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ABSTRACT

The method of Baler and Katkov is applied to calculate the correction terins to the Sokolov
Ternov radiation fornnila due to the vatiation of the magnetic field strength along the trajectory
of a radiating particle We carry the caleulation up to the second o der in the power expansion
of Ef?fffﬁ where 7 is the formation time of radiation The expression is then used to estimate
the quantum beamstiahlung average energy loss from ete bunches with gaussian distribution in
bunch cnrrents We show thai the effect of the field variation is to reduce the aveiage energy
loss from previous calculations based on the Sokolov Tetnov formula or its equivalent Due to the
Limitation of our method, only an upper bound of the reduction is obtained

1. INTRODUCTION

For future e'e linear colliders, radiation induced by beam-beam collision is expested to be
very strong (1] This radiation, called beamstiahlung, would cause substantial loss of energy and
degredation of energy resolution Due to these concerns, the study of the subject has been intensive
during recent years Rigorously speaking, the problem is very complex in the sense that the ¢'e
bunches would be continnously deformed duting collision A complete analylic treatment would
be formidable if not impossible Fortunately, itappearsthat in a large range of Leam parameters
the bunches would only be slightly deformed i is theiefore a reasonable approximation to assume
no bunch deformation in a caleulation as a fist attempt

Himel and Segrisc|2] estimated the average heamstishiung energy loss in a conceptual
5 TeV 15 TeV collider, with number of patticles in each bunch N == 1 2 x 108, and beam size
0, =25 A, 0, =04 The calculation assumnes uniform particle distribution withiu a eylinder
bunch, where the radius is R = 20, and the length is L, = 2¢/3 0, By assuming no disruption, each
particle would execute a linear trajectory at a fixed impact parameter with respect to the oncom
ing bunch An approximate radiation power spectrum based on the well known Sokolov Ternov
formaula for uniform magnetic fields |3] was then used to obtain an average fractional eneigy loss
of {e) = 14 5% |4

Recently Blankenbecler and Diell (5] studied this problem with a different approach They
sum over individual potential scatterings of a test charge traversing through the oncoming bunch
in the target's rest frame This is an Eikonal type aproximation but retaining one more order in
the expansion of the phase The result agrees reasonably well wilth Himel and Siegrest Soon after
Bell and Bell [6] showed that the two appioaches ate equivalent to the extent that the spin flip
contribution to the 1adiation was omitted in the Blankenbeckler Drell calculation, which s minor

On the other hand, there have also been efforts to caloulate beamstiahlung from gaussian
bunches. Noble developed a computer simulation code for beamstrablung with negligible disrup
tion [7] Duiing the collision, at each time step the Sokalov Ternov radiation probability is invoked
based on the local field strength 'The result for the same bean parameters burns out to be very
close to the caleulations on an equivalent cylinder bunch Yokoya independently developed a com
puter code which is capable of simulating both beamstiahlung and distuption effects (8] Again
the Sokolov Ternov formula was used in the code
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As is well known, the Sokolov Ternov formuia was derived by assuming a uniform feld, whereas
in the problem of beamstiahlung the feld is both spacially finite and inhowmogeneous In the
calenlations invoking uniform cylindrical charge distribution, the radiating paiticles do experience
constant feld along the trajectories inside the target buneh if distuption Is neglected But to entes
and to exit the target, the particles wonld encounter abiupt changes of field stiength In the vase
of gaussian bunehes the field strength is continuously changing during the traverse of the radiating
particle even if distuption is neglected The smooth vartation in the latter case can be considered
as a smearing of the abrupt discontinuity in the former case One natuiral guestion therefore arises
as b0 how hmportant this “slope” effect would be in the context of modifying the average fractional
energy loss in beamstrahlung

In this paper we present a calenlation based on a method developed by Baier and Katkov [9,10],
which enables one to caloulate radiation intensity in Inhomogeneous fields The homogeneity of a
field along particle’s trajectory can be tested by the condition

e T

<1, n

whete B characterizes the change of the field within the radiation formation time r While saving
only the zeroth order of Br/B in the radiation formula, Baier and Katkov reproduce the well
known expressions in both classical and quanium regimes Our task is to retain higher terms in
the expansion of f’??!!‘ﬁ?; and apply them tu our specific probienm

