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ABSTRACT

New Lagrangians, depending on the field strengths and the elec-
tric and magnetic sources are found, which lead to the Maxwell
equations. One new feature is that the equations of motien are
obtained by varying the Lagrangian with respect to both the
field strengths and the sources. In this way, conserved cur-
rents can be found for the field strengths and the electric or
magnetic sources. Furthermore, using the equations of motion,
the electric or magnetic sources can be eliminated, leading to
conserved currents for the field stremgths only (in the pres-
ence of electric and magnetic sources). Another new feature is
the construction of a Lagrangian invariant under the duality
transformation for both field strengths and electric and mag-
netic sources. The conserved current, after the elimination of
electric and magnetic sources, depends on the field strengths
only. The conserved quantity is related to the total helicity
of the electromagnetic field.
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1. - INTRODUCTION

It is well konown that the Maxwell equations were the source of inspiration
for many important developments in physics. The symmetries of these equations led

to dramatic discoveries. Yet it is still remarkable that new symmetries and con-

servation laws of the Maxwell equations are continuously being discoveredl)_ll).

Fushchich and Nikitinl)

have found and collected the most impressive amount of
such symmetries and conservation laws. According to them, there is still a hope
for new results "since Maxwell's equations have a hidden (non-geometrical) sym-
netry.,.",

4)

More than 30 years ago, Lipkin

5)

found unexpected conserved curreats, which
led Kibble and Fairlie to develop a method generating an infinite number of
conserved currents. Anderson and Arthurs6) have derived a Lagrangian for the
Maxwell equations depending on the field stremgths and not the potentials. A
similar Lagrangian was derived by Rosen7). The deficiency of this formalism is
that this Lagrangian is the time component of a wvector, Recently this formalism

8)

was improved by Sudbery who generalized the previous Lagrangian to a vector,
from which he deduced the conserved currents of Lipkin. His Lagrangian for the
free Maxwell field was invariant under the duality transformation. The conserved

quantities appear to be the symmetric energy momentum temnsor.

In discussing the symmetries of the Maxwell equations, we should mention the
attempts to present these equations as a first-quantized wave equa-
tionl)—S)’g)ull). These presentations also have the property of depending on the

field strengths only.

In our work, new lLagrangians depending on the field strengths and electric
and magnetic currents are derived. The new feature is that the equations of
motion are obtained by varying the Lagrangians with respect to both field
strengths and the electric (and optionally the magnetic) sources. In this way,
the Lagrangians, although depending on the electric and magnetic currents, are
not explicitly dependent on the co-ordinates; thus conserved currents can be
found which include the fields strengths as well as the electric or magnetic cur-
rents. Furthermore, using the equations of motion, the electric or magnetic
currents can be eliminated from the conserved currents. We thus obtain conserved
currents for the field strengths only, which are valid even if electric or mag-

netic sources are present.



In our work we emphasize primarily the significance of the new method of
obtaining conserved currents in the presence of electric and magnetic sources.
The result is quite unexpected. Therefore we shall not yet concentrate on the
significence of the new Lagrangians, the physical meaning of the conserved cur-

rents or quantization problems, leaving it for future consideration.
We also find in our work a Lagrangian invariant under the duality transform-

ation of both field strengths and electric and magnetic sources (Section 3). The

conserved quantity is related to the total helicity of the fields.

2. - THE FIRST SET OF NEW LAGRANGIANS

Throughout the paper we shall use the four-vector notation of Ref. 12). 'The
D

dual of an antisymmetric tensor A will be defined as A = i¢ A and
v [TRY pvad ok
a = b/bx“, where Ep Gﬁ is the totally antisymmetric Levi-Civita tensor {(den-
u
sity). ©Note that (AB) = A. The fields and currents will be functions of the

four co-ordinates, and ¢ stands for the velocity of light.

The Maxwell equations are given through the antisymmetric electromagnetic

field tensor F :
v

% Ff‘” = - 4?!'/(:)3':" (2.1a)
3}4 F/‘E =0 (2.1b)

where ji are the electric currents (ji = icpe, where pe is the electric charge
density). The explicit form of Fuv and Fiv is given in Appendix A. From

Eqs. (2.1), one can easily derive (see Appendix A) the following relation:

‘e ‘o
= —(4%/c - ) 2.2
0 Pl = = (a97e) (% ~3, 2.2
i.e., the solutions of Eqs. (2.1) satisfy Eq. (2.2), but not always vice versa.

