
G. Anders, G. Avolio, G. Lehmann Miotto, L. Magnoni

CERN, Geneva, Switzerland

Intelligent operations of the data acquisition
system of the ATLAS experiment at the LHC

1. Introduction
The Trigger and Data Acquisition1 (TDAQ) system of the ATLAS2
detector at the Large Hadron Collider (LHC) at CERN is composed of a
large number of distributed hardware and software components (about
2000 machines and more than 15000 concurrent processes at the end of
LHC’s Run I) which in a coordinated manner provide the data-taking
functionality of the overall system.

The Run Control (RC) and the Central Hint and Information Processor
(CHIP) are key components of the Online Software framework that
encompasses the software to configure, control and monitor the TDAQ
system.
The RC system steers the data acquisition by starting and stopping processes and by carrying all data-taking
elements through well-defined states in a coherent way. Given the size and complexity of the TDAQ system, errors
and failures are bound to happen and must be dealt with. The data acquisition system has to recover from these
errors promptly and effectively, possibly without the need to stop data taking operations. During LHC Run 1, the
detection and handling of problems was based on an embedded rule-based forward-chaining expert system (CLIPS),
which was deeply integrated with the RC system. Even though the system performed well, it had major
disadvantages: new rules could not be tested without reproducing the error conditions in the real TDAQ environment
and monitoring of system resources used by specific rules was not possible. This made the development and
debugging of new rules difficult. Additionally, the expert system was lacking the natural support for detections of
temporal patterns.

During the LHC Long Shutdown 1 (LS1) the RC has been completely re-designed and re-implemented in order to
address the new requirements mentioned beforehand. The new RC is assisted by the CHIP that can be truly
considered as its “brain”. CHIP is an intelligent system having a global view on the TDAQ system. It supervises the
ATLAS data taking, takes operational decisions and handles abnormal conditions. Furthermore CHIP automates
complex procedures and performs advanced recoveries.

2. Overview

3. CHIP - Architecture

4. CHIP – Rule Examples 6. Conclusions

RC and
CHIP

ready for
LHC Run 2

Clear separation
between steering

(RC) and
supervising (CHIP)

functionality

Performance
measurements

and regular tests
(dedicated test
sessions, unit

tests)

Experience of
LHC Run 1

Sophisticated
anomaly detection

based on CEP
engine capabilities

References
1.  The ATLAS Collaboration, 2002, ATLAS high-level trigger, data-acquisition and controls: Technical Design

Report
2.  The ATLAS Collaboration, 2008, The ATLAS Experiment at the CERN Large Hadron Collider, J. Instrum. 3
3.  EsperTECH, http://esper.codehaus.org/ (August 2014)

Run
Control

CHIP

Status update

CHIP actions

Status update/Problem
reporting

Commands

CHIP
Root
CTRL

CTRL

APP 1

APP 2

Applications in the ATLAS TDAQ system
are organized in a tree-like hierarchical
structure (the run control tree), where
each application is managed by a parent
Controller. The topmost node of the tree
is the Root Controller. Controller
applications are responsible for keeping
the system in a coherent state by starting
and stopping their child applications and
by sending them the proper commands
needed to reach a state suitable for data-
taking.

Operations across the run control tree
are synchronized using Finite State
Machine (FSM) principles. FSM
transitions are usually initiated by the
human operator via a graphical user
interface: commands are sent directly to
the Root Controller and then
automatically propagated throughout the
tree by intermediate controllers. Once an
application completes the execution of a
command (or changes its internal status
by any reason) it notifies the parent
controller which in this way can evaluate
when a coherent state is reached.

Moreover, controller applications are the RC elements interacting with
CHIP. Controllers inform CHIP about any change in their own status or in
the status of their controlled children. CHIP, in its turn, is able to detect
any anomaly in the system analyzing the status of all the applications
and can notify the controllers about actions to be taken in order to
resolve the issue. Examples of actions are setting a simple error flag or
restarting/ignoring offending applications.

