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Abstract: We consider F-theory compactifications on genus-one fibered Calabi-Yau man-

ifolds with their fibers realized as hypersurfaces in the toric varieties associated to the 16

reflexive 2D polyhedra. We present a base-independent analysis of the codimension one,

two and three singularities of these fibrations. We use these geometric results to determine

the gauge groups, matter representations, 6D matter multiplicities and 4D Yukawa cou-

plings of the corresponding effective theories. All these theories have a non-trivial gauge

group and matter content. We explore the network of Higgsings relating these theories.

Such Higgsings geometrically correspond to extremal transitions induced by blow-ups in

the 2D toric varieties. We recover the 6D effective theories of all 16 toric hypersurface

fibrations by repeatedly Higgsing the theories that exhibit Mordell-Weil torsion. We find

that the three Calabi-Yau manifolds without section, whose fibers are given by the toric

hypersurfaces in P2, P1×P1 and the recently studied P2(1, 1, 2), yield F-theory realizations

of SUGRA theories with discrete gauge groups Z3, Z2 and Z4. This opens up a whole

new arena for model building with discrete global symmetries in F-theory. In these three

manifolds, we also find codimension two I2-fibers supporting matter charged only under

these discrete gauge groups. Their 6D matter multiplicities are computed employing ideal

techniques and the associated Jacobian fibrations. We also show that the Jacobian of the

biquadric fibration has one rational section, yielding one U(1)-gauge field in F-theory. Fur-

thermore, the elliptically fibered Calabi-Yau manifold based on dP1 has a U(1)-gauge field
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induced by a non-toric rational section. In this model, we find the first F-theory realization

of matter with U(1)-charge q = 3.
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1 Introduction & summary of results

F-theory [1–3] is a non-perturbative formulation of Type IIB string theory with backreacted

7-branes, that is manifestly invariant under the SL(2,Z)-duality symmetry of the theory.

String backgrounds constructed via F-theory are not only located in the heart of the web

of string dualities, but also allow for the construction of phenomenologically appealing

local GUT-models [4–7], which has recently rekindled a lot of interest into the subject.

The basic idea of F-theory is to replace the axio-dilaton τ = C0 + ie−φ , that is only

defined up to SL(2,Z)-transformations, by a quantity, that only depends on the SL(2,Z)-

equivalence class of τ . The canonical geometrical object with this property is a two-torus

T 2(τ), whose complex structure is identified with τ . Thus, replacing τ by this auxiliary

T 2(τ) provides an SL(2,Z)-invariant formulation of Type IIB. Non-trivial backgrounds of

τ , which are sourced by 7-branes, on manifolds B are mapped under this replacement to

torus-fibrations over B. In particular, for a supersymmetric and tadpole-canceling setup

of 7-branes on a complex Kähler manifold B the total space of this T 2(τ)-fibration is a

Calabi-Yau manifold π : X → B.

Most of the torus-fibered Calabi-Yau manifolds X that have been studied are alge-

braic, that is they are realized as complete intersections in some ambient space.1 In these

constructions, the torus fiber over B is realized as an algebraic curve C of genus one. In

addition, many examples considered in the literature are elliptically fibered, meaning that

1For recent advances on Calabi-Yau manifolds constructed as determinantal and Pfaffian varieties,

see [8, 9].
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X has a section B → X, which was traditionally assumed to be holomorphic. These el-

liptically fibered Calabi-Yau manifolds have fruitful applications, e.g. for the construction

of semi-realistic GUTs in global F-theory compactifications starting with [10, 11] or the

classification and study of 6D SCFTs [12–14].

Despite these successes, addressing open conceptual questions e.g. regarding the finite-

ness of the F-theory landscape2 or which consistent 6D and 4D supergravity (SUGRA)

theories can be realized in F-theory,3 as well as the understanding of the geometric origins

of discrete symmetries or analogous field theoretic mechanisms, crucial for the phenomenol-

ogy of F-theory models, requires to broaden the class of Calabi-Yau manifolds X used for

F-theory compactifications. In fact, using the well-developed map between the geometry of

F-theory and SUGRA theories, see [20, 21] for the complete map in 6D and [22] for results

about certain topological terms in 4D,4 one finds that the Calabi-Yau manifolds realizing

many known consistent SUGRA theories, in particular those with U(1) symmetries [24] or

discrete gauge groups, are still unknown [25].5 For the search of an F-theory realization of

these theories it is crucial to construct new classes of Calabi-Yau manifolds X admitting

new geometric features and to deduce the general SUGRA theories that arise in F-theory

compactifications on these X.6

There has been a lot of recent progress in systematically extending the set of Calabi-

Yau manifolds X that can be used for F-theory compactifications. The different approaches

can be roughly sorted into two groups. The first group of approaches focuses on the

classification and construction of all bases B that are admissible for F-theory [28–30]. The

second group, to which this work belongs, focuses on generalizing the type of fiber C and

the ways in which it can be fibered in a Calabi-Yau manifold X. There are three major

extensions in this direction:

1. Elliptic fibers with an increasing number of rational points and their corresponding

elliptically fibered Calabi-Yau manifolds X with a Mordell-Weil group (MW-group)

of rational sections of increasing rank have been systematically constructed and stud-

ied [31–46].7 The free part of the MW-group leads to U(1)-gauge fields in F-theory8 [2]

and the torsion part yields non-simply connected gauge groups [53].

2. Elliptic fibrations X with a non-holomorphic zero section have been considered re-

2See [15] and the recent [16] for a finiteness proof in related Type I compactifications.
3F-theory compactifications to 8D are well-studied and classified, see e.g. the recent toric analysis of [17]

and the classification of elliptic fibrations on K3-surfaces in [18]. Last subtleties in the understanding of

the gauge group of a generic K3 have been understood in [19].
4SUGRA theories from string theory can also be constrained using tools from heterotic/F-theory dual-

ity [23].
5Of course it is a logical possibility that some of the SUGRA theories without a known F-theory real-

ization are not consistent effective theories due to a violation of consistency constraints that are unknown

at this point.
6Compactifications of F-theory on Spin 7 manifolds, considered recently [26, 27], have not yet produced

SUGRA theories that cannot be obtained by a Calabi-Yau compactification.
7Certain aspects of models with a higher rank MW-group are studied already in [47–49], see also [50]

for an analysis of models with D5-fiber.
8See [35, 51, 52] for a discussion of (geometrically) massive U(1)’s.
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cently, starting with [37, 39, 43]. This permits the introduction of discrete degrees

of freedom in the construction of the fibration of the elliptic curve over the base B

yielding a finite number of strata in the moduli space of X.

3. Algebraic curves C of one without any (rational) point have been used to construct

genus-one fibrations [54–56]. These are Calabi-Yau manifolds X which do not have

a section, but only multi-sections. These models can be analyzed employing their

associated Jacobian fibration J(X), which does exhibit a zero section, and its Weier-

strass form.

1.1 Summary of results

The Calabi-Yau manifolds X we consider in this work invoke all of the three aforementioned

extensions. We study all F-theory compactifications on Calabi-Yau manifolds XFi with

genus-one fiber CFi given as a hypersurface in the toric varieties associated to the 16 2D

reflexive polyhedra, denoted by Fi, i = 1, . . . , 16.9 We refer to these Calabi-Yau manifolds

as toric hypersurface fibrations. We determine the generic and intrinsic features of these

XFi that are relevant to F-theory: the generic gauge group, the corresponding matter

spectrum and the 4D Yukawa couplings corresponding to the codimension one, two and

three singularities of XFi . These geometric results completely determine the 6D and non-

chiral 4D SUGRA theories obtained by compactifying F-theory on Calabi-Yau threefolds

and fourfolds without G4-flux. We prove completeness of our analysis of codimension one

and two singularities by checking cancellation of all 6D anomalies. All these results are

base-independent in the sense that they follow directly from the geometry of the fiber CFi .
The only dependence on the base B enters through the choice of two divisors on B that

label the possible Calabi-Yau fibrations of CFi [39].

We highlight the following interesting geometrical findings of our analysis of F-theory

on the Calabi-Yau manifolds XFi :

• Every XFi has an associated minimal gauge group GFi that is completely determined

by the polyhedron Fi. In other words this gauge group is present without tuning the

complex structure of XFi by means of Tate’s algorithm [59–61] (see [62, 63] for recent

refinements) or upon addition of tops. The gauge groups GFi and GF ∗i associated to

Fi and its dual polyhedron F ∗i obey the rank relation

rk(GFi) + rk(GF ∗i ) = 6 . (1.1)

• We consider three Calabi-Yau manifolds XFi , i = 1, 2, 4, without section. Their fibers

are the general cubic in P2, the general biquadric in P1 × P1 and the general quartic

in P2(1, 1, 2), respectively, where the latter is also studied in [54–56]. The fibrations

XFi , i = 1, 2, 4, only have a genus-one fibration with a three-, a two- and a two-

section, respectively. As a direct consequence of this absence of sections, F-theory

has discrete gauge group factors given by Z3, Z2 and Z4, respectively. Using prime

9These genus-one curves have also been used in [57, 58] as mirror curves for the computation of refined

stable pair invariants in the refined topological string.
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ideal and elimination theory techniques from computational algebraic geometry, we

show that these Calabi-Yau manifolds, most notably the fibration of the cubic, XF1 ,

have I2-fibers at codimension two that support singlet matter with charge 1 under

the respective discrete gauge groups. We explain how the charge of all matter fields

under these discrete groups are computed from the intersections of the multi-sections

with the relevant codimension two fibers.

• We show that both XF2 and XF3 give rise to one U(1)-factor, namely GF2 = U(1)×Z2

and GF3 = U(1). To this end, we show that unlike XF2 , the Weierstrass form of the

Jacobian J(XF2) has one rational section, whereas already XF3 has two sections: a

toric and a non-toric one. In both cases, we determine the coordinates of all sections

explicitly.

• For the first time, we find F-theory compactifications with matter of U(1)-charge

three. This matter is supported at a codimension two locus of XF3 with an I2-fiber

where both the zero section and the non-toric rational section are ill-behaved and

each “wrap” one irreducible fiber component.

We note that the 16 toric hypersurface fibrations XFi were considered in [41], where a

thorough classification of their toric MW-groups was carried out. Further specializations

of the XFi corresponding to toric tops [64, 65] (see [66] for a systematic approach based on

Tate’s algorithm for elliptic fibers in Bl1P2(1, 1, 2)) permitted the engineering of toric F-

theory models with certain gauge groups, in particular with an SU(5) GUT-group. Some

4D examples of chiral SU(5) GUTs were constructed in this manner [42, 43]. Since we

determine here the intrinsic gauge groups and the non-toric MW-groups, as well as the

full matter spectrum and the Yukawa couplings of XFi , our approach is complementary to

these previous works.

We have to remark that none of the fibrations XFi yield an SU(5) gauge factor in their

low-energy effective theories. Hence, strictly speaking, the intrinsic gauge symmetries

associated to the toric hypersurface fibrations do not suffice to engineer SU(5) F-theory

GUTs. There are, however, some arguments that challenge the simplest GUT picture in

F-theory, and therefore, draw our attention towards alternative schemes which may be

promising for particle physics models. In this spirit, we would like to briefly highlight some

of the effective theories we obtain, which can potentially be used to construct promising

particle physics models in F-theory. We find models with discrete symmetries and up to

three U(1) factors. These additional symmetries can be used in order to forbid dangerous

operators which would render the theory incompatible with observations, e.g. by mediating

fast proton decay. In addition, we observe theories with interesting gauge groups and

spectra. In fact, XF11 precisely leads to an effective theory with the Standard Model gauge

group and the usual representations,10 and we further identify the trinification group for

XF16 as well as the Pati-Salam group for XF13 . As we demonstrate explicitly, the matter

spectra we obtain are very close to those one usually has in both of these theories.

10See [67] for a different realization of a standard model like theory based on tops of XF5 .
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Figure 1. The network of Higgsings between all F-theory compactifications on toric hypersurface

fibrations XFi . The axes show the rank of the MW-group and the total rank of the gauge group of

XFi . Each Calabi-Yau XFi is abbreviated by Fi and its corresponding gauge group is shown. The

arrows indicate the existence of a Higgsing between two Calabi-Yau manifolds.

In this paper we also work out the entire network of Higgsings relating the effective

theories of F-theory on the toric hypersurface fibrations XFi . It is well-known that the

toric varieties corresponding to the 16 2D reflexive polyhedra Fi are related by blow-

downs. Consequently, the Calabi-Yau manifolds XFi are related by the extremal transitions

induced by these birational maps and a subsequent toric complex structure deformation.

These transitions can be understood as Higgsings in the effective SUGRA theories arising

from F-theory on the XFi : given two polyhedra Fi and Fi′ related by a blow-down as

Fi → Fi′ , we explicitly determine the Higgsing that relates the effective theory of F-theory

on XFi to that on XFi′ . The resulting diagram of all those Higgsings is given in figure 1.

Since this chain of Higgsings is only a sub-branch of the full Higgs branch of the effective

SUGRA theories of F-theory on XFi , we refer to it as the toric Higgs branch. We check

that both the charged and the neutral spectrum of the SUGRA theories in 6D match. This

– 5 –
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involves the computation of the number of neutral hyper multiplets, that in turn can be

obtained from the Euler numbers of all XFi , which we also compute explicitly.

We point out some interesting observations about the Higgsing diagram in figure 1:

• All effective theories can be obtained by appropriately Higgsing the theories with

maximal gauge groups and matter spectra obtained from F-theory on XFi , i =

13, 15, 16. We note that these are precisely the theories with non-trivial Mordell-

Weil torsion.

• The network of Higgsings is symmetric around the horizontal line where the total rank

of the gauge group is 3. Reflection along this line exchanges the polyhedron with its

dual. This symmetry of figure 1 reflects the rank condition (1.1). We emphasize that

this symmetry maps theories with discrete gauge groups to theories with non-simply

connected group, suggesting that multi-sections are somehow “dual” to MW-torsion.

• The three theories with discrete gauge groups arise by Higgsing theories with U(1)’s.

It is also remarkable that all discrete symmetries found are surviving remnants of U(1)

symmetries. It seems that discrete symmetries in F-theory are automatically in agree-

ment with the early observation [68–70] that in a consistent theory of gravity, discrete

global symmetries must be always embeddable into a local continuous symmetry.

• The toric Higgsings cannot change the rank of the F-theory gauge group by more

than 1. This explains why there are no arrows with slope below 45 degrees.

1.2 Structure of the paper

This paper is organized as follows. Section 2 contains a summary of the geometry of Calabi-

Yau manifolds constructed as genus-one fibrations and the physics of F-theory compactified

on them. We also present a basic account on toric geometry. This section serves mostly as

review preparing for the main analysis of the paper. It can be skipped by readers familiar

with these matters.

Section 3 contains the central results of this work. To set the stage we review the

construction and the different types of toric hypersurface fibrations XFi over an arbitrary

base in section 3.1. The remainder of section 3 is organized as a catalog (ordered mostly

according to the order of the 2D reflexive polyhedra Fi) with a separate subsection for

the analysis of each of the 16 toric hypersurface fibrations XFi . The codimension one, two

and three singularities of the XFi are analyzed, and the number of their complex structure

moduli is computed in the threefold case. The F-theory gauge group, matter spectrum

and Yukawa couplings are extracted from these results. The gauge groups of all Xi are

summarized at the beginning of section 3 and the matter spectra and Yukawa couplings of

every XFi are summarized in tables in the corresponding subsection, which can be directly

consulted by readers less interested in the details of the calculations.

Section 4 is devoted to the study of the physics of the toric Higgs branch of F-theory

compactified on the XFi . One particular Higgsing is discussed in detail in order to illustrate

the relevant techniques. Here we also present the particularly important Higgsings leading

to the effective theories with discrete gauge groups.

– 6 –
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Our conclusions can be found in section 5. This work contains additional appendices

on 6D anomalies (appendix A), additional geometrical data of the XFi (appendix B) and

the explicit Euler numbers of all Calabi-Yau threefolds XFi (appendix C) as well as further

details on the entire Higgsing chain in appendices D and E.