In Sec 2 we review briefly the Baler Katkov method We then derive the extira terms for the
radiation formula up to the order {Br/B)? for head tail symmetiic inhomogeneous fields in Sec 3
Our result shows a reduction from the leading Bokolov Ternov contribution in the quantnm regime
and no effect in the clasical regime A physical aigument I8 given to explain these facts The
expression is then applied to the specific numerical exainple of Himel and Siegrest in Sec 4 Due
to the limitation of our perturbative approach to the Baier -Katkov method, however, we are only
able to estimate the upper bound of the radiation reduction due fo the *slope” effect, which gives
a lower bhound of average friactional energy loss {¢) £ 10 2% for the Himel Siegiest patameters

2. BAIER KATEKOV METHOD

Our starting point is the Bajer Katkov method of radiation caleulation [9,10] A similar method
had been used eailier by Schwinger {11 The wethod is hased on the realization that when the
radiating particle is vltrarelativistic, its radiation in a magnetic field is a guasi classical problem
By that we mean the motion of an election becomes more and more “classical” as its energy
increases s it makes sense to describe the paiticle by its tiajeciory  The 1adiation s therefore
viewed as induced by the bending of the tigjectory  The ouly 10le that quantum physics plays
is the noncommutativity between the election fleld and the photon field, and the conservation of
initial and final eneigies in a diserete manner The general expression of 1adiation intensity (in the
Coulomb gange) is

P=a [ G5 [ an [ an e e i muin @)

whete « = 1/137 is the fine stincture congtant, {w, k) the fowr moments  of the photon, {(i], {f]
the initial and final states of the: election, respectively, and M the transition matrix To the acouraey
of the order of 1/y, Baler and Katkov show that the phase lactor from M* M

wr } ){}f (k« (Fltz) F1)) “”)E} : (3)

ok Flta) ik ) exp {g .
gd

whete 1 3= 85 £ and ¢ = {3 | fy, commiutes with both the Hamiltonian ¥ and the electron
momentum § After summing over the spins of the final election and polarizations of the photon,
and averaging over the initial electron spins, the radiation intensity can be written as
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&fé - {2:};‘; [‘{5& / di g{g(gﬁgi}‘{m})ex;;{i{wr i §; {j:: (Flta)  #lt1)) W?’)}} ; {4

whete £ and &' are the initial and fnal energies of the election and

2
G(t“f(é;},i?{ig}}%;{(i { §;) {Fits) vt} 1)

; (g;)z (z‘f{@) Flty) 1 5‘2)%

From now on we will simplify the notations by designating #; and @3 for (¢} and #{ty}, respectively
Similar notations apply for #{t) It is observed that the dominant contribution of the 7 integration
in Bq (4) comes fiom the value at §7 -+ 1/y "This corresponds to the situation where the electron
position vector has swept thiough an angle 1/, or correspondingly the ouleoming photon lies
within an open cone of angle /4 We shall call this petiod of time the radiation formation time 1,
and the corresponding distance of travel by the electron the 1adiation formation length, fx Since
i1/y € 1 we can Taylor expand i and 73 in tenos of ¥ and F:

<o oo o ot P 1 Ya l P>
#y fiy w vy {z;i P o zm% i é it s

3 N
i i {ﬁ)
k {& ««}}mg {ff;i‘ i éf?;’iz i é f;g’!g H l

In their paper 9] Baier and Katkov truncated the expansion at 172, thus the assumption was
1/6)]01]s°

(t/ )Ei 1] € 1 (N

(1/2)e 2 '

Since B & ¢ in a magnetic field, and #% = constant, we have ¥ ¢ =0 Taking thne derivatives
suceessively, we have

wf

e

B
24

*
¥
pos 32

wg

, = 3§, ee {8)

Ising these relations the assumption can be translated into By /B < 1, asis in Eq {1} Now we
define a dimensionless, Lorentz invatiant patameter T:

B 2w B
W omm oy e ommosomo WS [+
VBT F (©)
where B, = m?e/eh = 44 x 1318 (auss is the Schwinger critical feld strength, and w, is the
critical frequency in classical sychrotron radiation The radiation intensity for electrons in an
inhomogenous field satisfying Eq (1) can then be obiained iu tetms of T:

o (10)
dt ;
BT (3) em? (37)7° 4 s Il

In the above equation the expression for ¥ « 1 is the well known formula for classical syn
chrotron radiation, including the quanturn correction first derived by Schwinger {11], and indepen
dently by Sokelov, Klepikov and Ternov [12], and higher terms in Y The expession for T » 1
cotresponds to the synchrotron radiation in the extreme quantum finit studied by many people,
but we will From now on simply call it Sckolov Ternov formula [31 The fact that Baier and Katkov
reproduce these formulas in a sy aightforward manner suggests the powet of this method
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8. RADIATION FROM INHOMOGENEQUS FIELDS

Consider 2 magnetic Beld that points to the direction fransverse to the axis where an electron
enters, and its strength that varies along the axis Let £ = 0 when the eleciron passes the peometric
center of the field We are interested in the case where the fleld variation is such that R{t} is an
even function in ¢, which is also called head-tail symmetric Since from Lorentz force ¢ o Blt),
we see that § « B(t) is an odd function in t Therefore, in the study of 1adiation from a head-tail
symmetric inhomogeneous magnetic field, the terms linear in § wonld vanish when integrating over
t This fneans the leading correction term is of the order % We should thus ietain the Taylor
expansion in the integrand (f up to the term ¥ - ¢ 11 where the recurrence 1elation

gt

¥ 6= 85§ 4 ¢ , (1
whicl is obtained from one more derivative on Eq {8), links the tenn with & # and ¢« ¥ where
both are even funciions in time,

”
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As for the phase, retaining ferms up to ¥ ¥ we have

e&xp{ iwri g; (ga{i‘z #) w:) }mexpfiiégﬂ?;}} R {12)
where
By = uls PRI P :‘:§§§‘ §1®
{5 = : a 3 ¢ 3

andumw/l as I”c:!w, is the phase angle that gives tise to Bq (10} in the previous section, and

, VG 6.9, 1 [ FF & &Y .64
£ - ¥ wmne & B 4 .- 19%
By = ulr {8 g v { i5h ¥ i i
is the additional phase that we retain. Notice that in @ and the last term in $4 we had made the

approximation of replacing # by #.

We further assume that ®; € 1, which is usually satisfied if only u S, or the final energy of
the electron £7 » . This does not introduce extra assumptionssince the Baier Katkov method
hias alieady assumed relativistic eleciron before and after emitting the photon Therefore we make
the following approximation:

exp{ #{®, i $ )bl i®)exp{ 190} {13)

Retaining terms to the same order in the integrand ¢4, and combining with Eq. {13}, we find the
integrand to be

(=g t 8} Gy {14}
where

; ! ! w?\ 2 3
Gy = é(liu} é(iiali)@z

is the part that reproduces the Sokolov Ternov formula, ¢7y x Br/B is an odd function in time
and would give zero contribution for head-tail symmetric fields, and (s is

. 18 1B .,
{rg == (ii L )(82‘?2i62§3)”3‘
uf tte B* g 35
o ) )(%&*‘**") {15}

,“6 X Ez té %
%ziz«a(i%ut )(35%23)9?

In the above expression the vector products # ¢ and ¥+ & have heen replaced by BB and BB
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This is because the only components that & and ¥ contribute are proportional to # x B and 7x B,
respectively

Following the mathematical techniques used by Baler and Katkov (9], we introduce angles ¢
and @, where 8 is the angle between the unit vector & of photon propagation and the plane (¥, ¢),
and @ is the angle between the projection of # on (¥, ¥} and 4, i e,

fiei=vcospsingd , A §=vsinpcost {18)
Taking into account the fact that up to terms of highest order in 1 /4% the principal contribution
cotnes from small § and , and by shifting the origin of 7 to 1 | ©/v, the phase can be written as

o= ué {1 A T év‘i é‘fgiéffzﬂ]
f (17
M’“sﬂsg( 1 53, i 3)
= éé zigzt iyfgﬁ. M
where
p=1 vleosilo ;1 8%
and

= gweﬁf and y= lmt'vr
3 N/

i

With the definition of T in Eq (9) the coefficients in the phase can be symbolized by

o3 @ g 3/
b=on= 5 ()

The radiation intensity associated with head-tail symmetric inhomogeneous fleld is then

o« e
dly 4« 2 u[ j’ , {(23 I
i = (2’&}3/]( dkdsind; dx{} dy Ghexp dblz i z2° byl g ¥ (18}
&

