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ABSTRACT

We analyze the classical equations of supergravity theories con-
taining a dilaton field, investigating the possibility that dila-
ton emission may prevent the formation of singularities, An
initial cosmological singularity can be aveoided in a no-scale
supergravity theory if there is a non-zero charge density associ-
ated with the R symmetry current. However, this is only possible
if some fields have negative metric initially, which may indicate
a breakdown of the clasgssical equations. A similar situation
seems to occcur with the Schwarzschild singularity.
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Classical general relativity predicts singularities in both cesmological
and static configurations, and their existence disquiets both cosmologists and
physicists. Much effort has been devoted to the search for cosmologies without
initial singularities, or which explain the present flatness and homogeneity of
the Universe on scales larger than the apparent particle horizon. S$tatic singu-
larities are generally surrounded by event horizons, but these bring new problems
at the quantum level. The loss of information across an event horizon may cause
a pure quantum state to evolve into a mixed statel). If this occurs on a micro-

scopic level, it would signal a conflict between our current formulations of

gravity and quantum mechanics,

‘We believe for other reasons, notably to embed it in a renormalizable or
even finite theory, that Einsteinian relativity must be modified at distances of
order the Planck length. Such & modification would not alter the physics of
macroscopic event horizons,rsuch as those -surrounding stellar mass black holes,
but could modify or remove microscopic event horizoas and singularities. The
appropriate framework for discussing any such modificatioms in four dimensions is
presumably N = 1 supergravity. The particular class of supergravity theories
which is most likely to be relevant is that of no-scale supergravity mode152).
These yield effective potentials which are positive semidefinite*) with at least
one flat direction corresponding to a dilaton, and seem to emerge naturally from

3)_

compactification of the superstring

Some form of superstring is presumably the Theory of Everything (T.0.E.),
and many physicists hope and expect that it is finite, has no singularities, and
reconciles gravity with quantum mechanics.  The precise mechanism by which singu-
larities are avoided is a matter of debate. It may involve the opening up of
extra dimensions, or the intrinsic non-locality of particles in string theory, or
higher-order modifications to Einstein's equations, or the emission of dilatons.
The first two effects show up together at the Planck scale, and their investi-
gation requires a fuller understanding of string dynamics which goes beyond the
scope of this article. The last two effects can in principle be studied using an
effective low-energy four-dimensional field theory inspired by the superstring.
The specific subject of this article is the possibilitya) that dilaton emission

might avert cosmological or Schwarzschild singularities. We study this question

in the framework of no-scale supergravity, both when it is coupled generally to

*)  Generic supergravity models yield effective potentials with "holes" of depth
-0(mp .
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conventional matter and with the special additional features suggested by the

superstringB).

We first investigate the classical cosmological solutions of no-scale
supergravity, and find that the initial cosmological singularity can be avoided
if there is a non-zero charge density associated with the R symmetry current.
However, this is only possible if either the gravitom or the dilaton acquires a
negative metric in some region of space-time. We give a general argument that a
static, singularity-free initial condition is impossible even in the presence of
matter if all the fields have positive metric. Then we make a similar study of
the possible avoidance of the Schwarzschild singularity, which exhibits some
similar features, although we are not able to reach such a definite conclusion,
Finally, in the light of these negative results, we comment on the possibility
that superstrings avoid singularities. We think that the most likely mechanism

for this is the non-locality of the superstring.

The bosonic part of the general N = 1 supergravity Lagrangian with a

2)

dilaton field can take the following form™ "’ :

: . . .
Z:-%R +{2‘¢I+%R[¢("3Ar+zw\ oY

where R is the curvature scalar, EM the matter Lagrangian and Dp¢ = (6p—iAp)¢
with Ap the auxiliary supergravity spin-1 field corresponding to the R symmetry

current, which is given from the equations of motiom by:

AP
A - m+... (2)

d 3-¢'d

where the dots stand for the contribution of ilM. Bere ¢ is the complex scalar

TR

field of the dilaton multiplet and the physical dilaton ¢D is given by

%=l l“[(ﬁ-ﬂ(fs-@*f X ?