2 Geometry & physics of F-theory backgrounds

In this section, we summarize the key geometrical properties of Calabi-Yau manifolds X

that are genus-one fibrations over a base B which are relevant for the study of F-theory

compactifications, see sections 2.1 and 2.2. The structure of the 6D effective SUGRA

theories obtained by compactifying F-theory on these manifolds is discussed in section 2.3.

Since we study in this work Calabi-Yau manifolds X with their genus-one fibers realized as

toric hypersurfaces, we introduce the necessary elements of toric geometry in section 2.4.

Readers familiar with the tools and definitions presented here can safely skip this

section and continue directly with section 3.

2.1 Genus-one, Jacobian and elliptic fibrations with Mordell-Weil groups

We consider a smooth Calabi-Yau manifold π : X → B with general fiber given by an

algebraic curve C of genus-one. C is a non-singular curve defined over a field K that is

not necessarily algebraically closed. In particular, we can think of the fibration X as an

algebraic curve C defined over the field K of meromorphic functions on the base B, which

is clearly in general not algebraically closed. Thus, there are two qualitatively different

situations to consider.

Curves with points

First, if the curve C has points with coordinates in K, then it is called an elliptic curve,

which we denote by E , and X is called an elliptic fibration. The points on E form an

Abelian group under addition: one point can be chosen as the zero point, denoted by

P0, and the additional points Pm, m = 1, . . . , r, (more precisely the differences Pm − P0)

are the generators of the Mordell-Weil group of rational points of E . The Mordell-Weil

theorem states that this group is finitely generated [71, 72]. Thus, it splits into a free

part isomorphic to Zr and a torsion subgroup, where the latter has been fully classified for

K = Q by Mazur [73, 74], see [71] for a review.11 Every point on E gives rise to a section

of the fibration X, i.e. rational maps from the base B into X. The section associated to

P0 is the zero section, denoted by ŝ0 : B → X, and the r rational points Pm induce the

rational sections ŝm : B → X. The set {ŝm} can be seen to form a group, the MW-

group of rational sections of X, by defining the addition of rational sections by addition

of their corresponding points on E . The free part of the MW-group gives rise to Abelian

gauge symmetry in F-theory [2] and its torsion part yields non-simply connected gauge

groups [53], see also [46] for a recent discussion of MW-torsion.

11For the field of meromorphic functions on B, there are more torsion subgroups possible than for K =

Q [53].
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Every elliptic fibration X can be written in Weierstrass form (WSF) [75], i.e. as a

hypersurface in the weighted projective bundle P(1,2,3)(OB ⊕ L2 ⊕ L3) over B of the form

y2 = x3 + fxz4 + gz6 . (2.1)

Here, OB is the trivial bundle on B and the line-bundle L is fixed by the Calabi-Yau

condition of X as L = K−1B , with KB denoting the canonical bundle of the base B. Then,

the coefficients f and g have to be sections of K−4B and K−6B , respectively. The map from

the canonical presentation of X inherited from the canonical presentation of the elliptic

curve E to the Weierstrass form (2.1) is birational. The zero section ŝ0 of X maps to the

holomorphic zero section [z : x : y] = [0 : λ2 : λ3] in (2.1) and the rational sections ŝm map

to rational sections in (2.1) with certain coordinates [zPm : xPm : yPm ], that are rational

expressions in K (we can clear denominators to obtain holomorphic coordinates).

Curves without points

Second, if the genus-one curve C does not have a point, the fibration π : X → B is without

section. Such a fibration is referred to as a genus-one fibration [54]. Given a genus-one

curve C, one can construct an associated elliptic curve E = J(C), that is the Jacobian of

the curve C, i.e. the group of degree zero line bundles on C. The zero point on J(C) is

the trivial line bundle. Thus, there exists an elliptic fibration π : J(X) → B associated

to X with general fiber given by J(C). This implies that J(X) can be represented as a

Weierstrass model (2.1). Furthermore, it is a key property for F-theory that the τ -function

and the discriminant of X and J(X) are identical [54].

In this work, we consider concrete genus-one curves C with K-rational divisors of

degree n > 1, respectively.12 The corresponding fibration X does not have a section, but

an n-section, that we denote by ŝ(n) : B → X. Locally, at a point p on B, the function

field K reduces to C and the n-section ŝ(n) maps p to n points in the fiber C. Globally,

however, upon moving around branch loci in B the individual points are exchanged by a

monodromy action, so that only the collection of all n points together induce a well-defined

divisor in X.

As we will see explicitly for concrete genus-one fibrations X, the map from X to the

Weierstrass form (2.1) of J(X) can be obtained by an algebraic field extension L of K.

This field extension is only necessary as an intermediate step, i.e. the final WSF (2.1) of

J(X) is again defined over K. In sections 3.2.1, 3.2.2 and 3.2.3 we explicitly work out the

maps from X to the WSF of their Jacobian fibrations J(X), namely for the fibration of

the cubic in P2, that has a three-section, and the two fibrations of the biquadric curve in

P1 × P1 and the quartic curve in P2(1, 1, 2), that both have a two-section.13 We note that

genus-one fibrations X by the quartic in P2(1, 1, 2) have been considered recently in an

F-theory context in [54–56].

12We expect that there always exists a degree n divisor on a given algebraic genus-one curve C.
13These examples have been considered in the mathematics literature in [76].
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2.2 Divisors on genus-one fibrations and their intersections

In F-theory we are particularly interested in Calabi-Yau manifolds X that arise as a crepant

resolution of singular genus-one or elliptic fibrations. These resolved manifolds exhibit three

different classes of divisors, that we discuss in the following.

The first set of divisors on X is formed by the vertical divisors, i.e. divisors that arise

as pullbacks of divisors on B under the projection map π : X → B. Hence, there are

h(1,1)(B) such divisors on X. We denote the preimage under π of a vertical divisor D on

X by Db so that D = π∗(Db). Thus, D is a fibration of the curve C (or its degenerations)

over the base Db.

The second class of divisors are the exceptional divisors of X. In more detail, if the

discriminant ∆ = −16(4f3 + 27g2) of the WSF (2.1) of X or of its Jacobian J(X) vanishes

to order higher than 1 at one of its irreducible components

SbGI := {∆I = 0} , I = 1, . . . , N , (2.2)

in B, then the total space of the WSF is singular. These codimension one singularities

are classified in [59, 60]. In the resolution X the fiber over each SbGI splits into a number

of rational curves whose intersection pattern often agrees with the Dynkin diagram of a

Lie group GI .
14 The shrinkable irreducible components of the fiber at SbGI represent the

simple roots of GI and are denoted by cGI−αi for i = 1, . . . , rk(GI). Thus, X has a set of

exceptional divisors DGI
i given as the fibration of cGI−αi over SbGI for every I, to which we

refer to as Cartan divisors of GI . The DGI
i intersect the curves cGI−αi as

DGI
i · c

GJ
−αj = −CGIij δIJ , (2.3)

where CGIij denotes the Cartan matrix of GI . The F-theory gauge group is then given by

the product of all GI , as discussed in section 2.3.

Finally, the third class of divisors is induced by the independent sections and n-sections

of the fibration of X. We denote the divisor classes of the zero section ŝ0 and the generators

of the MW-group of rational sections ŝm by S0 and Sm, respectively. The class of a multi-

section ŝ(n) is denoted by S(n). Then, the intersections of these divisors with the fiber

f ∼= C, E read

S0 · f = Sm · f =
1

n
S(n) · f = 1 . (2.4)

The divisor classes that support Abelian gauge fields in F-theory [34, 39, 77], see also [22,

31, 78], are obtained from the Shioda map σ of the rational sections ŝm. To a given

generator of the MW-group ŝm the Shioda map assigns the divisor

σ(ŝm) := Sm − S0 + [KB]− π(Sm · S0) +

N∑
I=1

(Sm · cGI−αi)(C
−1
GI

)ijDGI
j . (2.5)

Here π(·) denotes the projection of a codimension two variety in X to a divisor in the

base B and [KB] is the canonical bundle of B. The last term encodes contributions from

14The fibers that do not have an associated group GI are the unconventional fibers in table 2 of [61].
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non-Abelian gauge groups GI in F-theory with (C−1GI )iIjI denoting the inverse of the Cartan

matrix CGIij .

The Shioda map (2.5) enables us to define the Néron-Tate height pairing of two rational

sections ŝm, ŝn as

π(σ(ŝm) · σ(ŝn)) = π(Sm · Sn) + [KB]− π(Sm · S0)− π(Sn · S0)

+
∑
I

(C−1GI )ij(Sm · cGI−αi)(Sn · c
GI
−αj )S

b
GI
, (2.6)

where CGIij is the coroot matrix of GI . We note that for evaluating this pairing in a concrete

situation, the universal intersection relations

π(S2
P + [K−1B ] · SP ) = π(S2

m + [K−1B ] · Sm) = 0 (2.7)

prove useful (cf. [35, 39, 42, 77] for details), whereas π(Sm · Sn) and π(Sm · S0) are model-

dependent.

We note that in F-theory both the vertical divisor (2.2) and the matrix (2.6) of vertical

divisors enter the coefficients of the Green-Schwarz terms [22, 34, 35] and are thus essential

for anomaly cancellation, cf. appendix A for details.

2.3 The spectrum of F-theory on genus-one fibrations

After the geometric preludes of sections 2.1 and 2.2, we are prepared to extract the spectrum

of F-theory on a genus-one fibration X. The following discussion applies most directly to F-

theory compactifications to 6D with effective theory given by an N = (1, 0) SUGRA theory.

However certain statements directly generalize to 4D F-theory vacua without G4-flux.

For a more detailed derivation of some of the following results, that oftentimes require

M-/F-theory duality, we refer [78–80] and references therein.

Codimension one singularities

All vector fields and certain hyper multiplets in F-theory arise from the singularities of the

WSF of X that are induced by codimension one singularities of its fibration. Over a given

irreducible discriminant component SbGI defined in (2.2), the fiber of X is reducible. We

assume that there is a Lie group GI associated to this codimension one fiber of X. Then,

the shrinkable holomorphic curves cGI−α in the fiber over SbGI represent all the positive

roots of GI . By quantization of the moduli space of an M2-brane wrapping such a curve

cGI−α one finds BPS-states transforming in one charged vector multiplet and 2gI charged

half-hyper multiplets with charge-vector −α [81, 82]. Another vector multiplet and 2gI
half-hyper multiplets with charges +α are contributed by an M2-brane wrapping cGI−α with

the opposite orientation. Here gI is the genus of the curve SbGI in B, that is computed as

gI = 1 +
1

2
SbGI · (S

b
GI

+ [KB]) . (2.8)

All these charged states become massless in the F-theory limit, when the volume of the

class of the genus-one fiber of X is taken to zero. In this limit, these BPS-states fall into

representations of the group GI as follows.
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First, we focus on the vector multiplets. All vector multiplets for every root α of GI
are completed into one massless vector multiplet transforming in the adjoint representation

adj(GI) of GI . The additional vector multiplets are provided by the KK-reduction of the

M-theory three-form C3 along the harmonic (1, 1)-forms in X that are dual to the Cartan

divisor DGI
I of GI . Thus, every irreducible component (2.2) of the discriminant with

respective codimension one fiber classified by a Lie group GI , I = 1, . . . , N , gives rise to a

GI gauge symmetry in F-theory [2, 3, 61]. Furthermore, if X has a MW-group of rank r,

there are additional (1, 1)-forms on X, which are the duals of the divisors (2.5), that give

rise to vector multiplets of Abelian gauge groups [3]. Thus, the total gauge group GX of

F-theory on X is

GX = U(1)r ×
N∏
I=1

GI . (2.9)

This discussion and the results of section 2.2 imply further that the rank of GX can be

directly computed in terms of the Hodge numbers h(1,1)(X) and h(1,1)(B) of X and B,

respectively, as

rk(GX) = h(1,1)(X)− h(1,1)(B)− 1 . (2.10)

These results (2.9) and (2.10) hold in compactifications to eight,15 six and four dimensions.

Second, we turn to the massless half-hyper multiplets over SbGI . In fact, also these

fields are completed into the adjoint representation adj(GI) of GI . In order to see this, we

first note that there are neutral hyper multiplets induced by the complex structure moduli

of X. Their total number, denoted by Hneut, is computed by the Hodge number h(2,1)(X)

(or equivalently the Euler number χ(X)) of X as

Hneut = h(2,1)(X) + 1 = h(1,1)(B) + 2 + rk(GX)− 1

2
χ(X) . (2.11)

Then, for every group GI , the 2gI half-hyper multiplets with charges −α for all roots of GI
combine with gI · rk(GI) neutral hyper multiplets from (2.11) into gI hyper multiplets in

the adjoint adj(GI) of GI . Thus, the number of hyper multiplets transforming in adj(GI)

is given by (2.8) for every group GI .

Let us emphasize that this discussion implies that h(2,1)(X) contains information about

the gauge groups GI of X. Furthermore, also parts of the charged matter content from

codimension two fibers are counted by h(2,1)(X), however of another theory related to the

considered one by Higgsing. In section 4, for F-theory compactified on all toric hypersurface

fibrations X, we identify the part of h(2,1)(X) that comes from matter fields in all theories

related by Higgsing.

Codimension two singularities

The rest of the charged spectrum of F-theory on X is encoded in the codimension two

singularities of the WSF of X.

Non-Abelian charged matter is located at loci in SbGI , where the vanishing order of the

discriminant ∆ of X enhances. These loci are typically complete intersections of SbGI with

15In 8D vacua, no non-split fibers are possible, i.e. all gauge groups are of ADE-type [61].
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another divisor in B, that can be read off from ∆. The fiber of X at these codimension two

loci contains additional shrinkable rational curves c that are not present in codimension

one. These curves correspond to the weights of a representation Rq, under the gauge group

GX in (2.9), where q = (q1, . . . , qr) denotes the vector of U(1)-charges. The Dynkin labels

λGIi of R are computed according to

λGIi = DGI
i · c , (2.12)

and the mth U(1)-charge qm is computed using (2.5) as [34, 77]

qm = σ(ŝm) · c = (Sm · c)− (S0 · c) +
∑
I

(Sm · c−αiI )(C−1(I))
iIjI (DjI · c) . (2.13)

We emphasize that these charges are automatically quantized, but not necessarily integers

due to the usually fractional contribution form the last term in (2.13).

We note that in the presence of U(1)’s, we automatically have additional matter that

does not originate from intersections of codimension one discriminant components. In fact,

the WSF of X automatically has codimension two singularities for every rational section

ŝm with coordinates [zPm : xPm : yPm ] at the following locus in B:

yPm = fz4Pm + x2Pm = 0 , m = 1, . . . , r . (2.14)

This can be seen by inserting [zPm : xPm : yPm ] into (2.1), which implies a relation between

f and g which allows for a factorization of (2.1) that reveals the presence of conifold

singularities in the WSF of X precisely at (2.14), see e.g. [39, 77] for details. In the

crepant resolution X, there is a reducible I2-fiber with one isolated rational curve at the

codimension two loci (2.14). The matter at the loci (2.14) are charged singlets 1q with

their U(1)-charges computed according to (2.13). This is clear as generically (2.14) does

not intersect any discriminant component, which are the loci where the Cartan divisors

DGI
i are supported, so that (2.12) is trivial.

In concrete applications, the complete intersection (2.14) describes a reducible variety

in B supporting multiple singlets with different charges. Matter at a generic point of (2.14)

has U(1)-charge one, whereas matter at non-generic points, i.e. points along which other,

oftentimes simpler constraints vanish, too, has different U(1)-charges. From a technical

point of view, we are interested in all prime ideals, denoted throughout the paper by I(k), of

the loci (2.14) for every m. These are obtained by a primary decomposition of the complete

intersection (2.14), cf. [42] for details. The codimension two variety in B associated to I(k)
is denoted by V (I(k)), which is the standard notation in algebraic geometry for an algebraic

set, i.e. the set of points in B so that all constraints in I(k) vanish. Then, we explicitly

analyze the I2-fibers of X over all these irreducible varieties V (I(k)) in order to compute

the respective U(1)-charges via (2.13).

