 -5
M, = 4e b £x A
L= ¥ < C”‘)
d X AT (44)
where u is given by (41), and
6(1-%x) Al
w = {45)

X ,Afi Le

Also for J" [Eq. (36)], only the even term survives in the integration and we

can write Iy in terms of a derivative of an Airy function:
/ a 2
N(w) = _3f AL wa'.(L—+3uE) 48)
7]

This gives

34 (47)

which, combined with (34), gives the amplitudes for radiation with pelarization in

the bending plane. Up to a global phase, it reads:
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4. — RADIATION RATE

2)

The full radiation rate is given by
> 25
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We first perform the integration over kyy’ which is strongly limited in range by
the Airy function. We treat separately the two polarization components. For the

normal component,; we have from (44)

fyx TR\ = 2 2
320."‘()(4:’; ; ) 0% [ 4 oty AL ()

(50)

and a contribution to I (49):
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where u is here a dimensionless dummy variable.

The integral over the Airy function squared can be performed, using the relationg)

Ai(n®) = (—5_;?- * Ky (@)

(52)
od 2. o4
< ] (\2 £ 2
j L(ZabkA,;(ul)z-—(_z j WZ K (u) da
o 18 o =
(53)
2
T (%)
21& 7 (]sz@i)

(54)
which is numerically close to 10721. For the component in the bending plane, we
have from (48)

od
A

f (Mu) ’””-3’3 =
-00

2- & od

2 (TR3Lg "3 /2
2 X
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(i\ " o J{r 3'3 o <f..)
o
(55)

with u and w given by (41) and (45) respectively, and a contribution to I (49)
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We thus obtain the same dependence on all variables in I, and II, as expected.

|

The integral over the square of the derivative of the Airy function can be

9)

performed using the relation [u in (56) is again a dimensionless dummy variable]

/ ¢ =
A"'z-(,qz') = 3"\, K% (Z-Kg)

o4 ’ Z Rz 2
5, wAT0D = (@) kg

(57)
The integral is knowng) and (57) is equal to
3
|z r7<fs/g/)
2
7 r7(?SAg:)
which is numerically close to 3 m+10~2. The total radiation rate is obtained
from (51) and (56} which both involve the same integral over kfx’ ka and X.

Neglecting kYY as compared with kyx, we integrate over ka which varies from 0 to

XAT (lZ[ ¢ 1) and over AT which varies from Q0 te 2n/R. One finds

z t ! 2
o n \3 /le \= 2 (.'_x K3
= .9 - -— — —_—
te T (R) *f«ijJ; )

In order to obtain the fractional energy loss we have to normalize the rate to the

(58)

bunch cross-section nR? and weight the integrand in the last integral by X. We
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recognize in the bracket the ratio Lb/,Qc (26).

We therefore obtain

. o _ | 2 ' ‘
le. . 3
s = 19y X [Lt& j X 2 A
* 7 (= g (1~%)" x % ax .

The integral over X is a B function which is easily calculated. It is numerically

close to 0.4, hence

S~ 018 X Le
S Ce (60)

where, with the machine parameter considered, Lb/lc = §0. The fractional energy

loss 1s then of the order of{0%.

The expression arrived at is therefore particularly simple. The bunch length

is scaled according to the coherent radiation length XC, which is defined by (1).

The picture that emerges for the reaction
e + bunch + e + bunch + vy

in a multi~TeV linear e*e™ collider, for which Le >> Lb >> RC >> Lc, considered in
the approximation of a uniform c¢ylindrical bunch, 1is as follows when analyzed
according to the transverse momentum of the photon. From this point of view we
have two peaks at both small and maximum values, corresponding to radiation before
and after bunch-crossing and a flat distribution in between, corresponding to radi-
ation produced during bunch-crossing. When these contributions are integrated, the
two peaks yield a radiated energy proportional to the beam energy with a coeffici-
ent of order (a/n} An (Le/ﬂc) and the flat region a radiated energy proportional to
the beam energy but with a coefficient (a/m) Lb/kc. This picture is expected to
hold not only for uniform cylindrical bunches but also for more realistic charge

distributions, such as Gaussian bunches.

With the machine parameters considered, these two coatributions are of similar
orders of magnitude. Our second-order approximation (7) would not be sufficiently
accurate for the calculation of terms of order a/m.

Our approach bears clear similarities to that of Blankenbecler and Drell3).
There are, however, two main differences. Firstly, we go directly to the regime of

3)

very small €, as they define it™" . This is also referred to as the extreme quantum
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case, which 1s appropriate for a multi~TeV machine. 1In so doing, we emphasize the
importance of ic (1) as the proper scaling length for beamstrahlung in that regime.
Secondly, we emphasize here and in Ref. 2) the fact that Le becomes larger that Lb
in such machines, whereas they kept Lb as the longest length. Consequently they

have only a term linear in Lb'
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FIGURE CAPTIONS

Fig. 1

Fig. 2

Feynman graph for the emission of a photon by an electroa in the

presence of a bunch.

Radiation of a photon by an electron while its trajectory is bent by
the presence of the bunch which extends from ~Lb/2 to Lb/Z. Fixing the
final momenta‘if anchY implies radiation from a zone fixed by the

coherence conditions around %y, yg and zg. The transverse component of
the photen k . is primarily due to the bending of the electron traject-
ory before emission. In practice L, »> R. For "“typical"” super para-
meters L~ 3m, R~ 10~7m. The disruption effect shown in the figure

b
is overemphasized, In practice D~ 0.1.
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