For pedagogical reasons we will first conmsider the simplest SU(1,1)/U(1) case and

then we will discuss the more general case. Writing ¢ = Ae-le, the Lagrangian

(1) becomes

Lot (- 8VR ot dGendan g, @
:'i("? R +OaY+ A (2048 -3A + £,
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and leads to the following equations of motion:

. |

K (A+D8)-3A, =0 (52)

L.

Bpj 6 30 ©(5b)
_ & 3 pt . _ L Ya

nb- TR AT (5¢)

1. “« o wp\ - .
- 2) (Ry,- £3, R - (580 - 53,80 [an,a-3(-2aa,)

' ! T, M (5d)

where Eq. (5a) corresponds to the variation with respect to Ap’ (5b) to @, (5¢)
to A, (5d} to guv, and (5a) has been used for the derivation of {5b~d). The
semicolons stand for covariant differentiation and [l for the covariant box.
The divergence of (Sd) vanishes as a result of ThM”N; v = 0 and the other field.

equations. Taking the trace of (5d) and combining it with (5c), cne finds
1
R+e A = A.?kéﬁ +» 1" b . (5e)
A

Equation (5b) expresses the conservation of the R symmetry current which implies
that &6 M/ 80 = 0. On the other hand, if A is a dilaton field one has
ACS L/6AY = -Ti and thus Eq. (5e) gives the vanishing of {(the bosonic part of)

the supercurvature.

Cosmological simgularity avoidance?

We first examine cosmological solutioms of Eqs. (5) im the presence of a

non-trivial gravitational background which has the Robertson-Walker lime element

; |
& W -Rw e (6)

parametrized by the scale factor R(t}. Setting A = 0(a=1,2,3), the R current

conservation [Eq. (5e)] then gives

A = = (7}
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where ¢ is a constant which represents the total U(l) R charge of the Universe.
Substituting Eq. (7) into Eq. (5e) (vanishing of the supercurvature) one finds:

IS 2 9 C’- .
H+ ¢ H = Aw = ]{Z (8)

where H = R/R is the Hubble parameter. The general solution to Eq. (8) is

0y T

2 4 <

R" &
which gives a non-zero minimum value for the scale factor, R > Rmin with
Rmin = |c/d| where d is an integration comstant. So, for a non-vanishing total
R charge (c = 0) the Universe is non-singular for all times. Notice that for

large times (R + ) the extra term becomes irrelevant and one récovers the known
result.. At Rpin. R =20 and R is positive; in fact, H = RHH' = %R(Hz)'IRszin
> 0 where the prime denotes derivatives with respect to R. The positivity of 3
corresponds to & violation of the energy condition Roo > 0 (since R, = —B(E/R)
which is a necessary, but in general not sufficient, condition for singularity

avoidanceS). In our case it is satisfied at initial times which correspond to R

< V372 Rm. .

in

Although the situation seems to be promising up to now, the trouble comes

from the two other independent equations which can be obtained by combining (5¢)

and the "oo" component of (5d). One obtains

. 9
31-\1:(&*-1-\&\4— 3(%0*\1\1*(3 (10a)

prabp = (2-4, L-\\(P"-**F) (10b)

where we have parametrized the matter energy-momentum tensor as usual

™M

T = - +(p+ . - - (11
poe Pﬂ\w (p P\uruv ; =4 u.=o
in terms of the energy density p and pressure p. When R = Rmin’ Eq. (10a)
becomes
» 2
3 T
o = —_— -
A =+ 3(& 1\A°+§> (12)
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which can be satisfied only if A2 > 3. But AZ > 3 is a forbidden region because
it corresponds to a change of the sign of the Einstein-Hilbert action, gives to
the graviton a negative metric {[see Eq. (4)]. Note that in the "unitary" repre-
sentation, i.e., when we normalize the coefficient of [R to one by a field
redefinition of the metric, the point AZ = 3 corresponds to the initial singular-
ity problem. The only possible way to avoid this problem would be if initially
at R = Rm. : A2 = 3, A =0 and p = 0, a situation which corresponds to the con-

in
formally-invariant phase of the theory.

