
The Error Reporting in the
ATLAS TDAQ System

Serguei Kolos, University of California Irvine, USA
Andrei Kazarov, CERN
Lykourgos Papaevgeniou, CERN

1. The ATLAS Error Reporting Architecture

Online Messages
display

For histograms there is the dedicated plugin, which performs
rasterization of images using the ROOT libraries and return
those in a number of standard formats (PNG, JPEG, GIF, SVG,
etc.). Therefore there is no need for any HEP specific software on
the client machine.
The snapshot on the right shows HTML page with a number of
IMG tags where the SOURCE attributes are URLs pointing to
the histograms in the Information Service.

Offline Message
Browser

Messages
Archive

The Streams
Issues are reported to streams. Stream is a simple interface with a single function to be used for sending
arbitrary problem description to that stream. There are 6 types of streams corresponding to different
levels of severity of the reported issues: DEBUG, LOG, IINFO, WARNING, ERROR and FATAL. The
severity of any issue is established by the type of stream to which it has been sent

The Configuration
The real destination of the issues sent to a particular stream is defined by the stream configuration.
Stream configuration is very flexible and can be defined for each particular stream type at the level of an
individual software process by setting the appropriate environment variables. A value of such variable is
a comma-separated list of tokens where each token is a well defined ID of a stream implementation class
optionally followed by the list of initialization parameters for that implementation.

The Implementations
While ERS provides several default stream implementations, which can be used out of the box, it is an
open framework allowing to plug in new implementations at any moment, thus adding new messages
destinations without touching the ERS itself. Each Stream interface implementation:
• does an action which is specific to that stream. This can be sending the given issue to an appropriate

output device, e.g. standard output, database or a mobile phone,
• decides whether the given issue has to be propagated further through the chain of stream

implementations or immediately suppressed. This feature allows implementing the issue filtering.

For example the Error stream can be configured via application environment in the following way:
TDAQ_ERS_ERROR=“mts, filter(IPC), stderr”

In this case all errors will be sent to the Message Transfer System (MTS)* and those which are
originated from the Inter Process Communication (IPC) software layer will end up to the standard error.

*MTS is the CORBA based distributed message passing middle-ware developed in the ATLAS TDAQ
project. It is used for exchanging messages between arbitrary TDAQ applications.

2. The Error Reporting Interface

Trigger and DAQ system

3. The Issue

ERS provides two ways for reporting messages to different streams:
• There are 6 functions for reporting issues to different ERS streams, e.g. ers::debug(), ers::log(),

ers::info(), ers::warning(), ers::error() and ers::fatal()

• Alternatively, any “harmless” events can be reported via macro provided by ERS, i.e. ERS_DEBUG,

ERS_LOG, ERS_INFO. These macro can be used to send arbitrary information without defining any
new issue type.

This separation is very important for enforcing strong typing for the issues which report essential events to
the “harmful” streams, i.e. Warning, Error and Fatal. This allows reliable usage of such issues in the
reasoning systems, the TDAQ is using for the system control and monitoring.

5. Using ERS for error catching and reporting 6. Error Reporting in the Past and Future Runs

ers::Issue

const char * what() const

const Issue * cause() const

const Context & context() const

std::exception

const char * what() const

ers::Context

const char * cwd() const

const char * file_name() const

const char * function_name() const

const char * host_name() const

Int line_number() const

const char * package_name() const

pid_t process_id() const

pid_t thread_id() const

void *const* stack() const

int stack_size() const

int user_id() const

const char * user_name() const

const char * application_name() const

caused by

Having strongly typed errors is highly desirable for simplifying the system maintainability and
absolutely indispensable for replacing human operator with expert system. On the other hand writing
issues classes declarations would have been tedious and error prone.

MACRO to the rescue
ERS uses the mind breaking BOOST Preprocessor package. Despite conventional opinion the usage of
macro constructs in C++ may be extremely useful and convenient, drastically reducing amount of code
which has to be written and improving the code quality and maintainability.