In general, the multiplicity of matter in the representation Rq is given by the homology

class of the corresponding codimension two locus in B. If the base B is two-dimensional,

which is the case in compactifications to 6D, this is just a set of points and the multiplicity

is the number of these points. In F-theory compactifications to 4D, the homology class of

a codimension two locus is the class of the corresponding matter curve.
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More specifically, the multiplicity of non-Abelian charged matter is computed easily as

the homology class of the complete intersection with SbGI . However, the determination of

the multiplicity of singlets 1q is more involved since they are located on the varieties V (I(k))

associated to the usually very complex prime ideals I(k) of the complete intersection (2.14).

The respective matter multiplicities are then again given as the homology class of the va-

riety V (I(k)). It can be computed by the following procedure, see [39, 42, 44] for more

details: we first compute the homology class of the reducible complete intersection (2.14).

Given the list of its associated prime ideals I(k), we then subtract the multiplicities (ho-

mology classes) of those matter loci V (I(k′)), {k′} ⊂ {k}, we already know. Here we have

to take into account the order nk′ of the matter locus V (I(k′)) inside the complete intersec-

tion (2.14). The order nk′ is computed using the resultant technique [39]. In all the cases

considered below in section 3, this strategy yields the homology classes of all singlets 1q.

In summary, the 6D N = (1, 0) SUGRA theory obtained by compactifying F-theory

on a Calabi-Yau threefold X has

• a total number of vector multiplets V reading

V = adj(GX) =
∑
I

dim(adj(GI)) + r , (2.15)

where adj(GX) and adj(GI) denote the adjoint representations of GI and GX , re-

spectively, and r denotes the MW-rank of X,

• a total number of hyper multiplets H given by

H = Hcodim=2 +Hcodim=1 +Hmod

= Hcodim=2 +
n∑
I=1

gI(dim(adj(GI))− rk(GI)) + h(2,1)(X) + 1 ,
(2.16)

where we split into contributions Hcodim=2, Hcodim=1 and Hmod from codimension

two fibers, from codimension one fibers over higher genus Riemann surfaces in B and

from complex structure moduli of X (plus 1), respectively,

• and a number of tensor multiplets T counted by

T = h(1,1)(B)− 1 = 9− [K−1B ]2 . (2.17)

For the second equality in (2.17) we have employed the identity

[K−1B ] · [K−1B ] =

∫
B
c1(B)2 = 10− h(1,1)(B) . (2.18)

Here we used in the last equality the Euler number χ(B) = (2 + h(1,1)(B)) of a simply-

connected base B with h(2,0) = 0 and the index formula for the arithmetic genus χ0(B) = 1,

1 = χ0(B) =
1

12

∫
(c2(B) + c1(B)2) =

1

12

(
2 + h(1,1)(B) +

∫
B
c1(B)2

)
, (2.19)

where ci(B), i = 1, 2, denote the Chern classes of B.
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Codimension three singularities

For completeness we note that codimension three singularities of the WSF of a Calabi-Yau

fourfold X support Yukawa points in F-theory compactifications to 4D. The codimension

three singularities are at the points in the threefold base B of further enhancement of

the vanishing order of the discriminant ∆. All such enhancement points are given as

intersections of three matter curves in B, including self-intersections. Technically, given

three matter curves V (I(1)), V (I(2)) and V (I(3)) we have to check that the variety V (I(1))∩
V
(
I(2))∩V (I(3)

)
contains a codimension three component inB. This is achieved by checking

that the ideal I(1)∪I(2)∪I(3) is codimension three in the ring of appropriate polynomials on

B, where we used the well-known equality
⋂
k V (I(k)) = V (

⋃
k I(k)) for a family of algebraic

sets V (I(k)) [83].

As we see in section 3, all gauge-invariant Yukawa couplings are realized for the case

of toric hypersurface fibrations XFi .

2.4 Explicit examples: Calabi-Yau hypersurfaces in 2D toric varieties

All Calabi-Yau manifolds X considered in this work are constructed as fibrations of genus-

one curves C that have a natural presentation as hypersurfaces in 2D toric varieties. These

fibrations are automatically smooth, if the toric ambient spaces of the fiber C are fully

resolved. In this section we present a very brief account on the construction of Calabi-Yau

hypersurfaces in 2D toric varieties that are the basis for the rest of this work. For a more

complete account, we refer to standard text books [84, 85].

A toric almost Fano surface is associated to each of the 16 two-dimensional reflexive

polyhedra Fi, i = 1, . . . , 16, in a lattice N = Z2.16 These 16 reflexive polyhedra are given

in a convenient presentation in figure 2 [17]. As indicated there, the polyhedra Fi and

F17−i for i = 1, . . . , 6 are dual to each other, F ∗i = F17−i, and the Fi for i = 7, . . . , 10 are

self-dual, Fi = F ∗i , where the dual polyhedron F ∗i is defined in the dual lattice M = Z2 of

N as

F ∗i = {q ∈M ⊗ R|〈y, q〉 ≥ −1, ∀y ∈ Fi} , (2.20)

where 〈·, ·〉 is the pairing between N and M .

For a given polyhedron Fi, we denote the associated toric variety by PFi . Toric va-

rieties are generalizations of weighted projective spaces [86]: to each integral point vk,

k = 1, . . . ,m + 2, except the origin of Fi, we associate a coordinate xk in C. Next, we

introduce the lattice of relations between the vk with generators `(a) defined by

m+2∑
k=1

`
(a)
k vk = 0 , a = 1, . . . ,m . (2.21)

Then, a smooth toric variety PFi is defined as the (C∗)m-quotient

PFi =
Cm+2\SR

(C∗)m
=

{
xk ∼

m∏
a=1

λ
`
(a)
k
a xk

∣∣∣∣x /∈ SR , λa ∈ C∗
}
, (2.22)

where the points x := (x1, . . . , xm+2) are not allowed to lie in the Stanley-Reisner ideal SR.

16We refrain from the common notation ∆ for a polyhedron in order to avoid confusion with the

discriminant.
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Figure 2. The 16 two dimensional reflexive polyhedra [17]. The polyhedron Fi and F17−i are dual

for i = 1 . . . 6 and self-dual for i = 7 . . . 10.

The construction (2.22) provides a dictionary between the combinatorics of the polyhe-

dron Fi and the geometry of PFi . For example, the toric divisor group on PFi is generated

by the divisors Dk = {xk = 0} and the intersections of the Dk are encoded in the SR

ideal. A full basis of the divisor group on PFi can be obtained using the linear equivalences

between the Dk. Due to the relevance for the smoothness of a toric hypersurface fibration

X, we stress here that points that are not vertices in Fi correspond to exceptional divisors

resolving orbifold singularities in PFi .
The polyhedra F1, F3, F5, F7 describe the generic del Pezzo surfaces P2 and dPi,

i = 1, 2, 3, respectively, F2 yields P1×P1, F4 describes P2(1, 1, 2) and F10 yields P2(1, 2, 3).

In fact all other toric varieties PFi can be viewed as higher del Pezzo surfaces at a special

point in their respective complex structure moduli spaces.

Every toric variety PFi has an associated Calabi-Yau hypersurface, i.e. a genus-one

curve CFi . It is defined as the generic section of its anti-canonical bundle K−1PFi
. The

Calabi-Yau hypersurface in PFi is obtained by the Batyrev construction as the following

polynomial [87]

pFi =
∑

q∈F ∗i ∩M
aq
∏
k

x
〈vk,q〉+1
k , (2.23)

where q denotes all integral points in F ∗i and the aq are coefficients in the field K.
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We note that points vi interior to edges in Fi are usually excluded in the product (2.23)

because the corresponding divisors do not intersect the hypersurface CFi . However, when

considering Calabi-Yau fibrations XFi of CFi , as in section 3, these divisors intersect XFi

and resolve singularities of XFi induced by singularities of its fibration, i.e. these divisors

are related to Cartan divisors DGI
i discussed above in section 2.2.

3 Analysis of F-theory on toric hypersurface fibrations

In this section we analyze the geometry of the Calabi-Yau manifolds XFi , that are con-

structed as fibration of the genus-one curves CFi over a generic base B. For each manifold

we calculate the effective theory resulting from compactifying F-theory on it. We calculate

the gauge group, the charged and neutral matter spectrum and the Yukawa couplings.

We start with a quick summary of some interesting results of this study. There are

three polyhedra leading to manifolds XFi without a section: F1, F2 and F4, see sec-

tions 3.2.1, 3.2.2 and 3.2.3, respectively. They yield the discrete gauge groups in F-theory.

For three polyhedra we find associated gauge groups with Mordell-Weil torsion, giving rise

to non-simply connected gauge groups: F13, F15 and F16, see sections 3.6.1, 3.6.2 and 3.6.3,

respectively. The analysis of the hypersurface XF3 and the corresponding effective theory

of F-theory, whose spectrum contains a charged singlet with U(1)-charge three, can be

found in section 3.3.1.

We obtain the following list of gauge groups GFi of F-theory on the XFi :

GF1 Z3 GF7 U(1)3

GF2 U(1)×Z2 GF8 SU(2)2×U(1) GF13 (SU(4)×SU(2)2)/Z2

GF3 U(1) GF9 SU(2)×U(1)2 GF14 SU(3)×SU(2)2×U(1)

GF4 SU(2)×Z4 GF10 SU(3)×SU(2) GF15 SU(2)4/Z2×U(1)

GF5 U(1)2 GF11 SU(3)×SU(2)×U(1) GF16 SU(3)3/Z3

GF6 SU(2)×U(1) GF12 SU(2)2×U(1)2

From this and as a simple consequence of (2.10), we see that there is the following rule of

thumb for computing the rank of a gauge group GFi : given a polyhedron Fi with 3 + n

integral points without the origin, we have a gauge group with total rank n.

Let us outline the structure of this section. In the first subsection 3.1 we briefly discuss

the three different representations of genus-one curves CFi realized as toric hypersurfaces:

the cubic, the biquadric and the quartic. There, we define the line bundles of the base

B in which the coefficients in these constraints have to take values in order to obtain a

genus-one fibered Calabi-Yau manifold. The functions f and g of the Weierstrass form (2.1)

for the cubic, the biquadric and the quartic can be found in appendix B. By appropriate

specializations of the coefficients, one can obtain f , g and ∆ = 4f3 + 27g2 for all toric

hypersurface fibration XFi .

In sections 3.2 to 3.6 we proceed to describe in detail each Calabi-Yau manifold XFi .

In each case we first discuss the genus-one curve CFi realized as a toric hypersurface in PFi .
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We then construct the corresponding toric hypersurface fibration XFi and analyze its codi-

mension one and two singularities from which we extract the non-Abelian gauge group and

matter spectrum. If XFi has a non-trivial MW-group, we determine all its generators, their

Shioda maps and the height pairing. For genus-one fibrations, we determine their discrete

gauge groups. For completeness, we also determine the Yukawa couplings from codimen-

sion three singularities. In each case we show as a consistency check that the necessary

6D anomalies (pure Abelian, gravitational-Abelian, pure non-Abelian, non-Abelian gravi-

tational, non-Abelian-Abelian and purely gravitational) are canceled implying consistency

of the considered effective theories.

We organize the Calabi-Yau manifolds XFi into five categories: those with discrete

gauge symmetries (section 3.2), those with a gauge group of rank one and two but without

discrete gauge groups (section 3.3), those with a gauge group of rank three, whose fiber

polyhedra happen to be also self-dual (section 3.4), those with gauge groups of rank four and

five without MW-torsion (section 3.5) and those XFi with MW-torsion (section 3.6). This

arrangement is almost in perfect agreement with the labeling of the polyhedra Fi in figure 2

which facilitates the navigation through this section. We name the subsection containing

the analysis of the specific manifold XFi by its corresponding fiber polyhedron Fi.

3.1 Three basic ingredients: the cubic, biquadric and quartic

3.1.1 Constructing toric hypersurface fibrations

In this section we explain the general construction of the Calabi-Yau manifolds XFi with

toric hypersurface fiber CFi and base B. The following discussion applies to Calabi-Yau

n-folds XFi with a general (n − 1)-dimensional base B. The cases of most relevance for

F-theory and for this work are n = 3, 4. We refer to [39, 42] for more details on the

following discussion.

The starting point of the construction of the genus-one fibered Calabi-Yau manifold

XFi is the hypersurface equation (2.23) of the curve CFi . In order to obtain the equation

of XFi , the coefficients aq and the variables xi of (2.23) have to be promoted to sections

of appropriate line bundles of the base B. We determine these line bundles, by first

constructing a fibration of the 2D toric variety PFi , which is the ambient space of CFi , over

the same base B,

PFi // PBFi(D, D̃)

��
B

. (3.1)

Here PBFi(D, D̃) denotes the total space of this fibration. The structure of its fibration is

parametrized by two divisors in B, denoted by D and D̃. This can be seen by noting that

all m+ 2 coordinates xk on the fiber PFi are in general non-trivial sections of line bundles

on B. Then, we can use the (C∗)m-action of the toric variety PFi to set m variables to

transform in the trivial bundle of B. The divisors dual to the two remaining line bundles

are precisely D, D̃.
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Figure 3. Polyhedron F1 with choice of projective coordinates and its dual with corresponding

monomials.

Next we impose equation (2.23) in PFi(D, D̃). Consistency fixes the line bundles in

which the coefficients aq have to take values in terms of the two divisors D and D̃. Then,

we require (2.23) to be a section of the anti-canonical bundle K−1PBFi
, which is the Calabi-Yau

condition. In addition, equation (2.23) imposed in PBFi(D, D̃) clearly describes a genus-one

fibration over B, since for every generic point on B, the hypersurface (2.23) describes

exactly the curve CFi in PFi . The total Calabi-Yau space resulting from the fibration of the

toric hypersurface CFi is denoted by XFi in the following. It enjoys the fibration structure

CFi // XFi

��
B

. (3.2)

In principle, this procedure has to be carried out for all Calabi-Yau manifolds XFi

associated to the 16 2D toric polyhedra Fi. However, we observe that all the hypersurface

constraints of the XFi , except for XF2 and XF4 , can be obtained from the hypersurface

constraint for XF1 , after setting appropriate coefficients to zero. This is possible because

if F1 is a sub-polyhedron of Fi, then the corresponding toric variety PFi is the blow-up

of PF1 = P2 at a given number of points, with the additional rays in Fi corresponding to

the blow-up divisors. However, adding rays to the polyhedron F1 removes rays from its

dual polyhedron F ∗1 = F16. By means of (2.23), this removes coefficients from hypersurface

equation for XF1 , i.e. the hypersurface for XFi is a certain specialization of the hypersurface

of XF1 with some aq ≡ 0. We will be more explicit about this in the following subsection

(section 3.1.2).

Thus, we only have to explicitly carry out the construction of the toric hypersurfaces

separately for the two Calabi-Yau manifolds XF2 and XF4 . The details of this are given in

sections 3.1.3 and 3.1.4.

3.1.2 Fibration by cubic curves: XF1 and its specializations

We proceed to construct the Calabi-Yau manifold CF1 → XF1 → B with fiber given by the

curve CF1 in the toric variety PF1 . In addition, we argue how the Calabi-Yau manifolds

XFi , whose fiber polyhedron Fi contains F1, can be obtained from XF1 .

– 18 –



J
H
E
P
0
1
(
2
0
1
5
)
1
4
2

The polyhedron F1 and its dual are shown in figure 3. The toric variety PF1 , con-

structed using (2.22), is the well-known projective space P2. We introduce the projective

coordinates [u : v : w] on P2. In terms of these coordinates, we can read off the SR-ideal

from figure 3 as

SR = {uvw} . (3.3)

The divisor group of P2 is generated by the hyperplane class H. The Calabi-Yau onefold

in P2 is the degree three CF1 in 3H. Its defining equation, constructed using (2.23) and

figure 3, is the most general cubic

pF1 = s1u
3+s2u

2v+s3uv
2+s4v

3+s5u
2w+s6uvw+s7v

2w+s8uw
2+s9vw

2+s10w
3 , (3.4)

where the coefficients si take values in the field K.