To see if this is a possible set of initial conditions, we have to examine

Eq. (10b). Consider first the case p = 3p. From (10b) one finds
P = _.Cl’z- (13a)
R

where ¢ is an integration constant. Eq. (13) shows that (12) cannot be satis-

fied unless A? > 3. 1In the general case, p ¥ 3p, the solution of (10b) becomes

R
W RA = & SR ), (R, v7)

4 (13b)
(P-3MIR°

N,

where the integration constant has been chosen such that A2+ 3 as R+ Rmin

H+ 0. Eq. (13b) can be compatible with (10a) only when p + O in the same limit,

3

but then we must avoid a potential divergence as R » Rmin in the integral of

(13b). 1In this limit the integral becomes fdp/(p—3p) which shows that we want

(P'3P\ ~ P'=< with w2 <1 (14)

But (14) does not correspond to a physical situation because as p + 0 one has

|3p! >» p in this limit.

It is straightforward to check that the above results remain unchanged in
the more general case [e.g., the SU(N,1)/sU(N)x(1) mode12)], the only inputs
being R symmetry current conservation and the existence of a dilaton field. For
completeness, in this work we will present the analysis in one more gxample cor-
responding to the effective N = 1 supergravity Lagrangian which one finds by com-
pactifying the ten-dimensional heterotic superstring om a Calabi-Yau manifold3).

This theory contains one additional gauge singlet field, the so-called § field,

which adds to the Lagrangian {4) the extra piece:



T
Sl By L PR (@)
L, = (- &) £ los s3] s
where we have defined SR = ReS and §_ = ImS. Eqs. (5a,b) remain unchanged while

I
(8) and (1l0a) become: :

- 1 2 » 2 &1
Meaw = A - & {5+ 5 (8)

9 . L 2 Ai' P L
3W ;(A+HA\+ 3(*3;_-1\A,+ (L":g’ “;_t(sl+s1) (l()a).S

For simplicity, in the above equations we have neglected the contribution of the

matter energy-momentum tensor (TMv = 0), We finally have two additional
equations:
3 s
0 ‘_R x (3-&]\ =0 (15a)

g 3 % .S 1 o2
2 ').{R 5o S X+ 1 (a.at)5 =0
R* (-8 Se s:( [ (15b)

which are obtained from the variation of the action with respect to SI (15a) and

SR'(ISb). From (5b) we obtain the solutiom (7) as before, while (15a) gives
s
JDE S (16)
%

where f 1is a constant. We will preseant the simplest case f = (, the general

case £ # 0 being left to the reader. Eq. (15b) then gives

.SR - __E—-—-——; (17
- = 3
S, @*(3-4)

with g another integration constant. Eq. (S)S can now be rewritten as

L] 2 9.
Haa 2u = - 4 3 (18).
Av2d = A - o5,



To get violation of thée energy condition H > 0 when H = (, we need

< N L s (1
2 19a)
3 @yt
which ‘is satisfied either when
(19b)
IS
or
a <‘3— :1-.5: \?\sg- ) %20 : o (19¢)
But Eq. (10&)8 can be. rewritten as
L 2 2 {3 2, 5
AW = s (z-Aa)\l\ 3 A+ 2 (20)
slsbensle A GRS 2
which shows that to get H = 0 we need
either : SR(O SRR L {21a)
. ‘ L
or (3-A ](0 (21b)

Equations (19¢) and (21ib) are incompatible, while.for SR < 0 the Sk acquires a

negative kinetic energy term which leads to the same conclusion as before: thus

avoidance of the initial smgular:l.r.y :|.s poss:.ble ‘only when -one- of the fields has

a negative metric in some region of space time or if one adds a matter system

which satisfies the unphysical condition @4).