Recall that u = w/€' = w/{§ w), and k¥dk = wldw, we find that

&3uldu
Kdk = ;. - 19
(i b uji (19)
The integrat ionsover z and y give Bessel functions of fractional order Kyj3(n) and Kysln) For
the evaluation of the integral over u it is convenient to introduce the representation [13]

1 1 ' s)P(im 18} , .
Qe =ani | ) C (20)

whete I m < A < 0 After this transfotination the integiation over u turns the Bessel functions
into gamma functions, multiplied by a factor (v%g) S(ein)/s among other things We can then
cary out integration over sin 8 = ¢ by the following formula {13k

B

o0 ’ .
2,y sin)f2 - 2gn3{ in)f2 - ?(«%fgz i{xn Q.f{ 2} 4
(s} ~dl [(I § 49 ~Ndf = T(3s/3 + dnj2) (21
063
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All integrations in Eq. (18) are stiaightforward, though tedious The result before carrying out
the final integration vver s iz

dly _ oyt 1 *jﬁ”d prgyy L3872 4 1)

dt ~ 257 3xi T{3s/2 1 3/2)
A doo

A GE B rC OrGrG e
A N HHE AR HAHE
G GG )]
(BRI G DG DG G
GGG D)
O A RO e
o GG DG )]

where 1| < A < 0 The ahove expression includes only contributions from the %1% and #7¢7
terms in Eq (15) because it can be shown that the contribution from the $%7° term is significantly
smaller, and thus negligible

I'(s + 4) ' (s 3 2}! (s
T{4) T(E) [T 13

The integral over 5 can be evaluated by closing the contour of integration either to the right
for T« H,ortotheleftfor T 2 1 For T < 1, we have

di‘g

p=0, T, (23)

identically For T » | we have, to the leading order in T,

dly ey (), (1\4L (6182 13BY . s
i = JF (f!)I(é) 54 (ét;yz 90 R (67) ;T (24)

This result is valid for any head tail symmetiic inhomogeneous magnetic field which satisfies the
assumptions given previously

Now we apply Eq (24) to the field from a relativistic gaussian bunch with standard deviation
[+ 3

B(t) = Boe 08, (25)
where the time of flight of the test election traversing the oncoming bunch is £ = 2/2 Then we get

dly _ 321(2/3) I'(1/8) ., 2t .
éfw 3 *(s”f}*"‘{ fﬁz[;zwz( 3) 1804)

},rm, (26)
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where F = /o, is the formation length parameter associated with fp{w) in the quantum Himit
for photon frequency w = &

actn . }iﬂ’}' wle iffﬁm 3 §f3 g{‘Y ‘
to=0)="¢(7)" = (e) yi/3 (27)

Combining Bgs {23} and (26) with Bq {10}, we obtain

Zom2y2 (1) B8y 54872 . Y@ i
dl _dly dlz _ [’5 (1 )

di T odidt T ) 32002/3) s ly TUZ6) e liagen (200 pa L
] LR ey {z :}ﬁﬁ\%ﬁ {;zw (#) mmi} , T

(28)

Our result can be appreciated by the following physical arguments: Consider the differential
radiation intensity Plw) wheie

&
ar [ \
= / Plw)dw (29)
{4

In the elassical limit P{w) in the case of a uniform field scales as

WHE WS W

Plw) ~ { (30)

W, w .
G.¢ foe | wRw, ,

as shown by the solid curve in Fig. 1 Asis introduced in Eq (9), classical limit ¥ < 1 conresponds
to the situation w, < &, meaning the typical frequency of 1adiated photons is much less than the
kinetic eneigy of the 1adiating pariicles Thus the entite spectinm of Eq (30] is observable On
the contiary, the extreme quantumn Himit T » | cotresponds to & < w,, therefore the spectrum
heyox;ﬁ the electron energy is kinematically forbidden, and the observable spectium scales roughly
as w!/?

