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Abstract

Most signatures of new physics in colliders have been studied so far on the transverse plane with respect to the
beam direction where background is much reduced. In this work we study the impact of a hidden sector beyond
the Standard Model (SM) on inclusive longitudinal (pseudo)rapidity correlations and moments of the multiplicity
distributions, with special emphasis in the LHC results.

1. Introduction

Most signatures and signals of new phenomena are
expected to be found at colliders in hard events on the
transverse plane with respect to the beam direction (i.e.
at high transverse momentum p⊥), where background is
much reduced.
Conversely, in this work we focus on rather diffuse

soft signals in pp interactions at the LHC. For exam-
ple, a non-standard state of matter from a Hidden Sector
(HS) would alter observables related to (pseudo)rapidity
particle correlations and factorial moments of multiplic-
ity distributions [1].

1.1. Hidden Sectors

Among possible HS scenarios, hidden valley mod-
els are extensions of the SM when a new gauge group
is added to the theory, leading to new bound states (v-
particles) with relatively low masses for some values
of the model parameters. Such scenarios [2] are phys-
ically motivated by top-down models including string
theory constructions. Their experimental consequences
and signatures for LHC experiments have been already
studied [3]. For example, v-hadrons might promptly
decay back to SM fermions contributing to the parton
shower hadronizing to final-state particles.

2. Multi-step cascade: HS as an extra contribution

Following the old ideas of multiperipheral model
[4, 5], we will assume that particles are produced by
clusters from the interaction of two active partons of
the colliding protons yielding a fragmenting string. We
treat this possibility as resulting from a 2-step process
and apply the same expression as an independent super-
position of sources [6]:

P(2)(n) =
∑
Nc

P(Nc)
∑

ni

Nc∏
i=1

P(1)(ni) (1)

where n and Nc denote the number of (charged) particles
and clusters, respectively; P(k)(n) stands for a probabil-
ity distribution where the superscript denotes a k-step
cascade, such that

∑∞
n=1 P(k)(n) = 1.

However, more than two partons can interact and
more than one string can be produced per event, with a
probability distribution P(Ns) depending on the nature
of the interacting bodies and cms energy. We consider
this possibility as deriving from a 3-step process:

P(3)(n) =
∑
Ns

P(Ns)
∑

n j

Ns∏
j=1

P(2)(n j) (2)

where Ns denotes the number of strings per collision.
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Finally, we consider that a new stage in the parton
cascade can be produced as a consequence of a HS on
top of the parton shower, as motivated in the Introduc-
tion. We shall refer to this scenario as a 4-step process:

P(4)(n) =
∑
Nh

P(Nh)
∑
nk

Nh∏
k=1

P(3)(nk) (3)

where Nh denotes the number of hidden sources per col-
lision and P(Nh) its probability distribution.

3. Correlation functions

3.1. Two-particle rapidity correlations

Rapidity inclusive 2-particle correlation function for
inelastic collisions are defined as

C2(y1, y2) = ρ2(y1, y2) − ρ(y1) ρ(y2) (4)

where yi denotes the longitudinal rapidity of particle i.
Above we have introduced the single and 2-particle

(charged particle) rapidity densities:

ρ(y) =
1
σin

∫
d2p⊥

d3σ
dyd2p⊥

ρ2(y1, y2) =
1
σin

∫
d2p⊥1d2p⊥2

d6σ
dy1d2p⊥1dy2d2p⊥2

where σin refers to the inelastic cross section; the nor-
malizations are obtained by integration over the selected
rapidity range.
∫

dy ρ(y) = 〈n〉 ;
∫

dy1dy2 ρ2(y1, y2) = 〈n(n − 1)〉
∫

dy1dy2 C2(y1, y2) = D2 − 〈n〉 (5)

where D2 = 〈n2〉 − 〈n〉2 is the variance of the charged
emitted particles. For a Poisson distribution D2 = 〈n〉,
or equivalently the integral (5) is equal to zero corre-
sponding to independent emission.
Quite generally, the inclusive correlation function is

split into two terms:

C2(y1, y2) = CLR
2 (y1, y2) +CS R

2 (y1, y2) (6)

where the short-range (SR) term CS R
2 is generally as-

sumed to be more sensitive to dynamical correlations,
while CLR

2 stands for long-range (LR) correlations, usu-
ally arising from mixing different topologies in events
[7].