Schwarzschild Singularity Avoidance?

We now examine the black hole type of classical solution described by a

6)

static, spherically symmetric metric corresponding to the line element

1
ds" = BOr)dt - ALVt -t Aez- Fsidede (22)
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which depends on two independent functions A(r)} and B{(r). Examination of the
time-dependent spherically symmetric case is beyond us at present. We expect in
any case that any dynamical process of dilaton emission would lead to a static
solution of the type we now discuss. Substituting the ansatz {22) in the

equations of motion (5}, in the absence of £M we find that the solution of (5b)

reads
[}
A = & (A 2 |
v 2 (5 (23)
while (5¢,d) give
U} 4 ¢ U ¢ o
i B (AN B 2 /8 Ay 2 -1 - =
%‘E'E(‘E““E‘*' (% K"'(A*\"Ar‘o (24a)
] / ! 4 T 1, .
~olLB A B/A.E L_B_],g_ﬁ A W o T ANS
¢ 3“1‘5 4 E(‘Sf B)J'r Bl v (“&'““]E'z:ﬁg“‘*{-(’xzzzg;“—"
A5 E-E) L] S (ohe -4 H (B
PP Y Y Al v Es'“"\‘i x w3\ IpiTiw=o
(24¢)
it f { { / 'S 9 ’1- /
(-2 {.L?.+5.!é.(g_*§_\+_t_ &'k_g_ (3-w) 5___1_9__1_(§_+i ap
3 4 BYA B v p “ m B 4 €3B ¥
(24d)

where the prime stands for the derivative with respect to r and we have defined

w = 82. Equations (24b, c and d) correspond to the tt, 68 and rr components of

(5d) respectively.

After some algebraic manipulations and defining x = 1-w/3 = 1-42/3,

Eqs. (24a-d) lead the following three independent relations:

{
L§_-L§_’.(i+_3f)_4_(5’.-§_\-&;‘.-3_@1_{_0 (25a)
2 3 4 BYA B Y\A g ot e

! ’
(3R _B\, AL 5 A L (¥ n\’ (
— 3 —-= o -_ 2 iz .= = 25a)
Xﬁf(h 3+1V‘"*3“B X*Q(B vl 0

R & 7 .
4 N B < A i 8 N N\, (25¢)
[ (o) s G Gl flg-E i ao
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In this case the violation of the energy condition can be written in the form

A-1 P

/
LA, A A (26)
c * 5 + 3 “ B {0

We note that many of the terms in Eqs. (25) change sign with x, but we have not
been able to establish a direct relation between violation of the energy con-
dition and negativity of the kinetic terms: x = 1-(A%/3) < 0. However, we expect
on general grounds and by‘analogy with the previous cosmological case that the
central singularity can be avoided only if the kinetic terms become negative. The
standard singularity theorems. in General Relativity are based on various energy
conditionsS), e.g., Rabkakb > 0 for all null vectors k%, From Eq. (5d) it

follows that if k? is a null vector
| * v v LI : by
%(4-%_)!7\%“& e = (k 'bPM + _A;(a_ %) (Ark)

(&)

(27
¥

v
LW T
Thus this null convergence condition will be satisfied in general if (1-A2/3) >
0, because to violate it the third term on the right-hand side would have to
become sufficiently negative to overcome the other three terms. However, if
(1-A%/3) < 0 this energy condition can easily be violated, and we cannot apply
the singularity theorem in general. Numerical amnalysis of the Egs. (25) which may

resolve this question is underway7).

The above results indicate that singularities are not avoided by modifi-
cations to the classical Einstein equations at distances larger than the Planck
length L_. Presumably it is at distances LP that the superstring must succeed
in avoiding singularities. At this scale, one must take into account the effects
of the infinite tower of massive states, which is connected with the nom-locality

of the theory.
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