[ the case of nonuniform fields the spectrum differs from that of uniform fields In the classical
limit the problem has been studied by Colsson [14], and independently by Bagrov, Fedasov and
Ternov [15] 1t is found that for a short wagnet which is eomparable in length with £p, the
radiation spectium is modified in such a way that the low frequency reghme is suppressed in favor
of high frequencies beyond w, The total intensity, however, remains the same The prediction was
confitmed by Bossart et al [16]from observations in SPS at CERN We can extiapolate this fact by
suggesting that when the magnet length L' @ g, the spectium would be a constant independent
of w up to a maximum frequency w® - we(lr/1*) (see the dashed curvein Fig 1) Our result for
the classieal limit shows that the total intensity dI/dt is the same for uniform and gaussian fields
‘I'his is a confirmation of the previous studies

The sitnation for shott magnets is different in the quantuwin limit  Again, spectium beyoud & is
energetically forhidden But now that the low frequency reghue s suppressed, the overall intensily
is 1educed This explains why our dly/dt is opposite in sign from dlo/dt  From Eq (28) it can
be seen that when fp € o,, or when the bunch is very long, diz/dt 0, and we have vanishing
cotred tion to the Sokolov Ternov formula A prononnced effect occurs when £p Is not imuch sialle
than o,
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Fig 1 Radiation spectrum in the two asymptotic lmits  For long magnets,
1* » £p, we have the well known spectrum in sofid curve ln the opposite limit
1* « £p, the spectiun approaches a constant, In quanturm Hinit we observe only
the low frequency regime

4. QUANTUM BEAMSTRAHLUNG

We now apply Eq (28) to a specific example In order to appreciate the slope effect, we choose
to caloulate the same seb of beam parameters fist discoussed by Himel and Blegrest, wheie the
Lotenty factor for 5 'TeV beams is »y = [ X 107, numbes of particles per bunch N = 1.2 x 10%, bunch
size o, = Odpmand 0, =25 A

To focus on the longitudinal effect, we assume “cylindrical gaussian” bunches, i ¢, uniform
deusity in r < 2o, and gaussian in 2 Then

T{p,¢) = Tope /%, {38)
whete p = r/o,, ¢ = 2/0, are the normalized coordinates, and

Ty == 7&%5 ‘?N

V2n0:0,

is the reference beamstrahlung parameter corresponding to twice the feld strength (ie,

IRl = |E}) [17] at {p,¢} = (1,0) in the target bunch., The formation length parameter F is
also a function of ¢ and p;

F(p g)m(i’{ Y oxer _[(3)" aer
’ 3) Yo, |\2) yifS,,

where the reference formation length parameter

i3 .

{

Fy= (3> i‘;;‘ = WIS Em G og7s (36)
2 1i%0, 04 pum

= 5094 1 (34)

p AR = By BRST (35)

et us Bist calculate the average enesigy loss based on the Sokolov Ternov formula (f e, dly/dt)
Let €= (£ £7)/€ be the fractional energy loss of an electron having fnpact parameter p Then
the average fractional energy loss of the entire bunch is

= L) J o/ dypdpat
leh = z°° Tris (37)

for our cylindrical gaussian bunches Replacing dt by {0,/2)d¢, and defining

Pz T (38)

7y
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we find for the leading Sokolov Ternov term

-

. _ 16 I(2/8) « 278 ; 023 [ $*/3 )

(oo = st 1 g, BT [ e i, (39)
R

where the mean impact patameter

P 5};3 3§3§
oy =127 s
Jo pde

in our example For the Himel Slegrest parameters we have
{enton = 1B 2% {4))

which agrees 1easonably well with previous caleulations [2,4]

To include the correction term we should realize that om perturbation breaks down before
dlg/dt and dlg/dt becomes equal in magnitude at some point ¢ = ¢ fiom the centioid of the
binch, bevond which the total intensity would turn negative and be certianly unphysical Since we
jack the knowledge on the behavior of higher o1der terms, we can only estimate the upper bound
of the reduction effect by extending dly/dt all the way o ¢ and assuming total suppression beyond
that point, as shown schematically in Fig. 2. From Eq (28) this threshold occmrs at

i”{i/ﬁ} ( .?_R{} ? §f3 «{3[;3 . a
P MG Bt b whe “ Y4 o
36077 \ o, ) p H8A (12007¢7  1804) =1 (41}

From this equation it is obvious that the cut off ¢ is radial dependent For the sake of simplicity in
our discussion, we make a further approximation by evaluating ¢ at the mean impact parameter
{p) = 1.30, and we get

¢ = 149 (42)