4. Factorial Moments in multiplicity distibutions

Factorial moments of multiplicity distributions [8, 9]
are obtained from integration of the inclusive correla-
tion functions. Normalized factorial moment of rank q
can be defined as:

Fq =
〈n(n − 1) · · · (n − q + 1)〉

〈n〉q ; q = 2, 3, · · · (7)

Such factorial moments represent any correlation be-
tween the emitted particles in events. Cumulant Kq rep-
resent genuine q-particle correlations not reducible to
the product of lower order correlations. They are de-
fined through

Kq =

q−1∑
m=0

Cm
q−1Kq−mFm (8)

where Cm
q−1 = 1/mB(q,m) and B(q,m) denotes the beta

function.
It is also convenient to define the ratio

Hq =
Hq

Fq
(9)

which appear in a natural manner as solutions of QCD
equations for the generating functions of multiplicity
distributions [10]. QCD predicts that Hq moments
should oscillate (change of sign) as a function of the
rank q in e+e− annihilations. This prediction has been
confirmed experimentally, also for pp and heavy ion
collisions. In the latter cases, such oscillations are as-
cribed to a multicomponent structrure of the multipar-
ticle production process (see [8] for a review and ref-
erences therein). This interpretation is quite relevant in
our study since a new (HS) component could show up
in the production mechanism.

4.1. Cluster concept in hadronic production

According to, e.g., Ref.[11], a cluster if formed of all
particles originating directly or indirectly from a (e.g.
quark or gluon) common “ancestor”.
Equations expressing the factorial moments as func-

tions of parameters of the multiplicity distributions of
clusters, strings (and eventually hidden sources) are
modified as more steps are introduced into the descrip-
tion of the parton cascade. In particular, we will denote
by a superindex in the factorial moments, F( j)q , K( j)q and
H( j)

q with j = 2, 3, 4, for two-, three- and four-step cas-
cades, corresponding to a single-string, multi-string and
hidden-source scenario, respectively.
Of course, as more steps become included in descrip-

tion of the parton cascade, more parameters (encoding
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the complexity of the underlying soft hadronic dynam-
ics) need to be introduced (see appendix). Nevertheless,
the situation improves dramatically once a special type
of distribution (for each step) is considered (e.g. Pois-
son: Fq = 1, ∀q).

4.2. Negative Binomial Distribution

The negative binomial distribution (NBD) deserves a
special attention since it has been used to describe quite
successfully experimental multiplicities in a wide vari-
ety of proceses and over a large energy range. The NBD
is given by

Pn =
Γ(n + k)
Γ(n + 1)Γ(k)

( 〈n〉
k

)n(
1 +
〈n〉
k

)−n−k

(10)

where k is a parameter with the physical meaning of the
number of independent sources. Moreover

1
k
=

D2 − 〈n〉
〈n〉2 (11)

The Poisson distribution is obtained in the limit k → ∞.

5. Two-step cascade: single string

Let us first assume in the simplest (2-step) scenario
that clusters are produced from a single string per colli-
sion, yielding final state particles (mainly hadrons).

5.1. Two-particle correlations

Let us introduce the rapidity 2-cluster correlation
function

C(c)2 (y1, y2) = ρ
(c)
2 (y1, y2) − ρ(c)(y1) ρ(c)(y2) (12)

with ρ(c)2 (y1, y2) and ρ
(c)(y) refering to cluster densities in

rapidity space, satisfying the usual normalization condi-
tion ∫

dyc1dyc2 C(c)2 (yc1, yc2) = D2c − 〈Nc〉 (13)

where D2c = 〈N2c 〉 − 〈Nc〉2 denotes here the dispersion of
the cluster distribution per collision.
The 2-particle correlation function in Eq.(4) can be

split into two pieces following Eq.(6):

C2(y1, y2) = CLR
2 (y1, y2) + 〈Nc〉 C(1)2 (y1, y2) (14)

where the piece C(1)2 corresponding to 2-particle corre-
lations “inside” a single cluster, reads

C(1)2 (y1, y2) = ρ
(1)
2 (y1, y2) − ρ(1)(y1) ρ(1)(y2) (15)

Note the assumption that C(1)s (y1, y2) has no explicit de-
pendence on cluster rapidity, as indeed one expects an
overall dependence on the |y1 − y2| difference.
Confining our attention to a rapidity interval within

the central region (where single spectra are approxi-
mately constant) we finally get

C2(y1, y2) = (ρ̄(1))2 D2c + 〈Nc〉 C(1)2 (y1, y2) (16)

where ρ̄(1)1 stands for the average (charged) particle den-
sity from a single cluster decay, obeying the relation
ρ̄ = 〈Nc〉 · ρ̄(1) with ρ̄ denoting the average one-particle
density in pp collisions.
From Eqs.(14) and (16) one can identify

CLR
2 = D2c (ρ̄

(1))2; CS R
2 = 〈Nc〉 C(1)2 (y1, y2) (17)