Next, we follow the discussion of section 3.1.1 to construct the toric hypersurface

fibration XF1 . We first construct the ambient space (3.1), which in the case at hand is a

P2-fibration over the base B,

P2 // P2(S7,S9)

��
B

. (3.5)

The two divisors parametrizing this fibration are S7 and S9, cf. [39, 42]. Upon imposing

the constraint (3.4) and requiring the Calabi-Yau condition for XF1 , we see that these

two divisors are precisely the classes of the coefficients s7 and s9, respectively. Indeed, as

mentioned above, we can use the C∗-action on P2 to turn e.g. w into a section of the trivial

line bundle of the base. Then, we choose the variables u and v as sections of the bundles

u ∈ OB(S9 + [KB]) , v ∈ OB(S9 − S7) . (3.6)

This allows us to compute the anti-canonical bundle of the P2-fibration (3.5) using adjunc-

tion as

K−1P2(S7,S9) = O(3H + 2S9 − S7) . (3.7)

Finally, we impose the Calabi-Yau condition on the constraint (3.4) for XF1 which fixes the

divisor classes of the coefficients si. We summarize the divisor classes of the homogeneous

coordinates [u : v : w] and the coefficients si in the following tables:

Section Divisor Class

u H + S9 + [KB]

v H + S9 − S7
w H

Section Divisor Class

s1 3[K−1B ]− S7 − S9
s2 2[K−1B ]− S9
s3 [K−1B ] + S7 − S9
s4 2S7 − S9
s5 2[K−1B ]− S7
s6 [K−1B ]

s7 S7
s8 [K−1B ] + S9 − S7
s9 S9
s10 2S9 − S7

(3.8)
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XFi as specialized cubics

As mentioned in the previous subsection, the equations of the Calabi-Yau manifolds XFi

with i 6= 2, 4 can be expressed as specialized versions of the cubic hypersurface equa-

tion (3.4) of XF1 .

In order to find the hypersurface equation for an XFi we begin by calculating the anti-

canonical class of the fibration PBFi(D, D̃) defined in (3.1). To this end, we first note that

toric ambient spaces PFi are obtained from PF1 by a certain number of blow-ups at points

Pj . Assuming the number of blow-ups is k, we have

PFi = Bl P1,··· ,PkPF1 . (3.9)

Each blow-up adds a P1 with an associated new variable ej and divisor class Ej . From the

combinatorial point of view, this means that there is an additional C∗-action on PFi .
Next we note that the fibration PBFi(D, D̃) can be parametrized by the same base

divisors S7 and S9 as the fibration (3.5), i.e. we identify D = S7 and D̃ = S9. Indeed, this

is possible since we can use (C∗)-actions, including the new (C∗)-actions from the k blow-

ups, to make the variables w and ej transform in the trivial bundle on B while maintaining

the assignments (3.6) for u and v. Employing these results we calculate the anti-canonical

bundle of PBFi(S7,S9), using the adjunction formula, yielding

K−1PBFi (S7,S9)
= O(3H̃ − E1 − E2 − · · · − Ek + 2S9 − S7) . (3.10)

Here, H̃ denotes the pull-back H̃ = π̃∗(H) of the hyperplane class H on P2 under the

blow-down map π̃ : PFi → P2. By abuse of notation, we will denote it throughout this

work simply by H. It is to be observed that if the coefficient si is present in the constraint

of XFi , i.e. if it is not removed by the k blow-ups, its corresponding class [si] remains

unaltered from the one given in table (3.8).

This relation of the hypersurface constraints of the XFi for i 6= 2, 4 and all the bundles

entering it to the hypersurface equation (3.4) and bundles (3.8) of XF1 will facilitate our

following presentation. In particular, in the respective subsections on XFi for i 6= 2, 4 only

the classes for the variables u, v, w and ej have to be given explicitly.

3.1.3 Fibration by the biquadric: XF2

We construct the Calabi-Yau manifold CF2 → XF2 → B as the fibration of the curve CF2

in the toric variety PF2 over B. As mentioned before, its hypersurface equation cannot be

described as a cubic. Thus, XF2 has to be analyzed separately.

The polyhedron F2 and its dual are presented in figure 4. The toric variety associated

to it is PF2 = P1 × P1 and we have introduced the projective coordinates [x : t] and [y : s]

on the two P1’s, respectively. The Stanley-Reisner ideal of PF2 is given by

SR = {xt, ys} . (3.11)

There are two divisor classes on PF2 , that we denote by H1 and H2 with respective rep-

resentatives {x = 0} and {y = 0}. The Calabi-Yau onefold in PF2 is the curve CF2 in the

class 2H1 + 2H2. It is a biquadric of the form

pF2 = (b1y
2 + b2sy + b3s

2)x2 + (b5y
2 + b6sy + b7s

2)xt+ (b8y
2 + b9sy + b10s

2)t2 , (3.12)
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Figure 4. Polyhedron F2 with choice of projective coordinates and its dual with corresponding

monomials.

as can be shown using (2.23) and figure 4. Here the bi denote coefficients in the field K.

In order to find XF2 we proceed to construct PBF2
(D, D̃), the fibration of PF2 introduced

in (3.1). It is possible to consistently parametrize this fibration in terms of the same

divisor classes D = S7 and D̃ = S9 as in (3.5). In the hypersurface constraint (3.12), they

correspond to the classes of the coefficients b7 and b9 respectively.17 This will facilitate

the matching of the effective theories via Higgsings, as discussed in section 4. Next, we

use the (C∗)2-actions on PF2 to achieve that the variables x and y transform in the trivial

line bundle on B. The other two variables s and t take values in the following line bundles

on B:

t ∈ OB([K−1B ]− S9) , s ∈ OB([K−1B ]− S7) . (3.13)

With this assignment of line bundles to the coordinates on PF2 , the anti-canonical class of

PBF2
(S7,S9) is readily calculated as

K−1PBF2
= O(2H1 + 2H2 + 3[K−1B ]− S7 − S9) . (3.14)

Finally, we require that the hypersurface (3.12) is Calabi-Yau, which fixes the divisor

classes of the coefficients bi in terms of S7, S9 and [K−1B ]. In summary, we obtain that the

coordinates on PF2 and the coefficients bi have the following divisor classes:

Section Divisor Class

x H1

t H1 + [K−1B ]− S9
y H2

s H2 + [K−1B ]− S7

Section Divisor Class

b1 3[K−1B ]− S7 − S9
b2 2[K−1B ]− S9
b3 [K−1B ] + S7 − S9
b5 2[K−1B ]− S7
b6 [K−1B ]

b7 S7
b8 [K−1B ] + S9 − S7
b9 S9
b10 S9 + S7 − [K−1B ]

(3.15)

We emphasize that the classes of the coefficients bi, except for b10, agree with the classes

of si of the cubic XF1 , cf. (3.8), as expected.

17The consistency of this assignment can be seen by noting that PF2 is related to P2 by the blow-up at

x = y = 0 setting b10 = 0 and the subsequent blow-downs x = y = 1. Then, (3.12) precisely yields (3.4).
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Figure 5. Polyhedron F4 with choice of projective coordinates and its dual with corresponding

monomials where the blow-up variable e1 is suppressed.

3.1.4 Fibration by the quartic: XF4

We proceed to construct the Calabi-Yau manifold CF4 → XF4 → B with general fiber given

by the curve CF4 in the toric variety PF4 . As we have mentioned above, its hypersurface

equation is not a special case of a cubic, which requires a separate analysis of XF4 .

The polyhedron F4 and its dual polyhedron are shown in figure 5. Its associated toric

variety is PF4 = P2(1, 1, 2) and we introduce the homogeneous coordinates [X : Y : Z : e1].

The Stanley-Reisner ideal of this toric variety can be read off from figure 5 as

SR = {XY,Ze1} . (3.16)

There are two divisor classes on PF4 , that are denoted by H and E1 with representatives

{X = 0} and {e1 = 0} respectively. We note that PF4 automatically contains an exceptional

divisor E1 corresponding to the point interior to the edge of F4. The equation for the

Calabi-Yau onefold CF4 in PF4 , which is a degree two curve, is the quartic equation in the

class 4H − 2E1. It reads explicitly

pF4 = d1e
2
1X

4 + d2e
2
1X

3Y + d3e
2
1X

2Y 2 + d4e
2
1XY

3 + d5e
2
1Y

4 + d6e1X
2Z

+ d7e1XY Z + d8e1Y
2Z + d9Z

2 ,
(3.17)

as we infer from (2.23) and figure 5. The coefficients di take values in the field K.

In order to find XF4 we construct the fibration PBF4
(S7,S9), the fibration of PF4 over

B introduced in (3.1). Again, it is possible to parametrize the fibration by the identical

divisors S7 and S9 as in the fibration (3.5) relevant for the XF1 .18 As before, we can use

the two C∗-actions on PF4 to make two of its homogeneous coordinates transform in the

trivial bundles. However, it turns out that a convenient assignment of sections, avoiding

fractions, is given by

X ∈ OB(S9 − [K−1B ]) , Y ∈ OB(S9 − S7) , Z ∈ OB(S9 − [K−1B ]) . (3.18)

18We note that this assignment is a consequence of the birational map between PF4 and PF1 induced by

the blow-up at X = Z = 0, setting d5 = 0, and the blow-downs X = 1 and e1 = 1.
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We use this to compute the anti-canonical bundle on PBF4
(S7,S9) as

K−1PBF4
= O(4H − 2E1 + 3S9 − S7 − [K−1B ]) . (3.19)

Imposing the Calabi-Yau condition on the constraint (3.17), we fix the classes of all co-

efficients di. The assignments of divisor classes to the coordinates on PF4 and the di in

summary read

Section Divisor Class

X H − E1 + S9 − [K−1B ]

Y H − E1 − S7 + S9
Z 2H − E1 + S9 − [K−1B ]

e1 E1

Section Divisor Class

d1 3[K−1B ]− S7 − S9
d2 2[K−1B ]− S9
d3 [K−1B ] + S7 − S9
d4 2S7 − S9
d5 −[K−1B ] + 3S7 − S9
d6 2[K−1B ]− S7
d7 [K−1B ]

d8 S7
d9 [K−1B ]− S7 + S9

(3.20)

We emphasize that the classes of the coefficients di slightly differ from (3.8) in the cubic

XF1 due to the slightly different assignments (3.18) of classes to the coordinates.

3.2 Fibration with discrete gauge symmetry

In this section we analyze the toric hypersurface fibrations based on the fiber polyhedra F1,

F2 and F4. Since their fibrations do not have a section, but only multi-sections, they are

genus-one fibrations. We analyze the codimension one, two and three singularities of these

models, employing also their respective associated Jacobian fibrations. We show that the

effective theories of F-theory on these Calabi-Yau manifolds exhibit discrete gauge groups

and include matter that is charged only under the respective discrete group.

3.2.1 Polyhedron F1: GF1 = Z3

We consider the genus-one fibration XF1 over an arbitrary base B with genus-one fiber CF1

realized as the Calabi-Yau hypersurface in PF1 = P2. The toric data of PF1 = P2 and the

construction of the Calabi-Yau manifolds XF1 have been discussed in section 3.1.2. The

hypersurface equation for XF1 is given by (3.4) with the relevant divisor classes of the

coordinates [u : v : w] and the coefficients si summarized in (3.8).

The fibration π : XF1 → B does not have a section, but only a three-section. Thus,

XF1 is only a genus-one fibration, cf. the general discussion in section 2.1. In order to

obtain the WSF of XF1 , given the absence of sections of its fibration, we have to calculate

the associated Jacobian fibration J(XF1). The algorithm for computing J(XF1) is well

known in the mathematics literature, see for example [76], from where we calculate f

and g, given explicitly in (B.1) and (B.2), and subsequently the discriminant ∆. The

discriminant does not factorize, which shows the absence of codimension one singularities
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of XF1 and therefore, the absence of non-Abelian gauge groups in the corresponding F-

theory compactification.

The fibration XF1 has a three-section that is given by

ŝ(3) = XF1 ∩ {u = 0} : s4v
3 + s7v

2w + s9vw
2 + s10w

3 = 0 , (3.21)

as follows from the Calabi-Yau constraint (3.4). We denote its divisor class, that agrees

with H+S9+[KB], by S(3). Under the degree nine map from X1 to its Jacobian this three-

section is mapped to the canonical zero section z = 0 in the WSF of J(XF1). However,

in XF1 , the three-section ŝ(3) locally maps a point on the base B to three points on the

fiber CF1 . Globally, there exists a monodromy group that interchanges these three points,

upon moving on the base B. This fact, together with the existence of I2-fibers in XF1 at

codimension two on which the mondromy group acts non-trivially, as we present next, and

the results from Higgsing the U(1) gauge group in the effective theory associated to XF3 ,

see section 4.2, leads us to postulate the following discrete gauge group of XF1 :

GF1 = Z3 . (3.22)

In order to compute the charges of matter under this discrete group, we have to

associate a divisor class to the three-section. As certain models with multi-section are

related to models with multiple rational sections by conifold transitions, see [55, 56], a

natural proposal for such a divisor class is an expression similar to the Shioda map (2.5).

We recall the three defining properties of a Shioda map summarized on page 21 in [34].

Imposing these conditions on the divisor class associated to (3.21), we obtain the following

divisor class,

σZ3(ŝ(3)) = S(3) + [KB] +
4

3
S9 −

2

3
S7 . (3.23)

We propose that matter charges under the discrete group Z3 should be computed using this

class. In fact, we demonstrate next, that the class (3.23) allows us to compute Z3-charges

of matter-representations on XF1 , that are consistent with 6D anomaly cancellation and

the Higgsing from the model XF3 , discussed in section 4.2.

Charged and uncharged matter in XF1

We proceed with determining the codimension two singularities of the WSF of J(XF1).

This analysis is most easily carried out directly in the smooth fibration XF1 . The same

techniques presented here will also be used in a slightly modified form for the analysis of

the fibration XF2 , XF3 and XF4 . We note that the same technique has been used recently

in [54] and [56].

Finding the loci of I2-fibers using elimination ideals

We are looking for loci of B that support I2-fibers in XF1 . At these loci, the genus-one

fiber CF1 of XF1 has to degenerate into two P1’s, i.e. the hypersurface equation (3.4) has to

factor into two smooth polynomials. For a smooth cubic the only factorization with this

property is the one into a conic and a line, i.e. a factorization of (3.4) of the form

pF1

!
= s1(u+ α1v + α2w)(u2 + β1v

2 + β2w
2 + β3uv + β4vw + β5uw) , (3.24)
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Representation Multiplicity Fiber Locus

11 3
(
6[K−1

B ]2 − S2
7 + S7S9 − S2

9 + [K−1
B ](S7 + S9)

)
V (I(1))

Table 1. Charged matter representation under Z3 and corresponding codimension two fiber of XF1
.

where αj and βk are seven unknown polynomials on B. We note that we can assume

s1 6= 0, because otherwise we would obtain a locus of codimension three or higher. Making

a comparison of coefficients on both sides of (3.24), we obtain a set of constraints that

defines an ideal in the ring K[si, αj , βk], where si are the coefficients in (3.4). We denote

this ideal by I(si,α,β). We emphasize that there are two more constraints, namely nine, in

I(si,α,β,) than unknowns αj , βk, i.e. the system is over-determined. Thus, there only exists

a solution for αj , βk satisfying (3.24), if two additional constraints on the si are obeyed.

This implies that the ideal I(si,α,β,) describes a codimension two locus of the si.

In order to obtain the constraints that the si have to obey for the factorization (3.24)

to exist, we compute the elimination ideal I(si) = I(si,α,β) ∩ K[si],
19 where K[si] is the

polynomial ring only in the variables si. We compute I(si), in the following abbreviated as

I(1) ≡ I(si), explicitly using Singular [88] and obtain an ideal with 50 generators. Further-

more, we calculate its codimension in the ring K[si] to be two. Thus, its vanishing locus

V (I(1)) describes a codimension two variety in B. In summary, we have shown that the

factorization (3.24) corresponding to an I2-fiber in XF1 happens at the codimension two

locus V (I(1)) in B.

We note that (3.24) is the only type of factorization that can occur. Thus, we do not

expect any further codimension two fibers and corresponding matter representation in XF1 .