T'hus the mean radiation loss is suppressed to

{g}ﬁs e {5(3}& i {EZ}Q L] €43}
where
g
216 T(@f3) oy sy | s / 470
{0}y, = 243 F{g&'ﬁ;} {0} ¢ ds
¢
and
) EY
181(2/3) o a1 PL1/B)
{e2)e, = zigf ?%:}{31“{;)*” ééé}{f%z:g{@ 33 / " 3(12007¢%  1804)d;
e
Plugging in numbers we get
{ﬁzj};b w £} ?8{&{3}% = 11 8% {44}
and
{2} = O 1H{eg)oo = 16% {45}

Thus the éarmc%e& quantum beamstrahhung average fractional energy loss is
{e) R {e)g, = 102% {46}

“This is substantially different from the previous results
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Fig 2 Radiation inteusities as function of longitudinal target buneh coordinate ¢
The dash dot curve is the Sokolov Ternovradiation, The dash curve is the negative
of pur gaussian slope correetion The nel intensity s represented by the solid curve
Beyond the point ¢, where dlo/dt and  dly/dt meet, we assume a total suppression

5. DISCUSSION

Due to the constraints of the pertui bative approach to the gaussian slope vorrection, we can only
estimate the upper bound of the reduction The pathology lies in that while the B feld strength
decreases exponentially to the head and the {all in the oncoming target bunch, Br increases more |
than exponentially These facts force Br/B ceases to be much less than one at some point The
symptom is actually rather generic in beamstrahlung, For example, consider replacing the gaussian
distribution by a pasabolic one Though we may have the advantage of terminating the field at
some finite distance, the fact that B field vanishes forces upou us that somewhere before the
bunech ends, B1/B < 1 must he violated

As long as the cut off ¢ is several standard deviations fiom the bunch center, however, the
eotteetion that we ealeulated would be valid since the field beyond ¢ would contribule very little
to the radiation in the first place For the case of Himel Siegrest parameters the situation is a little
awkward As shown in the previous section, the average energy loss within ¢, accounts for only

78% of the total loss based on Sokelov Tetnov formula To impiove the caloulation, methods
other than perturbation should be pmsued

apart from this technieal difficulty, the physics involved is 1ather elear: In addition to the
beamsirahlung parameler Yy, one more parnmeter, the radiation formation length parameter Fp,
is essential in deterining beamstralilung propeities When Fy appioaches uniby, the reduction of
the average energy loss in the guantum reghine becomes non negligible Actually, our c¢laim is that
not only (g} is reduced, but also the enetgy resolution is inproved because there would be less hard
photons 1adiated as can be seen from Fig 1 These featiies suggest thal the situation is in favor
of altrashort bunches in future linear eolliders [18] if ihis is technically aitainahle

We should point out that for the puipose of estimating the energy loss we calculated the
second order eorrection in Br/B for an ideal symumetric bunch In reality, the bunches would be
continnously deformed during collision, and the head tall symmetty is destroved lu that case there
will even be first order correction in Br/B Recently there has been interest to consider colliding
heatus at an angle in fulure linear eolliders  In this scenatio the head tail symunetty Is natorally
broken, and the frst order correction would appear inherently
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Discussion

The rapid dependence of the torrection factor on your cut-off faclor is a symprom of 3
problem with the approximat fon made in the valeulation. Could this be cured by using 3
different distribution (for example, a paraboliv distribution)?

Reply

This is a nice suggestion, bul I am afraid that the cut-off symptom is rather gener ¢,
having to do with my perturbat ive approach to the raleulation, The Fagt the B.field
vanishes a! some finile distance also weans Bo/B would cease to be much less than ong
somewhere hefore the hunch ends, which comes back 1o our symplom.

Y. Amaldi, LERM

1f 1 understond your numbers correciiy, the large correction o the Sokolov-lernov
equat fon you presenied are due to the facl that you chose a very short bunch: o, ~ 0 4
. Since your correction is proportional to az*g, am | wrong in thinking that for oy
~ 100 gm {as we have in (11() the effect you discuss is compleiely negligible?

Reply

ihat is correct. lhis Gaussian vorrection is indeed associated with the geometry of
the bunches, as i1 should be, My comment to your guestion is thal we may not have the
freedom of choosing o,5's that are different by orders of magnitude. For example, the

Hime l-Siegrest paramelers were deduced from certain optimizal fon processes ((.f. Himel and
Stegres! paper), they were not a random choice,