5.2. Factorial moments

From Eq.(16) it is easy to obtain

F(2)2 = F(c)2 +
F(1)2
〈Nc〉 (18)

where F(c)2 = 〈Nc(Nc − 1)〉/〈Nc〉2 and F(1)2 = 〈n1(n1 −
1)〉/〈n1〉2, and 〈n1〉 stands for the average particle mul-
tiplicity per single cluster decay.
In the Appendix we present several expressions for

F( j)3,4 leaving higher rank (i.e. q ≥ 5) F( j)q moments for a
forthcoming longer paper. Let us also mention that F( j)2
often determines the values of higher rank moments in
different approaches, and this is, in fact, the method to
be followed in this work.

6. Three-step cascade: multiple strings

Let us develop to some extent some expressions for
correlations and scaled factorial moments for a 3-step
partonic cascade.

6.1. Two-particle correlations

As in the previous 2-step cascade, by integration over
rapidities of intermediate sources of particles in the cen-
tral rapidity region, the SR part of the 2-particle corre-
lation function can be identified now as:

CS R
2 (y1, y2) = 〈 Nc〉 C(1)2 (y1, y2) (19)

The LG part reads:

CLR
2 /(ρ̄

(1))2 = 〈Ns
c〉2 D2s + 〈Ns〉 D2c (20)

with D2s = 〈N2s 〉 − 〈Ns〉2. When setting 〈Ns〉 = 1 and
D2s = 0 Eq.(16) is quickly recovered. Also note that
when passing from a 2-step to a 3-step scenario the LR
contribution tends to increase.

M.-A. Sanchis-Lozano, E. Sarkisyan-Grinbaum / Nuclear and Particle Physics Proceedings 273–275 (2016) 473–478 475



�

�

�

�

�

�
�

�

�

�

2 3 4 5 6
q

1

2

3

4

5

6

7

Log�Fq�

Figure 1: Expectations for the normalized moments ln F(2,3,4)q versus
the rank q according to: Green circles: 2-step cascade with 〈Nc〉 = 16;
Blue triangles: 3-step cascade with 〈Ns〉 = 2, 〈Nc〉 = 16: Red squares:
4-step cascade with 〈Nh〉 = 1, 〈Ns〉 = 2, 〈Nc〉 = 16. All F(h,s,c,1)q 	 1.
Solid lines correspond to parabolic fits to points.

6.2. Factorial moments

F(3)2 = F(s)2 +
F(c)2
〈Ns〉 +

F(1)2
〈Nc〉 (21)

where 〈Nc〉 = 〈Ns〉 · 〈Ns
c〉; the scaled moment of the

distribution of fragmenting strings and clusters are here
respectively defined as F(s)2 = 〈Ns(Ns − 1)〉/〈Ns〉2 and
F(c)2 = 〈Ns

c (Ns
c − 1)〉/〈Ns

c〉2.

7. Four-step cascade: hidden sources

As previously argued, we model a possible HS con-
tribution to the standard parton cascade as a new stage
yielding a 4-step scenario, thereby modifying rapidity
correlations and factorial moments as we study below
focusing on the central rapidity region of pp collisions.

7.1. Two-particle correlations
The SR part reads again

CS R
2 (y1, y2) = 〈 Nc〉 C(1)2 (y1, y2)

while the LR part becomes:

CLR
2 /(ρ̄

(1))2 = 〈Ns〉2 D2h + 〈Nh〉 〈Ns
c〉2D2s + 〈Ns〉 D2c

where now 〈Ns〉 = 〈Nh〉·〈Nh
s 〉, 〈Nc〉 = 〈Ns〉·〈Ns

c〉, and Dh

denotes the dispersion of the hidden source distribution.

7.2. Factorial moments

F(4)2 = F(h)2 +
F(s)2
〈Nh〉 +

F(c)2
〈Ns〉 +

F(1)2
〈Nc〉 (22)

with F(s)2 = 〈Nh
s (Nh

s − 1)〉/〈Nh
s 〉2 and F(h)2 = 〈Nh(Nh −

1)〉/〈Nh〉2.
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Figure 2: Expectations for the ratios H(3,4)q = K(3,4)q /F(3,4)q . Upper
panel: 〈Nh〉 = 1; Lower panel: 〈Nh〉 = 8; Blue triangles and solid
line: conventional parton cascade according to Ref.[6]. Red squares
and dashed line: hidden source(s) on top of the parton cascade.