The spectrum of XF1 is summarized in table 1. Next we argue how to compute the charge

of the matter located at V (I(1)) under the discrete gauge group GF1 = Z3. Due to the

absence of a zero section on XF1 , there is no preferred curve in the I2-fiber in table 1. As

can be observed from (3.24), the two P1’s in this I2-fiber have intersection numbers one and

two with the three-section ŝ
(3)
0 . By naively applying (2.13) using the divisor class (3.23),

we compute the charges q = 1 and q = 2 for the two rational curves, respectively. Thus,

it seems that there is no meaningful way to assign a discrete charge to the matter located

at V (I(1)). However, this seeming contradiction is resolved by noting that a 6D hyper

multiplet of charge q = 1 is the same as one with charge q = −1. In addition, employing

the discrete Z3 symmetry, we have −1 = 2 mod 3, showing that a 6D hyper multiplet of

charge q = 1 under a Z3 symmetry is physically equivalent to one with charge q = 2. Thus,

the matter at V (I(1)) has charge q = 1 which is the same as q = 2 under the discrete gauge

group GF1 = Z3 .

We proceed to calculate the multiplicity of V (I(1)). Unfortunately given the size and

number of polynomials in the ideal I(1), we are unable to obtain its multiplicity geometri-

19Here we deviate from the notation in mathematics literature, where the subscripts of the elimination

ideal indicate the eliminated variables.
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Yukawa Locus

11 · 11 · 11 V (I1) ∩ V (I1) ∩ V (I1)

Table 2. Codimension three locus and corresponding Yukawa coupling for XF1
.

cally with the available computing power. Instead, we invoke the results for its multiplicity

that is obtained in section 4.2 using the Higgs transition XF3 → XF1 . It is shown in table 1

for completeness.

We complete the discussion of the matter spectrum of XF1 by calculating the number

of neutral hyper multiplets. We use (2.11) and the explicit expression for the Euler number

χ(XF1) of XF1 in (C.1) to obtain

Hneut = 12 + 11[K−1B ]2 − 3[K−1B ]S7 + 3S27 − 3[K−1B ]S9 − 3S7S9 + 3S29 . (3.25)

Employing this together with the number of vector multiplets V = 0 and the charged

spectrum in table 1 we check cancellation of the 6D gravitational anomaly in (A.1).

Yukawa couplings in XF1

We conclude this section by noting that there is only one gauge-invariant Yukawa coupling

possible, listed in table 2. Again, we cannot check for its presence explicitly due to the

complexity of the ideal I(1).
20

3.2.2 Polyhedron F2: GF2 = U(1) × Z2

Here, we analyze the genus-one fibration XF2 constructed as a fibration of the Calabi-Yau

onefold CF2 in PF2 = P1×P1. The toric data of P1×P1 and the construction of the toric hy-

persurface fibration XF2 have been presented in section 3.1.3. The hypersurface constraint

for XF2 is given in (3.12) and the relevant divisor classes are summarized in (3.15).

First, we note that the fibration π : XF2 → B does not have a section, i.e. it is a genus-

one fibration. We obtain its WSF by computing its associated Jacobian fibration J(XF2),

employing again the straightforward algorithms from the mathematics literature [76]. The

results for the functions f and g can be found in (B.3) and (B.4), from which the discrimi-

nant can be readily computed. The discriminant does not factorize, which again shows the

absence of codimension one singularities. Thus, there is no non-Abelian gauge symmetry

for this F-theory compactifcation.

The fibration of XF2 has two independent two-sections, that are given by

ŝ
(2)
0 = XF2 ∩ {x = 0} : b8y

2 + b9sy + b10s
2 = 0 ,

ŝ
(2)
1 = XF2 ∩ {y = 0} : b3x

2 + b7xt+ b10t
2 = 0 , (3.26)

where we used the hypersurface constraint (3.12) and the SR-ideal (3.11). We denote the

two corresponding divisor classes, that agree with H1 and H2, by S
(2)
0 and S

(2)
1 , respectively.

20The presence of this coupling can be deduced considering the Higgsing from XF3 to XF1 (see section 4.2).

Decomposing the states in XF3 in terms of states in XF1 , we observe that after Higgsing, the Yukawa

coupling 11 · 1112 in XF3 (see table 8) gives rise to 11 · 11 · 11 in XF3 .
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Analogous to the previous section 3.2.1, we expect a discrete Z2 gauge group associated

to the two-section S
(2)
0 , cf. the similar discussion in [55]. We will provide independent

evidence for this by the analysis in section 4.2 of the Higgsing of the effective theory of

F-theory on XF5 , that has a U(1)2 gauge group, to the one arising from XF2 .

The role of the other two-section ŝ
(2)
1 , however, is less clear in the biquadric repre-

sentation. Its meaning for F-theory is unraveled by transforming the biquadric (3.12)

defining XF2 into a cubic hypersurface and then by computing its Weierstrass form, which

is precisely the WSF of the Jacobian fibration of XF2 , as we show. This detour via the

cubic yields a direct map to the Jacobian fibration J(XF2), which allows us to follow the

two-section ŝ
(2)
1 in (3.26).

Map to the cubic in PF5 & the MW-group of J(XF2)

The curve CF2 given as the biquadric (3.12) in PF2 can be treated as the cubic in PF5 after

an appropriate change of variables. Indeed, by applying the transformation x→ x+ αt or

y → y+βs, we can set the coefficient of the monomial s2t2 (3.12) to zero for an appropriate

α or β. We note that both α and β have to involve square roots of the coefficients bi
in (3.12), i.e. the two variable transformations are only defined in a field extension. As we

will see, this field extension will only be an intermediate step, since all square roots will

drop out in the final result of our computation. After the change of variables, we obtain a

polynomial of the following form:

p̃ = (s̃1y
2 + s̃2sy + s̃3s

2)x2 + (s̃5y
2 + s̃6sy + s̃7s

2)xt+ (s̃8y
2 + s̃9sy)t2 , (3.27)

where the redefined coefficients s̃i depend on the variables bi and are explicitly given

in (B.5). We note that p̃ is precisely of the form of the cubic (3.72) in PF5 after identifying

t→ w , s→ v , x→ e2 , y → e1 , u = 1 . (3.28)

Since the curve p̃ = 0 is an elliptic curve, we can compute its WSF, in particular the

functions f and g. Inserting the explicit expressions (B.5) for the sections s̃i in (3.27)

in terms of the bi in (3.12) into the expressions for f and g, we precisely recover (B.3)

and (B.4) obtained from the WSF of the Jacobian fibration J(XF2). Most notably, all

square roots in the coefficients s̃i have dropped out, as claimed.

Next, we note that the two-section ŝ
(2)
1 in (3.26) formally maps to the section

s = 1 , t = − s̃3
s̃7

y = 0 , x = 1 , (3.29)

in (3.27). Under the identification of coordinates (3.28), this is precisely the section ŝ1
of XF5 given in (3.73). Inserting the explicit expressions (B.5) for the s̃i into the WS-

coordinates (B.9) of ŝ1, we obtain

z1 = 1 ,

x1 =
1

12
(8b1b10 + b26 − 4b5b7 + 8b3b8 − 4b2b9) ,

y1 =
1

2
(b10b2b5 − b1b10b6 + b3b6b8 − b2b7b8 − b3b5b9 + b1b7b9) .

(3.30)

– 27 –



J
H
E
P
0
1
(
2
0
1
5
)
1
4
2

We emphasize that all square roots in the coefficients bi in (B.5) have dropped out and

we obtain completely rational WS-coordinates for the two-section ŝ
(2)
1 . We double-check

that (3.30) solves the WSF of the Jacobian J(XF2).

In summary, we have shown for the first time that the associated Jacobian fibra-

tion J(XF2) exhibits a rank one MW-group of rational sections generated by the sec-

tion in (3.30), which is precisely the image of the two-section ŝ
(2)
1 in XF2 under the map

XF2 → J(XF2). This means that there is an associated Abelian gauge field in the F-theory

compactified on XF2 . We note that application of the same logic to the two-section ŝ
(2)
0 ,

which formally maps to the section ŝ2 defined in (3.73) in XF5 , does not lead to a rational

section of the Jacobian J(XF2) since its WS-coordinates (B.10) after inserting (B.5) still

contain square roots. Hence, ŝ
(2)
0 does not yield an additional U(1)-factor, but corresponds

to a discrete group Z2, as claimed.

Having proven the presence of a MW-group on J(XF2), we compute the Shioda map

of its generator. We note that the usual expression (2.5) has to be modified since ŝ
(2)
1 is

a two-section. It can be shown that the following expression obeys all conditions listed

in [34] that have to be obeyed by a Shioda map:

σ(ŝ
(2)
1 ) = S

(2)
1 − S

(2)
0 +

1

2
([KB]− S7 + S9) (3.31)

Then we obtain the corresponding height pairing, using (2.6), as

b11 = −π(σ(ŝ
(2)
1 ) · σ(ŝ

(2)
1 )) = 2[K−1B ] . (3.32)

Here, we used the following intersections

π
(
(S

(2)
0 )2) = −2([K−1B ]− S9) ,

π
(
(S

(2)
1 )2) = −2([K−1B ]− S7) , (3.33)

π
(
S
(2)
0 · S

(2)
1 ) = S7 + S9 − [K−1B ] .

The first two equalities are just a translation of the SR-ideal (3.11) into intersection rela-

tions of divisor classes on XF2 , employing (3.15) and (2.4) for n = 2. The third relation

follows by noting that according to (3.26) the two two-sections ŝ
(2)
0 and ŝ

(2)
1 intersect pre-

cisely at b10 = 0, whose class is [b10] = S7 + S9 − [K−1B ], cf. (3.15).

We conclude by summarizing the full gauge group of the theory:

GF2 = U(1)× Z2 . (3.34)

We highlight again that the U(1) corresponds to a rational section in the Jacobian fibration

J(XF2), that is the image of the two-section ŝ
(2)
1 under the degree four map XF2 → J(XF2).

As mentioned before, the discrete gauge Z2 symmetry is induced by the two-section

ŝ
(2)
0 . For the computation of charges of matter w.r.t. the Z2, we have to associate a divisor

class to it. Imposing conditions on this divisor class similar to the one that have lead to

the Shioda map (2.5) [34], we obtain

σZ2(ŝ
(2)
0 ) = S

(2)
0 + [K−1B ]− S9 . (3.35)

We use this divisor class to successfully compute the Z2-charges of matter in the following.
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Charged and uncharged matter in XF2

Now that we know the gauge group of the theory, we proceed to derive first the matter

representation and then the corresponding 6D matter multiplicities. As in section 3.2.1,

we use the elimination ideal technique to show directly the presence of three matter rep-

resentations in XF2 , namely 1(1,+), 1(1,−) and 1(0,−), where ± denote the two possible

Z2-eigenvalues. Then, we compute their multiplicities, where we also invoke the equivalent

presentation of XF2 as a quartic.

In order to find the three I2-fibers at codimension two in XF2 , we first note that there

are three different possible ways to factorize the biquadric (3.12), that correspond to the

three inequivalent ways to split its degree (2, 2) w.r.t. the classes H1 and H2 in P1 × P1,

namely as (2, 2) = (1, 1)+(1, 1), (2, 2) = (1, 0)+(1, 2) and (2, 2) = (0, 1)+(2, 1) respectively.

The first type of factorization of (3.12) corresponding to (2, 2) = (1, 1) + (1, 1) is

given by

pF2

!
= b1

[
(y + α1s)x+ (α2y + α3s)t

][
(y + β1s)x+ (β2y + β3s)t

]
. (3.36)

Clearly, both factors are bilinear in [x : t] and [y : s], respectively, as required. As before,

we can factor out b1 because it must not vanish at a codimension two locus. We note

that there are six unknown polynomials αj and βk and eight non-trivial constraints, as

can be seen by a comparison of coefficients on both sides. Thus, the ideal of constraints

is over-determined and imposes a codimension two condition on the coefficients bi for a

solution to (3.36) to exist. The elimination ideal, that we call I(1), obtained by eliminating

the unknowns αj and βk from the ideal of constraints is generated by 50 polynomials. It

is checked to be codimension two in the ring, as expected, proving the existence of the

factorization (3.36) at codimension two. We denote the zero set of I(1) by V (I(1)), which

is the geometric codimension two locus in B.

Next, we note that each curve of the I2-fiber described by (3.36) has intersection one

with both two-sections ŝ
(2)
0 and ŝ

(2)
1 . The U(1)-charge computed using (2.13) and (3.31)

is zero. We also note that the representation has charge (−) under the discrete symmetry

because the two intersection points of ŝ
(2)
0 with the fiber are interchanged under a mon-

odromy action. Formally, the charge under Z2 is computed using (2.13) together with the

divisor class (3.35), showing that both curves in the I2-fiber have Z2-charge (−). Thus,

the representation at the locus V (I(1)) is 1(0,−) as shown in table 3.

The second type of factorization of (3.12) into two polynomials of degrees (1, 0) and

(1, 2), respectively, takes the following explicit form

pF2

!
= b1

[
y + α1s

][
(y + β1s)x

2 + (β2y + β3s)xt+ (β4y + β5s)t
2
]
, (3.37)

where α1 and the βk are six unknown polynomials. We compute again the elimination

ideal, denote I(2), that is generated by eight polynomials in the bi and check that it is

codimension two in the ring. The corresponding codimension two locus in B supporting

this type of I2-fiber is denoted by V (I(2)). The intersection pattern of the two-sections

with the I2-fiber is shown in the second entry of table 3. The U(1)- and Z2-charges readily

follow as discussed before and we find the representation at this locus to be 1(1,−).
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Representation Multiplicity Fiber Locus

1(0,−) 6[K−1B ]2 + 4[K−1B ](S7 + S9)− 2S27 − 2S29 V (I(1))

1(1,−) 6[K−1B ]2 + 4[K−1B ](S9 − S7) + 2S27 − 2S29 V (I(2))

1(1,+) 6[K−1B ]2 + 4[K−1B ](S7 − S9)− 2S27 + 2S29 V (I(3))

Table 3. Charged matter representations under U(1)×Z2 and corresponding codimension two

fibers of XF2 .

Finally, the last type of factorization corresponds to a split of (3.12) into two poly-

nomials of degrees (0, 1) and (2, 1). It can be written down explicitly and takes a similar

form as (3.37). The codimension two elimination ideal corresponding to this factorization,

denoted by I(3), is generated by eight polynomials and its vanishing set is denoted by

V (I(3)). The intersection pattern of the two-sections with this type of I2-fiber is shown in

the last entry of table 3. Using the charge formula (2.13) and the Shioda map (3.31), as

well as (3.35) we show that the representation at V (I(3)) is 1(1,+).

As a confirmation of the completeness of our analysis of codimension two singularities of

XF2 supporting U(1)-charged matter, we recall that the codimension two locus supporting

all I2-singularities associated to a U(1) is given by (2.14). In the case at hand we have

to evaluate this constraint for the rational sections of J(X2) with coordinates [x1 : y1 :

z1] given in (3.30). We calculate all associated prime ideals of the obtained complete

intersection using Singular [88] and indeed find precisely the two prime ideals I(2) and

I(3) corresponding to the two representations 1(1,−) and 1(1,+) found previously using the

elimination ideal technique.

As a next step, we calculate the homology classes in B for the three codimension two

loci supporting the I2-fibers, which determine, according to section 2.3, the multiplicities

of 6D charged hyper multiplets in the corresponding representations. We begin with the

variety V (I(3)), whose multiplicity we denote by x1(1,+)
, supporting the representation

1(1,+). Its homology class is computed by taking two constraints of the ideal I(3) and

computing the homology class of the complete intersection described by them. Then, we

subtract (with their corresponding orders) those components that are inside this complete
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intersection but do not satisfy the other generators of the ideal I(3). We obtain:

x1(1,+)
= [b22b

2
10] · [b10b2b5]− 2([b2b10] · [b2b7]− [b2] · [b3]) ,

= 6[K−1B ]2 + 4[K−1B ](S7 − S9)− 2S27 + 2S29 .
(3.38)

The multiplicity of V (I(2)), denoted by x1(1,−)
, can be calculated in a similar way. It is

given in the third row of table 3. As a consistency check, we calculate the sum of both

multiplicities and it agrees with [y1] · [fz41 ] as it should, because the I(2) and I(3) are the

two associated prime ideals of (2.14) for the section (3.30).

For the computation of the multiplicity of the variety V (I(1)), denoted by x1(0,−)
,

we cannot carry out the previously mentioned algorithm, due to the size and complexity

of the ideal I(1). Instead, x1(0,−)
is obtained by first calculating the multiplicity of all

hyper multiplets charged under the discrete symmetry, namely the 1(0,−) and 1(1,−), and

then subtracting the number of hyper multiplets in the representation 1(1,−), that we

already know.