CHIP is an application which gathers information from various sources and employs an open-source Complex Event
Processing (CEP) engine in order to aggregate, correlate and analyze this information. Besides using RC information,
CHIP accesses the logging service, the operational data service and the configuration service. Furthermore it
interacts with the so-called Test Management service. Amongst others this allows for detecting DAQ problems
originating from hardware or network failures. The knowledge base consists of a set of rules loaded from text files.

Application
and Controller

(RC)

Operational Data

Log messages

Configuration Service

Test Management

Information Gathering Information Processing Result Distribution

Open-source Complex Event
Processing engine

CHIP

C
us

to
m

 e
ve

nt
 in

je
ct

or
s

Send application command
(restart, disable, ignore, …)

Start external application
(follow-up of failed test, …)

Perform advanced recovery
(exclude/include detector

components from readout, …)

Start automatic procedure (clock
switch, warm start, …)

Continuously monitoring,
taking actions if necessary

Logging
Knowledge base
(rules in text files)

Test an application
(test after recovery action, …)

on RCApplication(name != 'RootController’,
 application.status = STATUS.ABSENT,
 application.membership = MEMBERSHIP._IN)
 as application
insert into Problem(controller, application, type, state)
select application.controller,
 application.name,
 Problem$TYPE.APPLICATION_DEAD,
 Problem$STATUS._NEW;

insert into Problem(controller, application, type, state)
select application.controller,

 application.name,
 Problem$TYPE.APPLICATION_DEAD,
 Problem$STATUS.RESOLVED

from pattern [every (error=Problem(
 type=Problem$TYPE.APPLICATION_DEAD,
 state=Problem$STATUS.HANDLING))
 -> application = RCApplication(
 name=error.application,
 status = STATUS.UP,
 membership=MEMBERSHIP._IN)];

CHIP detects when an
application crashes and reacts
according to the application
specific configuration. Here
the parent controller is put into
error state. Another rule is
responsible for propagating
the error flag up the Run
Control hierarchy. D

e
te

c
t

a
p

p
lic

a
tio

n
 p

ro
b

le
m

R

e
se

t
a

p
p

lic
a

tio
n

 p
ro

b
le

m

Absent

When the crashed application
is up again, either due to
automatic recovery or manual
intervention, CHIP resets the
internal problem state of the
application. This triggers the
clearance of the error flag of
the parent controller, and
subsequently of all other
affected controllers in the RC
hierarchy.

For demonstration purposes the shown rules were simplified with
respect to the ones in the production system.