8. HS-cascade versus a conventional cascade

In this work we advocate that a new stage at the on-
set of the partonic cascade can appreciably change the
multiplicity distribution of final-state particles in pp col-
lisions. To this aim we implement such a new stage in
the conventional cascade described as a 3-step (multi-
string) process thereby becoming a 4-step cascade.
Let us remark that, keeping fixed the number of steps

of the parton cascade, a higher number of sources (e.g.
〈Nc〉) should lead to smaller F(2,3,4)q moments, in accor-
dance with the dilution effect [12, 13].
However, increasing the number of steps in the cas-

cade leads quite generally (except for large values of
〈Nh〉) to an increase of the F(2,3,4)q moments, as can be
seen in Fig.1 where the green (triangle), blue (square)
and red (circle) points represent 2-, 3- and 4-step cas-
cades, respectively. It is worth pointing out that larger
values of 〈Nh〉 would considerably lower the values of
F(4)q , even below the 2-step and 3-step cascades.
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8.1. Analysis of H(3,4)
q oscillations

Let us get started by wrtiting the expression for the
Hq ratios corresponding to a NBD

H(3,4)
q =

Γ(q) Γ(k(3,4)e f f + 1)

Γ(k(3,4)e f f + q)
= k(3,4)e f f B(q, k(3,4)e f f ) (23)

where an effective k(3,4)e f f parameter is obtained from

1
k(3,4)e f f

= F(3,4)2 − 1 (24)

This approach relies on the fact that the result-
ing final-state multiplicity distribution is itself a NBD
whose k parameter determines the H(3,4)

q ratios. In a
forthcoming paper, we will calculate H(3,4)

q from spe-
cific expressions of F(3,4)q ; some of which are shown in
the appendix.
Assuming Poisson-like distributions at all intermedi-

ate steps of the cascade (F(h,s,c,1)q 	 1), one gets for the
2-step scenario k(2)e f f � 〈Nc〉.

For the 3-step scenario one obtains

k(3)e f f =
〈Ns〉〈Nc〉
〈Nc〉 + 1 (25)

If 〈Nc〉 >> 1, k(3)e f f � 〈Ns〉.

Finally we get for the 4-step scenario

k(4)e f f =
〈Nh〉〈Ns〉〈Nc〉

〈Nh〉〈Ns〉 + 〈Nh〉〈Nc〉 + 〈Ns〉〈Nc〉 + 1 (26)

If besides 〈Nh〉 << 〈Ns〉 < 〈Nc〉 then k(4)e f f � 〈Nh〉.

8.2. Results

Let us define a rescaling factor rq for each value of q
as the ratio

rq =
H(4)

q

H(3)
q

(27)

which should allow us to calculate H(4)
q from the a 3-

step conventional cascade that we assume to coincide
with the expectations for pp collisions at the LHC (14
TeV) obtained in Ref.[6].
Thus, squares and the dashed line (in red) of Fig.2

(upper and lower panels) correspond to a hidden source
in a 4-step cascade, with Nh = 1, Nh

s = 2, Ns
c = 8, and

Nh = 8, Nh
s = 2, Ns

c = 8, respectively. Triangles and
the solid line (in blue) correspond to the points from the
above-mentioned Ref.[6].

Admittedly, this is a rough approach in order to com-
pare H(3,4)

q oscillations, i.e. multiparticle production
with and without a HS. As already advocated in this pa-
per, the key idea is that a (statistically significant) de-
viation one from each other might prove to be useful to
unravel a possible signal of a hidden sector participating
in the parton cascade.

9. Summary and final remarks

In this work we advocate that a new stage of mat-
ter (stemming from a hidden sector beyond the SM) on
top of the partonic cascade leading to multiparticle fi-
nal states in pp collisions at the LHC can have an in-
fluence on rapidity correlations and factorial moments
(and their ratios) of multiplicity distributions.
On the one hand, as a general trend one should ex-

pect that a HS yields longer (in rapidity) and stronger
2-particle correlations among emitted charged particles.
On the other hand, depending on the number of hid-

den sources two different behaviours of the oscillation
pattern of H(4)

q moments can be distinguished:

• For a small number of hidden sources (e.g. 〈Nh〉 =
1), the oscillation amplitudes become considerably
larger than in a conventional cascade as obtained
in [6]. See figure 2 (upper panel).

• For a larger number of hidden sources (e.g. 〈Nh〉 =
8), the oscillation amplitudes are considerably
smaller than in a conventional cascade as obtained
in [6]. See figure 2 (lower panel). Let us note that
the crossing point shifts to a smaller q value for
higher 〈Nh〉.