We begin by noting that the total number of charge (−) hyper multiplets under the

Z2 symmetry was calculated geometrically in [55, 56] for a genus-one fibration given by the

quartic curve in P2(1, 1, 2). Indeed, we can directly use their results since we can transform

the biquadric (3.12) to a quartic presentation. This quartic is to be obtained by taking

the discriminant of the biquadric (3.12) with respect to y. To this end, we rewrite the

biquadric in the suggestive form

p = A(x, t)y2 +B(x, t)ys+ C(x, t)s2 (3.39)

and then take the discriminant of this quadric in y (we also set s = 1). We construct a

genus-one curve as the double cover over this discriminant, which is then a quartic in [x : t]

and a new variable w of weight two of the form

w2 = B(x, t)2 − 4A(x, t)C(x, t) ≡ e0x4 + e1x
3t+ e2x

2t2 + e3xt
3 + e4t

4 . (3.40)

Here we used the conventions of [55] in the last equality. The coefficients ei can be expressed

in terms of the bi in (3.12) by a comparison of coefficients.

In this form the reason for choosing the quadric w.r.t. to y in order to construct the

quartic (3.40) is evident, because the two-section ŝ
(2)
0 = XF2 ∩ {x = 0} is mapped to

the two-section x = 0, w2 = e4t
4 in (3.40). Using the results in [55, 56], we calculate

the multiplicities of all charge (−) hyper multiplets, both 1(0,−), 1(1,−), using the one-

to-one correspondence between the loci of I2-fibers in (3.40) with the following complete

intersection, cf. equation (2.22) in [55],

{e41 − 8e0e
2
1e2 + 16e20e

2
2 − 64e30e4 = 0} ∩ {e3 = 0} . (3.41)

Its homology class is readily given as [4e1] · [e3], which has to agree as mentioned before

with the sum x1(1,−)
+ x1(0,−)

. Thus, the multiplicity x1(0,−)
follows by subtracting the

multiplicity x1(1,−)
calculated previously from [4e1] · [e3]. The result is given in the second

row of table 3.
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Yukawa Locus

1(1,−) · 1(1,+) · 1(0,−) V (I(1)) ∩ V (I(2)) ∩ V (I(3))

Table 4. Codimension three locus and corresponding Yukawa coupling for XF2 .

To complete the matter spectrum we calculate the number of neutral hyper multiplets.

Using (2.11) and the explicit formula for the Euler number of XF2 in (C.1) of appendix C,

we obtain

Hneut = 13 + 11[K−1B ]2 − 4[K−1B ]S7 + 2S27 − 4[K−1B ]S9 + 2S29 . (3.42)

Using this together with the charged matter spectrum in table 3, the number of vector

multiplets V = 1 and the height pairing (3.32) we confirm that all anomalies, including

the purely gravitational one, are canceled.

Yukawa couplings in XF2

We conclude this section by stating the geometrically realized Yukawa couplings. We

find the single Yukawa coupling in table 4, by checking explicitly that the corresponding

varieties intersect at codimension three, i.e. that the ideal I(1) ∪ I(2) ∪ I(3) is codimension

three in the ring generated by the coefficients bi.

3.2.3 Polyhedron F4: GF4 = SU(2) × Z4

In this section we study the genus one-fibration XF4 that is constructed as the toric hy-

persurface fibration of CF4 in PF4 = P2(1, 1, 2). The toric data of P2(1, 1, 2) as well as the

construction of the toric hypersurface fibration XF4 have been discussed in section 3.1.4.

The hypersurface constraint of XF4 is shown in (3.17) and the relevant divisor classes can

be found in (3.20). This model has recently received a lot of attention [54–56]. Here we

provide additional insights in the nature of the Z4 discrete gauge group of F-theory on

XF4 as well as in the computation of the charges of matter under this discrete group. We

also check 6D anomaly cancellation, which requires knowledge of all multiplicities of 6D

charged and uncharged hyper multiplets.

We begin by noting that the fibration π : XF4 → B does not have a section, but

only two- and four-sections, i.e. XF4 is a genus-one fibration, see section 2.1. The three

multi-sections induced by the ambient space P2(1, 1, 2) of the fiber are

ŝ
(2)
1 = XF4 ∩ {X = 0} : d5e

2
1 + d8e1Z + d9Z

2 = 0 ,

ŝ
(2)
2 = XF4 ∩ {Y = 0} : d1e

2
1 + d6e1Z + d9Z

2 = 0 ,

ŝ
(4)
3 = XF4 ∩ {Z = 0} : d1X

4 + d2X
3Y + d3X

2Y 2 + d4XY
3 + d5Y

4 = 0 ,

(3.43)

where we used the SR-ideal (3.16). We denote the one independent divisor classes of ŝ
(2)
1

by S
(2)
1 . It agrees with H − E1 + S9 − [K−1B ] according to (3.20), where E1 is the class of

the exceptional divisor on P2(1, 1, 2).
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Figure 6. Codimension one fibers of XF4 . The crosses denote the intersections with the sections.

Since this fibration does not have a section one has to utilize its associated Jacobian

fibration J(XF4) in order to find its WSF. We readily compute the functions f and g in (2.1)

using the algorithm in [76]. From the discriminant of this WSF, we find one I2-singularity

over the divisors SbSU(2) = {d9 = 0} ∩ B in B. Along this divisor, the constraint (3.17)

factorizes as

SU(2) : pF4 |d9=0 = e1 · q3 , (3.44)

where q3 is the polynomial that remains after factoring out e1. The corresponding I2-fiber

is depicted in figure 6. Due to the absence of a zero section, there is no preferred rational

curve in this I2-fiber. Thus, a possible choice for the Cartan-divisor D1 of the SU(2) is

given by

D1 = [e1] . (3.45)

In summary, the gauge group of XF4 is given by

GF4 = SU(2)× Z4 . (3.46)

The discrete symmetry stems from the multi-sections. In order to calculate the charges

under the discrete symmetry we have to orthogonalize the SU(2) such that it is not charged

under the discrete symmetry. This is done in a similar way as for U(1)’s via the Shioda

map (2.5). For the two two-sections ŝm with m = 1, 2, we propose

σZ4(ŝ(2)m ) = S(2)
m +

1

2
D1 +

3

4
[K−1B ]− 3

4
S7 −

1

4
S9 , (3.47)

as the appropriate divisor class to compute charges under the discrete gauge group Z4.

Here we used that both two-sections intersect each node in figure 6 precisely once. For

the four-section ŝ
(4)
3 we note that the node corresponding to the simple root of SU(2) in

figure 6 is not intersected. Thus, the appropriate class for computing Z4 charges based on

ŝ
(4)
3 is

σZ4(ŝ
(4)
3 ) = S

(4)
3 +

1

2
[K−1B ]− 3

2
S7 +

1

2
S9 . (3.48)

It is straightforward to check that the divisors (3.47) and (3.48) obey all properties of a

Shioda map [34].

Next, we analyze the codimension two singularities of the WSF of J(XF4) to determine

the charged matter spectrum. We find two codimension two singularities leading to the

matter representations and the corresponding codimension two fibers in XF4 that are given
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Representation Multiplicity Fiber Locus

21
(6[K−1B ] + 2S7 − 2S9)
×([K−1B ]− S7 + S9)

V (I(1)), given by (3.49)

12
6[K−1B ]2 + 13[K−1B ]S7 − 3S27
−5[K−1B ]S9 − 2S7S9 + S29

V (I(2)), given by (3.50)

3 1 + ([K−1B ]− S7 + S9)S9−S72 Figure 6 d9 = 0

Table 5. Charged matter representations under SU(2) × Z4 and corresponding codimension two

fibers of XF4
. The adjoint matter is included for completeness.

in the first and second entry of table 5, respectively.21 We have also added the adjoint

matter at the divisor SbSU(2) = S9 for completeness. We have checked the representation

content at the two codimension two loci explicitly by computation of the Dynkin labels

using (2.12) with D1 given in (3.45) and using the charge formula (2.13) for (3.47) or (3.48).

We note that the charges calculated from the two two-sections are half the integral charges

computed from the four-section. However, both charges are physically equivalent since in

the case of the two-section we have to calculate modulo two, whereas for the four-section,

we calculate modulo four. In other words, we obtain charges in two different conventions.

Here we choose the charge convention where all discrete charges are integer, which agrees

with the charges computed using σZ4(ŝ
(4)
3 ).

The codimension two locus supporting the representation 21 is given as the following

complete intersection, that can be read off directly from the discriminant of J(XF4):

I(1) := {d9, d25d46 − d4d5d36d7 + d3d5d
2
6d

2
7 − d2d5d6d37 + d1d5d

4
7 + d24d

3
6d8 − 2d3d5d

3
6d8

− d3d4d26d7d8 + 3d2d5d
2
6d7d8 + d2d4d6d

2
7d8 − 4d1d5d6d

2
7d8 − d1d4d37d8 + d23d

2
6d

2
8

− 2d2d4d
2
6d

2
8 + 2d1d5d

2
6d

2
8 − d2d3d6d7d28 + 3d1d4d6d7d

2
8 + d1d3d

2
7d

2
8 + d22d6d

3
8

− 2d1d3d6d
3
8 − d1d2d7d38 + d21d

4
8} . (3.49)

This ideal is easily checked to be prime. The discrete charge of the SU(2) doublet can be

computed from the intersection of σZ4(ŝ
(4)
3 ) with the irreducible fiber components, which are

depicted in table 5. There one observes that the four-section intersects one node three times

21We note that on the charged matter spectrum in table 5, the Z2 subgroup of Z4 is realized as the center

of SU(2). We thank Iñaki Garćıa-Etxebarria for discussions on this subtlety.
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and another one just once. Recall again that 6D hyper multiplets with discrete charges 1

and 3 are physically equivalent since a hyper multiplet contains two half-hypers with charges

1 and −1 and charge −1 is identified with charge 3 under the discrete Z4-symmetry.

The complete intersection supporting the representation 12 is obtained by directly

searching for the loci of degeneration of the fiber of XF4 to I2. One makes a general

factorization ansatz of (3.17) and determines the ideal of constraints imposed by this

factorization [55, 56]. Then one eliminates the unknown variables introduced in this ansatz

by computation of the elimination ideal, see sections 3.2.1 and 3.2.2 for an explanation of

this technique. The obtained elimination ideal, denoted by I(2), is prime and codimension

two in the ring of coefficients di. It reads

I(2) := {(d28 − 4d5d9)
3d1 − (d5d6d

2
7d

3
8 − d5d26d48 − d4d6d7d48 + d3d6d

5
8− d25d47d9

− d23d48d9+2d4d5d
3
7d8d9+8d25d

2
6d

2
8d9+4d4d5d6d7d

2
8d9−d24d27d28d9−2d3d5d

2
7d

2
8d9

+ d24d6d
3
8d9 − d44d39 −8d3d5d6d

3
8d9 + 2d3d4d7d

3
8d9− 16d35d

2
6d

2
9− 2d24d5d

2
7d

2
9

+ 8d3d
2
5d

2
7d

2
9 − 4d24d5d6d8d

2
9 + 8d3d

2
4d5d

3
9 + 16d3d

2
5d6d8d

2
9 + 2d34d7d8d

2
9

− 8d3d4d5d7d8d
2
9 − 2d3d

2
4d

2
8d

2
9 + 8d23d5d

2
8d

2
9 − 16d23d

2
5d

3
9 − 4d25d6d

2
7d8d9),

(d28 − 4d5d9)
2d2 − (d5d

3
7d8 − 2d5d6d7d

2
8 − d4d27d28 + d4d6d

3
8 + d3d7d

3
8 − 2d34d

2
9

+ 8d25d6d7d9 − 2d4d5d
2
7d9 − 4d4d5d6d8d9 + 3d24d7d8d9 − 4d3d5d7d8d9

− 2d3d4d
2
8d9 + 8d3d4d5d

2
9)} : I7rest , (3.50)

where we have indicated the quotient by the ideal Irest := {2d4d9−d7d8, 4d5d9−d28} by “ : ”.

The multiplicity of 6D hyper multiplets in the representation 21 is computed as the

product of the classes of the two constraints in the complete intersection I(1). The mul-

tiplicity of matter in the 12 representation is more involved since the locus described by

I(2), V (I(2)), is one of three irreducible components of the complete intersection in the first

ideal in (3.50). Using the resultant technique [39] we decompose this complete intersection

into V (I(2)) + V ({s8, s9}) + 8 · V ({2d4d9 − d7d8, 4d5d9 − d28, d4d8 − 2d5d7}. This allows us

to obtain the multiplicity shown in table 5 that we double check following the arguments

in [55] explained around (3.41).

We complete the matter spectrum of XF4 by the number of neutral hyper multiplets,

which is computed from (2.11) using the Euler number of XF4 in (C.1). It reads

Hneut = 13 + 11[K−1B ]2 − 4[K−1B ]S7 + 6S27 − 4[K−1B ]S9 − 4S7S9 + 2S29 . (3.51)

Finally, we use SbSU(2) = {d9 = 0}, the charged spectrum in table 5 and (3.51) together with

the number of vector multiplets V = 1 to check that all 6D anomalies (A.1) are canceled.

We conclude this section with the computation of the Yukawa couplings. We find the

single Yukawa coupling given in table 6. In order to check that it is realized at codimension

three in B we compute the associated prime ideals of the ideal I(1) ∪ I(2). Indeed, we find

that it is codimension three in the ring, as required for the existence of the Yukawa coupling.
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Yukawa Locus

21 · 21 · 12 V (I(1)) ∩ V (I(1)) ∩ V (I(2))

Table 6. Codimension three locus and corresponding Yukawa coupling for XF4
.

Figure 7. Polyhedron F3 with a choice of projective coordinates and its dual F14 with the corre-

sponding monomials. We have set e1 = 1 for brevity of our notation. The zero section is indicated

by the dot.

3.3 Fibration with gauge groups of rank 1, 2 and no discrete gauge symmetry

In this section we analyze all toric hypersurface fibrations XFi with gauge groups of rank

one and two, but without discrete gauge symmetries. They are constructed using the fiber

polyhedra F3, F5 and F6. Apart from XF3 , that possesses a non-toric section, all other XFi

considered here can be analyzed using techniques already developed e.g. in [39, 42, 44].

3.3.1 Polyhedron F3: GF3 = U(1)

We construct a Calabi-Yau manifold, denoted XF3 , as a fibration of the toric hypersurface

in PF3 = dP1 over a base B. The polyhedron of F3 along with a choice of projective

coordinates as well as its dual polyhedron are depicted in figure 7. The coordinate e1
vanishes on the exceptional divisor E1 of dP1 and [u : v : w] are the pullback under the

blow-down map dP1 → P2 of the P2-coordinates. The SR-ideal of dP1 reads

SRF3 = {uv,we1} . (3.52)

Using (2.23) we construct the Calabi-Yau manifold XF3 as the hypersurface

pF3 = s1u
3e21 + s2u

2ve21 + s3uv
2e21 + s4v

3e21

+s5u
2we1 + s6uvwe1 + s7v

2we1 + s8uw
2 + s9vw

2 , (3.53)

in the ambient space (3.1), that in the case at hand is a dP1-fibration over B. The coordi-

nates [u : v : w : e1] and the coefficients si take values in the line bundles in (3.8).

The Calabi-Yau manifold XF3 is an elliptic fibration. This is clear because for a generic

point on B there is one marked point P0 on its fiber, which is the intersection of e1 = 0

with (3.53). This point gives rise to a section of XF3 , which we choose as the zero section.

Its generic coordinates read

ŝ0 = XF3 ∩ {e1 = 0} : [s9 : −s8 : 1 : 0] . (3.54)
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There always exists a second section of XF3 , which generates a rank one MW-group.22 We

emphasize that this second section is not toric, i.e. not given as the intersection of a toric

divisor in the fiber PF3 with the hypersurface (3.53), in contrast to the zero section (3.54).