Examples

4. Declaring Issues

ERS_DECLARE_ISSUE(
 namespace, class_name, message, class_attributes)

ERS_DECLARE_ISSUE_BASE(
 namespace, class_name, base_class_name,
 message, class_attributes, base_class_attributes)

ERS_DECLARE_ISSUE(
 io,
 FileIssue,
 “Basic issue with ‘” << file_name << “’ file”,
 ((const char *)file_name))

ERS_DECLARE_ISSUE_BASE(
 io,
 PermissionDenied,
 FileIssue,
 “Insufficient privileges for ” << opeartion << “ ’” << file_name
 << “’ file which has ” << permissions << “ permissions”,
 ((const char *)file_name),
 ((int)permissions) ((const char*)operation))

The Atlas experiment
ATLAS is one of the four major experiments at
the Large Hadron Collider accelerator at CERN.

The ATLAS TDAQ System
The ATLAS Trigger & Data Acquisition (TDAQ)
system transports event data from the 1600
detector read-out links to the mass storage. The
system is composed of about 20K applications
distributed over 3K computers. Controlling such
a system requires a simple, flexible and reliable
service for error reporting and handling inside
individual application as well as inter-application.

The Error Reporting in the TDAQ system
The Error Reporting System offers an unified system for handling error, warning and debug messages in the
TDAQ service. This system is designed to be used both internally by TDAQ applications and to
communication between TDAQ applications. Other ATLAS online control and monitoring tools use ERS as
one of their main inputs to address system problems in a timely manner and to improve the quality of
acquired data.
The actual destination of the error messages depends solely on the run-time environment, in which the
online applications are operating. Depending on the actual configuration, the messages which applications
send to ERS may end up in a local file, a database, a message passing middle-ware, or in any other
output which is supported by ERS. New output devices can be added to ERS as plugins without touching
the ERS code.
ERS is available in all programming languages used by the ATLAS software: C++, Java and Python.

The main class for reporting problems is called Issue.

Inheritance
This class inherits from the std::exception in order to provide
compatibility with the standard C++ library. Any custom ERS
exception can be caught as std::exception.

Abstraction
The Issue class is abstract. Any software package which has to
report an error must declare a specific issue class by inheriting it
from the abstract ers::Issue or alternatively reuse an existing issue
class from another package. In this case each kind of problem is
described by the corresponding C++ class, which facilitates the
application of the expert system techniques for errors analysis and
decisions taking procedures.

The Context
Each issue has the Context attribute which describes the point where
the issue has happened. In C++ this information is provided by the
special macro ERS_HERE, which must be the first argument to
each Issue constructor. In Java and Python such information is
extracted in the Issue constructor itself, so no additional arguments
is used.

The Chains of Issues
An issue may contain a pointer to another issue which provides
more detailed information on the cause of the problem. Such chain
of issue may have arbitrary depth thus giving any required level of
detailed for the problem description.

try {
 open_file(file_name);
}
catch (io::PermissionDenied & ex) {
 ers::warning(io::CantOpenFile(ERS_HERE, file_name, ex));
}
catch (io::FileIssue & ex) {
 ers::error(ex);
}
catch (std::exception & ex) {
 ers::fatal(io::FileIssue(ERS_HERE, file_name, ex));
}

ERS_DECLARE_ISSUE_BASE(
 io,
 CantOpenFile,
 FileIssue,
 “Can’t open file “ ’” << file_name << “’ file”,
 ((const char *)file_name),
 ERS_EMPTY)

Run 1: 2010 - 2013
For the Run 1 about 30M ERS messages have
been produced by the TDAQ system. All those
messages have been archived to the Oracle
database. The dedicated Log Browser application
has been provided for browsing the content of
that database.
At run time about 10 different types of ERS
issues have been used by the ATLAS online
Expert System for error detection and handling
during data taking.

Run 2: 2015-2018
For the upcoming data taking period the archived
system back-end will be changed to Splunk
(http://www.splunk.com), which is an easy-to-
use web interface and powerful enterprise
platform for analyzing machine data. This
approach has an obvious advantage of having
access to the archived messages from all over the
world without the need of installing any ATLAS
specific software.

Expert System

ERS_DEBUG(1, "test debug output " << 123 << " which shows how to use debug macro");

ERS_LOG(“So far “ << event_number << “ events have been collected”);

ERS_INFO(“The run “ << run_number << “ has been started”);

 error messages

http://www.splunk.com/
http://www.splunk.com/

	Slide Number 1