If magnetic sources are included, the Maxwell equations take the forml3)-



- €
érFl,.g - (#W/C)Jy (2.33)
D . M
a/-F;w = “(*W/C)J, (2.3b)
- . .m - m m . - - -
where 3, are the magnetic currents {jy = icp ; p is the magnetic charge distri-
bution). From Eqs. (2.3), one can derive (see Appendix A) the following rela-
tion:

OF =“(4ﬂ'/6)[3 -~ 4 3}. +l(3,-é,; - ,J ) ] (2.4)

and by taking the dual of this equation, we obtain the following consistent equa-

tion (with respect to F -+ FD, i e ii™:

UF,; -'-(‘HT/C)[( JV Q,Jr) +i (94 - "Jf')] (2.5)

Let us construct the following Lagrangians, from which Eqs. (2.2) and (2.4) can

be derived:

Lot RIQR E Bo G- 0,40) -CE) g 2.0

2
. " “m \ D : %
Ly =Ly v Fhu (34 va,,gf) + (’-’ZI)J;”@“ _ 2.7

By varying dQ:With respect to Fuv, Eq. {2.2) is obtained, whereas Eq. (2.la) is
derived by varying with respect to ji. If we vary 11 with respect to F yr Ve
obtain Egq. (2.4); Eq. (2.3a) is obtained when varying with respect to jp’ and

Eq. (2.3b) when varying with respect to jﬁ.

The peculiarity of the Lagrangians JI. and 41 is that they do not depend
explicitly on the co-ordinates; therefore we can obtain from them conserved cur-
rents (using Noether thecrems). We may note that the solutions of the Maxwell

equations (2.1) are solutions of the equations generated from .Z;, but not always
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vice versa, but OK;I reproduces the Maxwell equations completely. Although 451
may lead to solutions different from the Maxwell equations, still the conserved
currents derived from ’CI are also conserved for the solutions of the Maxwell
equations. This is because the solutiocns of the equations (2.1} are solutioms of

equations corresponding to ’CI'

let us construct for oé; the following tensor

TI = — gafl £ ?a[):[
o=l Gy T 7

3 ‘e
2"51— b;..,, * (ayrn)(a/«':ra) . F"’“%‘Jo—' J (2.8)
for which, from Noether theorems,

=0 (2.9
9/.‘ /., ,

We can furthermore substitute into Eq. (2.8) the equations of motion (2.la) and

(2.2) and obtain:

Ty =G [4 (g Fen ) (3 Fon )~ For 3 Ay =&y Fa)or Fr) ]

+ {2.10)
(a"}:ﬁ)(@h Fer) +4 Fyedpndr Fas
In a similar way, we can construct from OZ’ conserved currents from the tensor:

T _ 9-[1{ Qo[‘ 9.[
= o[ﬁ‘ (5}..; a‘"—*——"(ayF )a}uprl a(aJe.)/'Jrr 20, 4:) /‘ja’

T
gy [ . ‘m
Ly S+ OF )9 Frs) = T (Ep 2 fe +iFrdusl)

H

(2.11)

Substituting in the above expression Eqs. (2.3) and (2.4), we obtain:

-5}., [:Tilf (91 Fa’;)(ayz Fra)‘szcf‘DAa; Fnlo’ - (azez)(aa'Fr}\)" (athg )(%'E’fﬂ

D D
(D, Fr,\)(a)\Fo-A)q- lf:yv’af.az 6(4—2{-—,,-9/,93 For (2.12)
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3. — THE SELF-DUAL AND ANTI-SELF-DUAL CASES

let us introduce the four-vector

LP:l:Ha‘LEa.) a=4,23 %:o, 3.1

where Ha and E_ are the magnetic and electric field strengths respectively. let

1,r=(q7r/c)(4;+ij;] , da= O igr), (3.2)

la)‘:.- cL‘; + 23, t}j:, (3.3)

* *
where q and ¢, are the complex conjugates of qu and b, respectively. In Appendix

B it is shown [Eqs. (B.14)] that the following equations are satisfied:

( (R}:)vu aj\ 4/& =4y, (3.4)

¢ (R; )yq Df'- w: = Lv; (3.5)

where the matrices RI are the Hermitian conjugates of RU given in Eq. (B.4). Each
one of the above equations is equivalent to the Maxwell equations (2.3). One can

check that the following relation is satisfied:

(~i R; af”) (R, D,,) y = 5“, %,9“ . (3.6)

¢

Multiplying Eqs. ¢3.4) and (3.5) by —iRuap, we obtailn:

O LPa" - (R}n)ml aft qf# ) (3.7)



ULP: = "":(R/a)ap "J/u&y . (3.8)

One can construct the Lagrangian

s

L7 =4 090ba)+ i Ya (R )y 9y *4 9590 / (3.9)

which, when varied with respect to b, gives Eq. (3.7), and when varied with

respect to q,» gives Eq. (3.4), after employing the relation

(R;)a,, = - (Rf),,a : (3.10)

In a similar way, Eqs. (3.8) and (3.5) can be obtained from the Lagrangian

D
L7 G )G )+ 4Ry bbb, .11

with consetrvation laws similar to the previous case., But the Lagrangian

L= (NG Yu )+ i (R Dyt + i e Bios ubybg,, 12

*
has an additional symmetry. Varied with respect to ¢a’ ¢a’ q, and kv it leads to
Eqs. (3.7), (3.8), (3.4) and (3.5). It is invariant with respect to the follow—

ing simultaneous duality transformations of the field strengths and sources:

Lo ¥ ¥ ~( _ o e
\Pa'—:’ \Pﬂe J ‘l’a - "”u e , ‘i.v'?,ue ) I‘y= kye . (3.13)
Using Noether's theorem the follewing conserved current Ju is obtained:

Te= ) Y ba 3 ") 445 (Rudyy, G039 (Bu)y, by - 010

In terms of the field strengths and electric and magnetic sources, it can be

written as



T o En B e (5 g4 - B - Te )]

Y -y = ey - =
=Hq3,¢Ea—.EaaﬂHn-.[(v-H)E, - (7E)H - Ex(veH -¢%
> > 43 (3'15)
«(Vxg Ca-&)_},/' fERE3,
and the conserved density is:
= -5 -
) - , oK > 2
Te-i7, = B e - EIT) R (¢ 224 7
=-E-(vxE) - F-(vxH) . (3.18)

In the absence of sources, this result coincides with a conserved quantity
found by Lipkinh) [see also Refs. 6), 8) and 10)] for the free electromagnetic
field. CalkinIQ) has shown that this conserved quantity is proportional to the
difference in the number of right and left circularly pelarized photons. In
other words, it can be regarded as proportional to the total helicity of the
field. We found that it is conserved in the presence of the electric and magnetic

sources.

It is interesting to note that fields with the property Fe(vxE) = 0 have
15)

been under investigation since the middle of the last century . They are rela-

15),10)

ted to the so-called screw fields or Beltramil5) vector fields, which have

> >
the property E x (VxE) =

4, - SUMMARY AND CONCLUSIONS

In our work we have succeeded in constructing Lagtangians which reproduce
the Maxwell equations when varied with respect to both field strengths and
sources. This leads to the finding of a new type of comservation laws in which
the electric and magnetic sources are included. For the Lagrangians developed in
this work it was possible, furthermore, to eliminate the sources from the con-

served currents by using equations of motion [Eqs. (2.10) and (2.12)].

To the best of our knowledge, we have also been successful for the first
time in constructing a Lagrangian [Eq. (3.12)] invariant under the duality trans-
formation for both field strengths and electric and magnetic sources. The con-

served curreat [Eqs. {3.14) and (3.16)] is related to the conserved current found
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previously for the free electromagnetic field by Lipkin; but in our case, it is

also conserved in the presence of electric and magnetic sources.

The new method developed by us for constructing conserved currents can be
interpreted as a successful attempt to present the Maxwell equations with elec-
tric and magnetic sources as a closed system, irrespective of the exact nature of

the sources.
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APPENDIX A

The Explicit Form of Fu.\: and the Derivation of Egqs. (2.2) and (2.4)

Using the notation of Ref. 12), the electromagnetic field antisymmetric ten-
. Lo . . - . . - >
sor Fuv 1s given via the electric and magnetic field strengths E and H respect-

ively by:

- Sy
0 Hy -—Hj "I:EK

~Hz O My -':Ej

)

(F)

H‘J "Hy O "I:Ez

iE, L-E'9 (Ey OJ (a.1)
L
D _ ., —
The dual tensor ng zsuvlcFKc is given by
( ‘ -
0 -tE, r% Hx

(FD): LE} 0 -LE,( H_j

~Ey (Ey 0 H;

\“Hx ‘Hj Hy 0 J (A.2)
Equation (2.1b) can be presented also in the following well-known way:
a}(FRr+BO'Fj“7i +<‘JAFU)'1:O . (a.3)
Taking the derivative of Eq. (A.3), we obtain
(a.4)