This can be seen as follows. Without loss of generality, set e1 = 1 in (3.53) and consider

it as an elliptic curve E over a field K. Then construct the tangent tP to the point P0

which now is at [u : v : w] = [0 : 0 : 1]. It is determined by requiring that along tP both

pF3 and its first derivative vanish at P0, i.e. that P0 is a point of intersection two of E and

tP . It is described by

tP = s8u+ s9v . (3.55)

Since (3.53) is a curve of degree three, every line has to intersect it at three points. Thus,

tP = 0 intersects E at a third point, denoted by P1, which is automatically rational. It

gives rise to a rational section of XF3 , with generic coordinates

ŝ1 = XF3∩{tP = 0} : [−s9 : s8 : s1s
3
9−s4s38+s3s9s

2
8−s2s29s8 : s7s

2
8−s6s9s8+s5s

2
9] . (3.56)

Thus, the elliptic fibrationXF3 indeed has a rank one MW-group with a non-toric generator,

as claimed. The Shioda map (2.5) of the section ŝ1 reads

σ(ŝ1) = S1 − S0 + 3[KB] + S7 − 2S9 , (3.57)

where S1, S0 are the divisor classes of the rational sections ŝ1 and ŝ0.

This result allows us to compute the height pairing of the section ŝ1. We obtain

b11 = −2(3[KB] + S7 − 2S9) , (3.58)

where we employed (2.6) along with the self-intersection (2.7) for the section ŝ1 as well as

π(S1 · S0) = [z1] = 2[K−1B ] + 2S9 − S7 . (3.59)

This follows by noting that π(S0 · S1) is the locus in B where the coordinates (3.54)

and (3.56) of the two sections agree, which happens at z1 := s7s
2
8− s6s8s9 + s5s

2
9 = 0, that

is precisely the z-coordinate of ŝ1 in the WSF, cf. (3.60). The divisor class of z1 is read off

from (3.8).

Weierstrass form and gauge group

We can apply Nagell’s algorithm to the cubic (3.53) with respect to the point P0 to obtain

a birational map to its WSF. We plug the coordinates of the rational section (3.56) into

this map to obtain its coordinates in WSF,

z1 = s7s
2
8 − s6s8s9 + s5s

2
9 , x1 = s24s

6
8 + . . . = p8(s) , y1 = −s34s98 + . . . = p12(s) . (3.60)

Here p8(s) and p12(s) are two homogeneous polynomials in the coefficients si of degree

eight and twelve, respectively. We have written out only one monomial in xQ1 and yQ1 ,

22We note that this is not in contradiction with the results of [41]. There the toric Mordell-Weil group is

computed, which is indeed trivial.
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Representation Multiplicity Fiber Locus

13 S9([K−1
B ] + S9 − S7) V (I(3)) := {s8 = s9 = 0}

12

6[K−1
B ]2+[K−1

B ](4S9−5S7)

+S2
7 + 2S7S9 − 2S2

9

V (I(2)) :=

{s4s38−s3s28s9+s2s8s
2
9−s1s39

= s7s
2
8 + s5s

2
9−s6s8s9 = 0

with (s8, s9) 6= (0, 0)}

11

12[K−1
B ]2 + [K−1

B ](8S7−S9)

−4S2
7 + S7S9 − S2

9

V (I(1)) := {(3.62)}\ (V (I(2)) ∪ V (I(3)))

Table 7. Charged matter representation under U(1) and codimension two fibers of XF3 .

respectively, in order to be able to determine their divisor classes. We refer the reader

to (B.8) in appendix B for the explicit and lengthy expressions for p8(s) and p12(s).

Furthermore, we determine the functions f , g and the discriminant ∆ of the WSF

for XF3 . They are given by specializing (B.1) as s10 = 0. We observe that there is

no factorization of ∆ indicating the absence of codimension one singularities and a non-

Abelian gauge group. Thus, the full gauge group on XF3 is given by the single U(1)

associated to its rank one MW-group,

GF3 = U(1) . (3.61)

We emphasize again that the generator (3.56) of the MW-group of XF3 is not toric.

Charged and uncharged matter

Since the Calabi-Yau manifold XF3 has a non-trivial MW-group, it automatically has I2-

fibers at codimension two in B, that support U(1)-charged matter.

We first summarize the charged matter spectrum of XF3 before we discuss its deriva-

tion in detail. The full charged matter spectrum is shown in table 7, which includes the

U(1)-charges and the multiplicities of 6D charged hyper multiplets, as well as a schematic

presentation of the corresponding reducible fibers and the full expressions for the codimen-

sion two loci.

The starting point for the derivation of the matter spectrum of XF3 is, as discussed

in section 2.3, the complete intersection (2.14) in B with the WS-coordinates (3.56) of the

section ŝ1 inserted:

y1 = fz41 + 3x21 = 0 . (3.62)

We show that (3.62) is a reducible variety with three irreducible components supporting

matter with charges one, two and three. The corresponding codimension two loci are
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denoted V (I(1)), V (I(2)) and V (I(3)), respectively, with I(1), I(2) and I(3) denoting the cor-

responding prime ideals, cf. table 7. In order to strictly prove that these three varieties

are all irreducible components of the complete intersection (3.62), we have to compute all

its associated prime ideals. Unfortunately, this is unfeasible with the available computing

power and computer algebra programs, due to the high degree of the two polynomials

in (3.62). However, we explain that XF3 has three possible types of I2-fibers corresponding

to the three possible factorizations of (3.53) and that these factorization happen precisely

at the codimension two loci V (I(1)), V (I(2)) and V (I(3)). Thus, we claim that the corre-

sponding ideals I(1), I(2) and I(3) are the only associated prime ideals of (3.62). We will

further substantiate this claim by checking 6D anomaly cancellation at the end of this

section as well as by reproducing the spectrum of XF3 by Higgsing the effective theories of

XF5 and XF6 , see section 4.

We begin by analyzing the fiber at the first two codimension two loci in table 7. These

are precisely the loci where the coordinates (3.56) of the section ŝ1 are ill-defined, since

they are forbidden by the SR-ideal (3.52). This indicates, that the section ŝ1 does not

mark a point on the elliptic fiber of XF3 , but does wrap an entire P1. Since the rational

section is non-toric, determining the wrapped P1 is slightly more involved than usual, as

we demonstrate next.

First, we consider the locus V (I(3)) = {s8 = s9 = 0}, which we readily check to

obey (3.62). At this locus the constraint (3.53) factorizes as

pF3

∣∣
s8=s9=0

= e1(s1u
3e1 + s2u

2ve1 + s3uv
2e1 + s4v

3e1 + s5u
2w + s6uvw + s7v

2w) . (3.63)

Clearly, V (I(3)) is the only codimension two locus where this factorization can occur. We

immediately observe that the zero section ŝ0 defined by (3.54) has wrapped the entire

rational curve e1 = 0 in (3.63). The rational section ŝ1 can be identified at this locus by

recalling the definition of the point (3.56) as the second intersection point of the tangent

to P0 with E . However, at s8 = s9 = 0 the curve (3.63) is singular (after setting e1 = 1)

precisely at P0. Thus, every line through P0 is automatically tangential at P0. This simply

means that P1 has become the entire singular fiber at s8 = s9 = 0, since given any point

on (3.63) (for e1 = 1) we can construct a tangent at P0 that passes through that point.

Thus, at s8 = s9 = 0 the section ŝ1 wraps the rational curve described by the parenthesis

in (3.63). The resulting fiber at V (I(3)) is shown in the second column of table 7. We

readily compute using the charge formula (2.13) that the U(1) charge of the matter is

indeed q = 3 and its multiplicity is given by [s8] · [s9], which after using (3.8), yields the

result shown in table 7. We emphasize that this is the first occurrence of matter with

charge q > 2 in models with Abelian gauge symmetry in F-theory.

Second, we consider the locus V (I(2)). The complete intersection in V (I(2)) shown in

table 7 has two irreducible components, one of which given by V (I(3)), that we forbid by

requiring (s8, s9) 6= (0, 0), and a second one described by a prime ideal I(2) with ten genera-

tors.23 The variety V (I(2)) supports matter of charge two. We can check this locally by solv-

ing the complete intersection inside V (I(2)) e.g. for s3 and s6 and by plugging this solution

23As all prime ideals in this work, it is computed by the primary decomposition function in Singular [88].

– 39 –



J
H
E
P
0
1
(
2
0
1
5
)
1
4
2

into (3.53). Indeed, the fiber splits into a line and a non-singular quadric q2(e1u, e1v, w),

pF3 → (s8u+ s9v)q2(e1u, e1v, w) . (3.64)

Furthermore, we prove that V (I(2)) is the only locus that can yield an I2-fiber of this type

by computing the elimination ideal of the ideal of constraints necessary for the factoriza-

tion (3.64). We see that the zero section (3.54) is well-defined at V (I(2)) and passes through

the line. However, the rational section (3.56) is ill-defined. This is clear because the line

in (3.64) is precisely the tangent tP at P0 defined in (3.55) and since the section ŝ1 is defined

as the intersection of tP with E . Thus, the section ŝ1 at V (I(2)) wraps the entire rational

curve given by the line in (3.64). Again we use (2.13) to show that the U(1)-charge is q = 2,

as claimed in table 7. The multiplicity of a 6D hyper multiplet in the representation 12 is

given by the homology class of V (I(2)). It is computed by first computing the homology

class of the complete intersection in V (I(2)) in table 7 using (3.8) and by subtracting the

class of the unwanted component V (I(3)) with the appropriate order. We determine it to

be six using the resultant technique of [39], which precisely yields the multiplicity in the

third row of table 7.

Finally, we turn to the codimension two locus V (I(1)) supporting matter of charge one.

In order for the charge formula (2.13) to produce charge one for an I2-fiber, both ŝ0 and

ŝ1 have to be regular and pass through different rational curves in the I2-fiber. This can

only happen for a factorization of (3.53) of the form (we can set e1 = 1)

pF3 → (d1u+ d2v + d3w)q2(u, v, w) , (3.65)

with q2(u, v, w) denoting a quadric without the monomial w2. We note that all coefficients

di, i = 1, 2, 3, have to be non-vanishing since d1 = 0, d2 = 0 or d3 = 0 lead to a factorization

in (3.65) that cannot happen at codimension two. We see that ŝ0 intersects the quadric

q2 = 0 and ŝ1 intersects the line, as required for matter with charge one. Furthermore, we

compute the elimination ideal, denoted by I(1), of the ideal of constraints necessary for the

factorization (3.65). It is prime and of codimension two in the ring, that means that the

factorization (3.65), indeed, occurs in codimension two in B. In addition, we check that

the complete intersection (2.14) is inside the ideal I(1) and that I(1) is in turn not contained

in I(3) or I(2), as required. Thus, we identify I(1) as the third and last associated prime

ideal of (3.62).

Under the well-motivated assumption that I(3), I(2) and I(1) are the only associated

prime ideals of (3.62), we determine the multiplicity of the 11-matter as follows. First,

we determine the orders of the loci V (I(3)) and V (I(2)) in the complete intersection (2.13).

Using the resultant technique of [39] and random integers for some of the si we find the

orders 81 and 16 for these loci, respectively. Then, we subtract their multiplicities with

these orders from the class of the complete intersection (3.62) and obtain, using (3.8), the

multiplicity in the last row of table 7.

The matter spectrum of XF3 is completed by the number of neutral hyper multiplets

Hneut. Employing (2.11) and the Euler number χ(XF3) of XF3 given in (C.1), we obtain

Hneutral = 13 + 11[K−1B ]2 − 3[K−1B ]S7 + 3S27 − 4[K−1B ]S9 − 2S7S9 + 2S29 . (3.66)
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Yukawa Locus

11 · 11 · 12 V (I(1)) ∩ V (I(2))

11 · 12 · 13 V (I(1)) ∩ V (I(2)) ∩ V (I(3))

Table 8. Codimension three loci and corresponding Yukawa couplings for XF3 .

Finally, we check anomaly-freedom of the full 6D SUGRA theory. To this end we use (3.58),

the charged spectrum in table 7 and (3.66), together with V = 1, to show that all relevant

anomalies of the 6D SUGRA theory in (A.1) are canceled.

There is another quantum consistency condition the spectrum in table 7 has to pass. In

order to have an effective theory that makes sense also in a quantum gravity model, it has

been argued in [89] that all charges allowed by Dirac quantization have to be present in the

spectrum. Indeed, it is clear from the multiplicity formulas in table 7 (e.g. by evaluation

for a concrete base B, see section 4.1.3) that if matter with a maximal charge q is present in

the spectrum, also matter with all lower charges q′ < q is automatically there, as required.

For completeness, we include a discussion of the Yukawa couplings. Forming the union

of the ideals and computing their codimension to be three in the polynomial ring K[si], we

find the two Yukawa couplings given in table 8.

An alternative perspective: XF3 from XF5 by an extremal transition

There is a second perspective on XF3 that provides an alternative explanation for the

presence of the rational point (3.56) and that will be useful for the understanding of the

Higgs transition in section 4. The following can be skipped on a first reading, as it is not

important for the main thread of this work.

We begin by noting that (3.53) becomes singular if we tune the complex structure so

that s4 ≡ 0. The induced I2-singularities occur at codimension two and can be resolved

by the blow-up in the fiber at u = w = 0. The Calabi-Yau manifold after this extremal

transition is precisely XF5 , that we discuss below in section 3.3.2. It has been shown that

XF5 has a rank two Mordell-Weil group [38, 39].

In the singular fibration with all exceptional divisors blown down, the three rational

points on the fiber CF5 are the three intersection points with the line u = 0. One point

agrees with the origin (3.54) of XF3 . We denote the other two points by Q1, Q2. This

implies that the point Q1 +Q2 is precisely given by (3.56), in the limit s4 ≡ 0. Indeed, the

group law on a cubic curve is defined so that the point Q1+Q2 is found by first constructing

the third intersection point of the line through Q1 and Q2 and then by forming the line

through that point and the origin P0. This line again has a third intersection point with the

curve, which is defined to be Q1+Q2 In our situation, the line through Q1 and Q2 is u = 0.

Thus, the third intersection point of u = 0 with E is the origin P0. Consequently, the point

Q1 +Q2 is the second intersection point of the tangent through P0 with the elliptic curve.

In fact, it can be checked by performing this addition on the fiber of XF5 explicitly that

the coordinates of the point Q1 +Q2 on the fiber of XF3 agree with the coordinates (3.56)
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after setting s4 ≡ 0. Furthermore, we compute the Weierstrass coordinates of Q1 +Q2 that

also agree with (3.60) after setting s4 ≡ 0.24

This is not surprising since we recall that the P1 in XF3 has been constructed as the

second intersection of the tangent (3.55) to P0. Thus, we see that the section ŝ1 can

be understood as the sum of the sections ŝ1 + ŝ2 on XF5 , which survives the extremal

transition XF5 ↔ XF3 , i.e. the complex structure deformation associated to switching on

s4. In contrast, the individual sections ŝ1 and ŝ2 on XF5 do not map to rational sections

on XF3 . As consequence, cf. section 4, the U(1)-charges of matter in XF3 are given by the

sum of the U(1)-charges q1 + q2 on XF5 .

We can make these statements even more explicit by mapping XF3 to XF5 . The shift

w 7→ w − s7 +
√
s27 − 4s4s9
2s9

e1v (3.67)

precisely cancels the monomial proportional to s4 in (3.53). Clearly, this requires an

extension of the field of meromorphic functions on B by the square root
√
s27 − 4s4s9. Thus,

this map is certainly not birational. After this shift, we precisely obtain the hypersurface

of XF5 , cf. (3.72) for e2 = 1. Due to the shift (3.67), the coefficients si in (3.72) have to be

replaced by

s2 7→s2 − s5
s7 +

√
s27 − 4s4s9
2s9

, s3 7→ s3 −
s4s8
s9

+
(s7s8 − s6s9)(s7 +

√
s27 − 4s4s9)

s29
,

s6 7→s6 − s8
s7 +

√
s27 − 4s4s9
s9

, s7 7→ −
√
s27 − 4s4s9 , (3.68)

with s1, s5, s8 and s9 unchanged. If we insert this variable transformation into the expres-

sions for ŝ1 or ŝ2 in (3.73), we introduce square roots, i.e. these sections do not map to

rational sections on XF3 . However, if we insert (3.68) into the coordinates for ŝ1 + ŝ2 on

XF5 , we precisely reproduce (3.56), i.e. all square roots cancel.