5. CHIP – Why using a CEP engine?

0
10
20
30
40
50
60
70

C
R

E
AT

E
_C

O
N

TE
X

T_
P

er
R

C
A

pp
li

IN
S

E
R

T_
IN

TO
_R

C
A

pp
lic

at
io

n
IN

S
E

R
T_

IN
TO

_P
ro

bl
em

_C
hi

ld
In

c
IN

S
E

R
T_

IN
TO

_P
ro

bl
em

_C
hi

ld
In

c
IN

S
E

R
T_

IN
TO

_T
TC

R
es

ta
rt_

N
ew

IN

S
E

R
T_

IN
TO

_R
C

A
pp

lic
at

io
nC

ha
C

R
E

AT
E

_W
IN

D
O

W
_R

C
A

pp
lic

at
io

IN
S

E
R

T_
IN

TO
_H

ltE
rs

R
ec

ov
er

y_
P

IN
S

E
R

T_
IN

TO
_R

C
A

pp
lic

at
io

nT
ab

l
IN

S
E

R
T_

IN
TO

_H
ltR

ec
ov

er
y_

E
na

b
C

R
E

AT
E

_C
O

N
TE

X
T_

S
eg

m
en

te
d

IN
S

E
R

T_
IN

TO
_R

C
A

pp
C

om
m

an
d

IN
S

E
R

T_
IN

TO
_M

od
ul

e_
D

is
ab

le
_

C
R

E
AT

E
_C

O
N

TE
X

T_
S

eg
m

en
te

d
IN

S
E

R
T_

IN
TO

_H
ltR

ec
ov

er
y_

W
ai

t
IN

S
E

R
T_

IN
TO

_S
to

pl
es

s_
R

em
ov

al
IN

S
E

R
T_

IN
TO

_S
to

pl
es

s_
R

ec
ov

er
IN

S
E

R
T_

IN
TO

_R
es

yn
ch

_N
ew

IN

S
E

R
T_

IN
TO

_H
ltE

rs
R

ec
ov

er
y_

IN
S

E
R

T_
IN

TO
_H

ltR
ec

ov
er

y_
S

ta
rtI

IN
S

E
R

T_
IN

TO
_M

od
ul

e_
E

na
bl

e_
N

IN
S

E
R

T_
IN

TO
_A

pp
lic

at
io

n
IN

S
E

R
T_

IN
TO

_A
pp

lic
at

io
nC

ha
ng

e
IN

S
E

R
T_

IN
TO

_P
ro

bl
em

_C
hi

ld
In

c
IN

S
E

R
T_

IN
TO

_H
ltR

ec
ov

er
y_

S
to

p
IN

S
E

R
T_

IN
TO

_T
es

tF
ol

lo
w

U
p_

N
e

C
R

E
AT

E
_W

IN
D

O
W

_A
pp

lic
at

io
nT

a
IN

S
E

R
T_

IN
TO

_P
ro

bl
em

_A
pp

D
ea

IN
S

E
R

T_
IN

TO
_H

ltE
rs

R
ec

ov
er

y_
P

IN
S

E
R

T_
IN

TO
_H

ltR
ec

ov
er

y_
P

re
p

IN
S

E
R

T_
IN

TO
_A

pp
lic

at
io

nT
ab

le

IN
S

E
R

T_
IN

TO
_P

ro
bl

em
_F

sm
O

ut
_

IN
S

E
R

T_
IN

TO
_H

ltE
rs

R
ec

ov
er

y_
S

IN
S

E
R

T_
IN

TO
_A

pp
lic

at
io

nI
nf

o

Total Wall
Time

A CEP engine was chosen as the core of CHIP, because it allows for:
1. Efficient handling of very high information update rates
•  peak rate typically several tens of thousands of events per second
2. Rule testing
•  correct logic of new rules can be verified by artificial injection of

events in a unit test
3. Metrics analysis
•  monitor CPU usage of individual rules
•  CPU intensive rules can be revised
4. Configuration of threading model
5. Natural support for temporal correlations
•  e.g. for detecting frequently failing applications
6. Sophisticated anomaly detection
•  CHIP is prepared for sophisticated anomaly detection, since the

CEP engine is well-suited for complex correlations of the data from
the various information providers.

Ti
m

e
[s

]

CHIP has rules for about 20 different kind of recoveries
•  some of which are very generic (e.g. for crashed applications)
•  others are sophisticated (e.g. recovering failing high level trigger applications)
Additionally, CHIP automates about 10 procedures, e.g.:
•  raise of high voltage of detector components when collisions are imminent and beam conditions are safe
•  switch of main ATLAS clock from internal to LHC one depending on current detector and beam conditions
Required resources
•  CHIP runs on a single dedicated multi-core machine (16 cores, 24 GB memory) and typically uses about 1GB of

memory. The CPU utilization follows the incoming event rate and typically varies between <1% and 300% (i.e. the
equivalent of 3 CPU cores out of 16)

•  The responsiveness of CHIP was verified in tests during which the information update peak rate was at least twice as
high as expected for LHC Run 2

Statement name

Example for simple rule (crashed application)

Example for sophisticated recovery (stopless removal)
In case the data taking is blocked due to a faulty sub-detector component, CHIP can dynamically disable the
corresponding read-out links without the need for stopping the data taking session. When the sub-detector
issue has been resolved, CHIP can re-enable the corresponding read-out components and integrate them back.
The advantages of this procedure are two-fold:
•  the recorded data may still be suited for physics analyses, depending on the disabled sub-detector channels
•  the down-time of the DAQ system caused by this procedure is much smaller than the down-time caused by a

stop and restart of the complete data taking session. Thus less integrated luminosity is lost for physics
analyses.

Example of metrics analysis