Now we substitute on the right-hand side of Eq. (A.4) the Maxwell equation (2.la)

and obtain Eq. (2.2). One can check that Egqs. (2.3) are equivalent to

b b b -
I Fe * 9% 5«;\ *aaF,? = ~(4m/c) EM}“ny} (A.5a)

L A L (a.55)

Applying the au derivative from the left to Eq. (A.5a), we obtain



D —D D ' (A.6)
I Fror ﬂaaa/,:?., ~ % Y 53-(¢ﬁ~/c) ewﬂy%ﬂe_
Using
. 5 je o ) (9 qe— ‘C)‘( e .C)D (A7)
acpy Py = T faguy (R fy 9»9/« (s Ords/ a.7

and substituting Eq. (2.3b) into the right-hand side of Eq. (A.6), we prove the
relation (2.5). The relation (2.4) can be proved in a similar way by applying to

Eq. (A.5b) the bu derivative from the left.
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APPENDIX B

The Self-Dual and Anti-Self-Dual Equations '

From the tensors {A.l1) and (A.2) we can form the self-dual combination

3h o)
F = F +F {(B.1)

and the anti-self-dual combination

g _ g_pP (8.2)

Using the definition (3.1), the 750 ana 750 are given by

o 4 4 % o Yo -4 -
(0 [ © % Vo) [Pk e Wy
% %0 Y \V;"f'f 0 -ly:

1

* ) (B.3)
\-\px N \Pfi ) 4’! O ) L \yx \Vﬁ "P} 0 F
Let us define the two sets of matrices
r { P -i ¢ {
t L - v
| 7| 957 i {
L—i ’ | =t ), ! - j’ | LJ)
¢ 'i ’ ..': l A 7 r,_‘_- 1
t - e - Y
Rl - Ry=| Rs L R -t
L t ¢ ) L { } \ vﬂ
{ " ’ ’ "(8.4)
then
sD .
F}“; = —L(Sa)j.y L’Jﬂ ’ 374.213 . (B.5)
AsSD o ? )
F:/uw - (Ro.)/uv Wa ; a=42,3. (B.6)

Furthermore, we assume



_12_

Yy = Y, =0 (8.7)

and note that

(R/‘)ya = (SI_ )/“y 5 (3.8

and equivalently

(5}.),,4 = (RI)/m . (B.9)

Then, from Eqs. (2.3}, (3.2) and (B.5)-(B.9), we have

SD . . t
Wb =~ (Sa)/w a/“qlﬂ = = (RuJya a/n‘l’a = 79y (B.10)

Iy = =i (R Butfe” = =i %f)”“ b = -dy . (810

A few remarks are needed here., Equations (B.10) and (B.1ll) are consistent with
each other, but as ¢y = ¢t = (, there exists an ambiguity in defining (RH)VH and
(SU)Vk' This is the reason why Eq. (B.l1) is not explicitly the complex conjugate
of (B.10), but one can check that they are consistent, Equation (B.1l1l) can

explicitly be made the complex conjugate of Eq. (B.10), if it is replaced by:

L(Rf«)yq af‘ \V‘:‘ = q,: {(B.12)

We can alsc rewrite it as follows:
r _ 1 * : ¥
?ﬂ - L (Rf\)ya a/‘wa_ —'2[(R#)Pﬁ a&w::. Y,
or, using Eq. (3.3):

: t *
L (R/. va Iy = q:‘ + 334.%¥ = k,,. (B.13)
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Thus finally the two complex conjugate equations can be written as:

. t
L (R)u)ya a/h\Pa = ‘Ly ) : (B.l4a)

¢ (R;)JM I ‘l’: =k . (B. 14b)
Equations (B.10) and (B.12) can be derived from the following Lagrangian density:
oy Ll % ¥ *
a[Q B iT[TQQ (%:Jh“ e”‘¢bﬁ*'¢9 (KD“)pa é-4£l,7-¢b v = b9y -
(B5.15)

* .
For the free field equations (qu = q]~L = 0), translation invariance leads to the

conserved tensor

Yy = oo = £ LW R DB th + 4 (R Jow 3 07 ],

(B.16)

which is related to the one found in Ref. 10). The duality transformation

* *
¢+ ¢ explia), ¢ + ¢ exp{-ia), leads to the comserved energy current

3)-“ ='§ [‘P:(R;)La (//4 "'(/i (R}'){,a_ ‘}/a-* ]j (3.17)

which is related to the one found in Ref. 8).
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