Let us point out that that there could be combina-
tions of parameters such that H(3,4)

q oscillations would
become practically indistinguishable from each other.
Moreover, both (conventional and HS) process will

be present together in the collected sample of events,
although specific cuts (such as high multiplicity, flavour
tagging, etc) should be applied on events to enrich the
possible new physics contribution.
Another caveat is in order. The behaviour of such

oscillations is very sensitive, e.g., to multiplicity cuts
on events [8]. Therefore, to avoid a bias one should be
careful to compare samples at different energies with the
same cuts applied on events.
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Appendix A. Factorial moments for 2-, 3- and 4-
step scenarios

In this appendix we only show expressions for
factorial moments F( j)3 and F( j)4 (where j = 2, 3, 4
denotes 2-, 3- or 4-step scenarios, respectively) and
leave higher rank factorial moments for a long paper in
preparation.

2-step cascade

F(2)3 = F(c)3 + 3
F(c)2
〈Nc〉F

(1)
2 +

F(1)3
〈Nc〉2

F(2)4 = F(c)4 +
F(1)4
〈Nc〉3 + 4

F(c)2 F(1)3
〈Nc〉2 +

6
F(c)3 F(1)2
〈Nc〉 + 3

F(c)2 F(1)22
〈Nc〉2

3-step cascade

F(3)3 = F(s)3 +
F(c)3
〈Ns〉2 + 3

[
F(s)2 F(c)2
〈Ns〉 +

F(s)2 F(1)2
〈Nc〉 +

F(c)2 F(1)2
〈Ns〉〈Nc〉

]
+

F(1)3
〈Nc〉2

F(3)4 = F(s)4 +
F(c)4
〈Ns〉3 +

F(1)4
〈Nc〉3+

4
[

F(s)2 F(c)3
〈Ns〉2 +

F(s)2 F(1)3
〈Nc〉2 +

F(c)2 F(1)3
〈Ns〉〈Nc〉2

]
+

6
[

F(s)3 F(c)2
〈Ns〉 +

F(s)3 F(1)2
〈Nc〉 +

F(c)3 F(1)2
〈Ns〉2〈Nc〉

]
+

3
[

F(s)2 F(c)22
〈Ns〉2 +

F(s)2 F(1)22
〈Nc〉2 +

F(c)2 F(1)22
〈Ns〉〈Nc〉2

]
+

18
F(s)2 F(c)2 F(1)2
〈Ns〉〈Nc〉

4-step cascade

F(4)3 = F(h)3 +
F(s)3
〈Nh〉2 +

F(c)3
〈Ns〉2 +

F(1)3
〈Nc〉2+

3
[

F(s)2 F(1)2
〈Nh〉〈Nc〉 +

F(s)2 F(c)2
〈Nh〉〈Nc〉 +

F(c)2 F(1)2
〈Ns〉〈Nc〉+

F(h)2 F(1)2
〈Nc〉 +

F(h)2 F(c)2
〈Ns〉 +

F(h)2 F(s)2
〈Nh〉

]

F(4)4 = F(h)4 +
F(s)4
〈Nh〉3 +

F(c)4
〈Ns〉3 +

F(1)4
〈Nc〉3+

4
[

F(s)2 F(c)3
〈Nh〉〈Ns〉2 +

F(s)2 F(1)3
〈Nh〉〈Nc〉2 +

F(c)2 F(1)3
〈Ns〉〈Nc〉2+

F(h)2 F(s)3
〈Nh〉2 +

F(h)2 F(c)3
〈Ns〉2 +

F(h)2 F(1)3
〈Nc〉2

]
+

6
[

F(s)3 F(c)2
〈Nh〉2〈Ns〉 +

F(s)3 F(1)2
〈Nh〉2〈Nc〉 +

F(c)3 F(1)2
〈Ns〉2〈Nc〉+

F(h)3 F(c)2
〈Ns〉 +

F(h)3 F(1)2
〈Nc〉 +

F(h)3 F(s)2
〈Nh〉

]
+

3
[

F(s)2 F(1)22
〈Nh〉〈Nc〉2 +

F(s)2 F(1)22
〈Nh〉〈Ns〉2 +

F(c)2 F(1)22
〈Ns〉〈Nc〉2+

F(h)2 F(1)22
〈Nc〉2 +

F(h)2 F(c)22
〈Ns〉2 +

F(h)2 F(s)22
〈Nh〉2

]
+

18
[

F(s)2 F(c)2 F(1)2
〈Nh〉〈Ns〉〈Nc〉 +

F(h)2 F(c)2 F(1)2
〈Ns〉〈Nc〉 +

F(h)2 F(s)2 F(c)2
〈Nh〉〈Ns〉 +

F(h)2 F(s)2 F(1)2
〈Nh〉〈Nc〉

]
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