Furthermore, we can re-derive the Weierstrass coordinates (3.60) of ŝ1 on XF3 by first

computing the Weierstrass coordinates of Q1 +Q2 and then inserting (3.68). In addition,

f and g of the WSF of XF3 can be obtained from the WSF for XF5 by insertion of (3.68).

3.3.2 Polyhedron F5: GF5 = U(1)2

The toric hypersurface fibration XF5 is constructed as the fibration of the elliptic curve

in PF5 = dP2. As it is completely analyzed in [39, 43], we only state the results here

for completeness.

The toric diagram of F5 along with a choice of homogeneous coordinates as well as its

dual polyhedron are depicted in figure 8. In the monomials corresponding to the integral

points of F12 by (2.23) we have set ei = 1, ∀i. The toric variety PF5 is the blow-up of P2,

cf. section 3.1.2, at two points, i.e. dP2. The blow-up map reads

u→ e1e2u , v → e2v , w → e1w . (3.69)

24The coordinates of Q1 + Q2 in WSF are obtained by inserting its coordinates into the birational map

from XF5 to its WSF. We note that the result agrees with the WS-coordinates of Q1 +(−Q2), not Q1 +Q2,

where ‘+’ denotes here the addition in the WSF of XF5 .
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Figure 8. The toric diagram of polyhedron F5 (dP2) and its dual. The zero section is indicated

by the dot.

The homogeneous coordinates on dP2 after this blow-up are [u : v : w : e1 : e2] and are

sections in line bundles associated to the divisors classes

Section Divisor class

u H − E1 − E2 + S9 + [KB]

v H − E2 + S9 − S7
w H − E1

e1 E1

e2 E2

(3.70)

The Stanley-Reisner ideal of PF5 is given by

SR = {we2, wu, ve1, e2e1, vu} . (3.71)

By use of (2.23) the hypersurface equation for XF5 in the dP2-fibration (3.1) is given by

pF5 = s1e
2
2e

2
1u

3 + s2e
2
2e1u

2v + s3e
2
2uv

2 + s5e2e
2
1u

2w

+s6e2e1uvw + s7e2v
2w + s8e

2
1uw

2 + s9e1vw
2 , (3.72)

where the sections si take values in the line bundles shown in (3.8). We see that (3.72) can

also be obtained from (3.4) by the specialization s4 = s10 = 0 and the map (3.69).

There are three rational sections of the fibration of XF5 with the coordinates

ŝ0 = XF5 ∩ {e2 = 0} : [s9 : −s8 : 1 : 1 : 0] ,

ŝ1 = XF5 ∩ {e1 = 0} : [s7 : 1 : −s3 : 0 : 1] ,

ŝ2 = XF5 ∩ {u = 0} : [0 : 1 : 1 : s7 : −s9] ,
(3.73)

where we choose ŝ0 as the zero section.

The Weierstrass form (2.1) of (3.72) can be computed using Nagell’s algorithm. The

WS-coordinates of the sections ŝ1 and ŝ2 are given by (B.9) and (B.10), respectively. The

functions f and g are given by (B.1) and (B.2), respectively, after setting s4 = s10 =

0. After using this to calculate the discriminant we do not find any codimension one

singularities. Then the total gauge group of XF5 is

GF5 = U(1)2 . (3.74)
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Figure 9. Polyhedron F6 and its dual F11. The zero section is indicated by the dot.

Thus, the corresponding Shioda maps (2.5) for ŝ1 and ŝ2 read

σ(ŝ1) = (S1 − S0 − [K−1B ]) ,

σ(ŝ2) = (S2 − S0 − [K−1B ]− [s9]) ,
(3.75)

which allows us to compute the corresponding height pairing (2.6) as

bmn =

(
2[K−1B ] [K−1B ] + S9 − S7

[K−1B ] + S9 − S7 2[K−1B ] + 2S9

)
mn

. (3.76)

To determine the 6D spectrum of charged hyper multiplets we analyze the codimension

two singularities of the WSF of XF5 . There are six singularities leading to the matter repre-

sentations and the corresponding codimension two fibers in XF5 given in the first and third

column of table 9. The detailed derivation of these results can be found in [38, 39, 43, 44].

We complete the matter spectrum of XF5 by the number of neutral hyper multiplets,

which is computed from (2.11) using the Euler number (C.1). It reads

Hneut = 14 + 11[K−1B ]2 − 4[K−1B ]S7 + 2S27 − 4[K−1B ]S9 − S7S9 + 2S29 . (3.77)

The number T of tensor multiplets is given by (2.17) and the number of vector multiplets

is V = 2. Using the above results it can be checked that all 6D anomalies are canceled.

Finally we summarize the codimension three singularities of the WSF of XF5 . This leads

to the Yukawa points given in table 10, see [42].

3.3.3 Polyhedron F6: GF6 = SU(2) × U(1)

We consider an elliptically fibered Calabi-Yau manifold XF6 with an arbitrary base B and

general elliptic fiber given by the elliptic curve E in PF6 . The toric data of PF6 is summarized

in figure 9, where the polyhedron F6 along with a choice of homogeneous coordinates as

well as its dual polyhedron F11 are shown. For brevity, we have set ei = 1, ∀i, in the

monomials that are associated to the integral points of F11 by (2.23). We note that PF6 is

the blow-up of P2, cf. section 3.1.2, at two points, defined by

u→ e1e
2
2u , v → e1e2v . (3.78)
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Representation Multiplicity Fiber Locus

1(1,−1) S7([K−1
B ] + S7 − S9) V (I(1)) := {s3 = s7 = 0}

1(1,0)

6[K−1
B ]2 + [K−1

B ](4S7 − 5S9)

−2S2
7 + S7S9 + S2

9

V (I(2)) := {s2s27 + s23s9 − s3s6s7 = 0

s5s3s7 − s23s8 − s27s1 = 0}\V (I(1))

1(−1,−2) S9([K−1
B ]− S7 + S9) V (I(3)) := {s8 = s9 = 0}

1(−1,−1)

6[K−1
B ]2 + [K−1

B ](−5S7 + 4S9)

+S2
7 + S7S9 − 2S2

9

V (I(4)) := {s2s8s9 − s3s
2
8 − s29s1 = 0

s5s
2
9 − s6s8s9 + s28s7 = 0}\(V (I(3))

1(0,2) S7S9 V (I(5)) := {s9 = s7 = 0}

1(0,1)

6[K−1
B ]2 + [K−1

B ](4S7 + 4S9)

−2S2
7 − 2S2

9

V (I(6)) := {s1s49s27 + (s3s
2
9 + s7

×(−s6s9 + s8s7))(s3s8s
2
9 + s7

×(−s6s8s9 + s28s7 + s29s5)) = 0

s2s
3
9s

2
7 + s23s

4
9 − s3s6s

3
9s7

−s37(−s6s8s9 + s28s7 + s29s5) = 0}
\(V (I(1)) ∪ V (I(3)) ∪ V (I(4) ∪ V (I(5)))

Table 9. Charged matter representations under U(1)2 and corresponding codimension two fibers

of XF5 .

The homogeneous coordinates on the fiber after this blow-up are [u : v : w : e1 : e2] and

take values in the line bundles associated to the following divisor classes:

Section Divisor class

u H − E1 − E2 + S9 + [KB]

v H − E1 − S7 + S9
w H

e1 E1 − E2

e2 E2

(3.79)
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Yukawa Locus

1(−1,−2) · 1(0,2) · 1(1,0) s7 = s8 = s9 = 0

1(0,2) · 1(1,−1) · 1(−1,−1) s3 = s7 = s9 = 0

1(−1,−1) · 1(1,0) · 1(0,1) V (I(2)) ∪ V (I(4)) ∪ V (I(6))

1(1,−1) · 1(1,0) · 1(0,1) V (I(1)) ∪ V (I(2)) ∪ V (I(6))

1(−1,−1) · 1(−1,−2) · 1(0,1) V (I(3)) ∪ V (I(4)) ∪ V (I(6))

1(0,1) · 1(0,1) · 1(0,2) s7 = s9 = 4s1s3s8 − s3s25 + s2s5s6 − s1s26 − s22s8 = 0

Table 10. Codimension three loci and corresponding Yukawa couplings for polyhedron F5. For

the complicated loci we refer to the literature [42, 43]

Here H denotes the pullback of the hyperplane class on P2 and the Ei are the exceptional

divisors of the blow-up (3.78). The Stanley-Reisner ideal of PF6 then reads

SR = {uv, ue1, we1, we2, ve2} . (3.80)

Employing (2.23) the hypersurface equation for XF6 in the PF6-fibration (3.1) is

pF6 = s1e
2
1e

4
2u

3 + s2e
2
1e

3
2u

2v + s3e
2
1e

2
2uv

2 + s4e
2
1e2v

3

+s5e1e
2
2u

2w + s6e1e2uvw + s7e1v
2w + s8uw

2 , (3.81)

where the sections si take values in the line bundles shown in (3.8). We note that (3.81) is

readily obtained from (3.4) by the specialization s9 = s10 = 0 and the map (3.78).

There are two rational sections of the fibration of XF6 . Their coordinates are

ŝ0 = XF6 ∩ {e2 = 0} : [−s7 : 1 : s8 : 1 : 0] ,

ŝ1 = XF6 ∩ {u = 0} : [0 : 1 : s4 : 1 : −s7] ,
(3.82)

where we choose ŝ0 as the zero section. The corresponding points on E are denoted P0 and

P1, respectively.

We compute the Weierstrass form (2.1) of (3.81) using Nagell’s algorithm. The WS-

coordinates of the section ŝ1 are given by (B.8) after setting s9 = 0. Furthermore, the

functions f and g take the form of (B.1) and (B.2), respectively, after setting s9 = s10 = 0.

From this the discriminant ∆ is readily computed. This allows us to find all codimension

one singularities of the WSF of XF6 . We find one I2-singularity over the divisor SbSU(2) =

{s8 = 0} ∩B in B. Along this divisor the constraint (3.81) factorizes as

SU(2) : pF6 |s8=0 = e1 · q3 , (3.83)

where q3 is the polynomial that remains after factoring out e1. This is clearly an I2-fiber,

cf. figure 10, giving rise to an SU(2) gauge group. In summary, the gauge group of XF6 is

GF6 = SU(2)×U(1) . (3.84)
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Figure 10. Codimension one fiber of XF6
at s8 = 0 in B. The crosses denote the intersections

with the two sections.

The rational curve of the I2-fiber in figure 10 that is intersected by the zero section

ŝ0 is the affine node and the other rational curve, c−α1 , corresponds to the simple root of

SU(2). Thus, the class of the SU(2) Cartan divisor in XF6 , which is the fibration of c−α1

over SbSU(2), reads

D1 = [s8]− [e1] . (3.85)

This can be seen by noting that [s8] is the class of the complete I2-fiber fibered over the

base divisor SbSU(2), whereas [e1] is the class of the affine node fibered over SbSU(2).

With these results, we compute the Shioda map (2.5) of the section ŝ1 as

σ(ŝ1) = S1 − S0 + [KB]− S7 +
1

2
D1 . (3.86)

Here S0, S1 denote the divisor classes of the sections ŝ0, ŝ1, respectively, and we use

S1 · c−α1 = 1 , (3.87)

which can be deduced from figure 10. Using (3.86), we compute the height pairing (2.6),

b11 =
3

2
[K−1B ] +

5

2
S7 −

1

2
S9 , (3.88)

where we use (2.7) as well as

π(S1 · S0) = S7 , (3.89)

that follows since the coordinates (3.82) of the two sections agree at s7 = 0.

Next, we analyze the codimension two singularities of the WSF of XF6 to determine the

charged matter spectrum. Here, the corresponding representations under the gauge group

are determined following the general procedure outlined in section 2.1 for the computation

of Dynkin labels and U(1)-charges. We find five codimension two singularities. Four of

these lead to the matter representations and the corresponding codimension two fibers in

XF6 given in the first and third column of table 11, respectively. At the remaining locus

s8 = s26 − 4s5s7 = 0, the fiber is of Type III , i.e. it is a degenerate version of the I2-fiber

in figure 10 with the two P1’s intersecting in one point. Thus it does not support any

additional matter.

The spectrum of charged singlets is determined starting from the complete intersec-

tion (2.14) for the section ŝ1, see (3.90) for its explicit expression. By computing its
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Representation Multiplicity Fiber Locus

2−3/2 S7([K−1
B ]− S7 + S9) V (I(1)) := {s8 = s7 = 0}

21/2

([K−1
B ]− S7 + S9)

×(6[K−1
B ]− 2S9 + S7)

V (I(2)) :=

{s8 = s24s
3
5 − s3s4s

2
5s6 + s2s4s5s

2
6

−s1s4s36 + s23s
2
5s7 − 2s2s4s

2
5s7

−s2s3s5s6s7 + 3s1s4s5s6s7

+s1s3s
2
6s7 + s22s5s

2
7 − 2s1s3s5s

2
7

−s1s2s6s27 + s21s
3
7 = 0}

12 S7(−S9 + 2S7) V (I(3)) := {s4 = s7 = 0}

11

6[K−1
B ]2 + 13[K−1

B ]S7 − 3S2
7

−5[K−1
B ]S9 − 2S7S9 + S2

9

V (I(4)) :=

{yQ = fz4Q + 3x2
Q = 0}

\(V (I(1)) ∪ V (I(3)))

with xQ, yQ, f given in (3.90)

30 1 + ([K−1
B ]− S7 + S9) (−S7+S9)

2
Figure 10 s8 = 0

Table 11. Charged matter representations under SU(2)×U(1) and corresponding codimension two

fibers of XF6
. The adjoint matter is included for completeness.

primary decomposition, we find two associated prime ideals, denoted I(3) and I(4), corre-

sponding to two different matter representations 12 and 11. We observe that the ideal

I(3) describes precisely the locus, where the section 3.82 is ill-defined and has to acquire a

fiber component.

There is one subtlety since the constraint (3.81) does not factorize further at the locus

V (I(2)). In order to see the I3-fiber of the representation 21/2 we have to compute the

associated prime ideals of (3.81) at the locus V (I(2)). Indeed, we find three prime ideals

with the right intersections and, they thus, correspond to the three irreducible components

of an I3-fiber. Two fiber components are described by prime ideals generated by more than

three constraints.

The multiplicities of the charged hyper multiplets are presented in table 11. These have

been computed following section 2.3. For the case of the representations 2−3/2, 21/2 and 12,

the multiplicities can be directly computed from (3.8) and table 11, as the corresponding

varieties V (I(1)), V (I(2)) and V (I(3)) are irreducible complete intersections. In contrast,

V (I(4)) supporting the 11-matter is not a complete intersection. However, note that the

varieties V (I(4)), V (I(1)) and V (I(3)) are the three irreducible components of the complete
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Yukawa Locus

2−3/2 · 21/2 · 11

s7 = s8 = 0

s4s
3
5 − s3s25s6 + s2s5s

2
6 − s1s36 = 0

2−3/2 · 21/2 · 12 s4 = s7 = s8 = 0

11 · 11 · 12

s4 = s7 = 0

s3s
2
5 − s2s5s6 + s1s

2
6 + s22s8 − 4s1s3s8 = 0

21/2 · 21/2 · 11 V (I(2)) ∩ V (I(2)) ∩ V (I(4))

Table 12. Codimension three loci and corresponding Yukawa couplings for XF6
.

intersection (2.14) for the section ŝ1. Using its WS-coordinates, given by (B.8) for s9 = 0,

it reads

y1 = s4s
2
6s

2
7 − s4s5s37 − s3s6s37 + s2s

4
7 − 3s24s6s7s8 + 2s3s4s

2
7s8 + 2s34s

2
8 = 0 ,

fz41 + 3x21 = −12s34s6s7s
2
8 + 6s44s

3
8 + s24s

2
7s8(7s

2
6 − 4s5s7 + 8s3s8) + s57(−s2s6 + 2s1s7)

+s47(s3(s
2
6 − 2s5s7) + 2s23s8) + s4s

3
7(−s36 + 3s5s6s7 − 8s3s6s8 + 2s2s7s8) = 0 .

(3.90)

Thus, the homology class of this complete intersection minus the classes of V (I(1)) and

V (I(3)) (with their respective orders inside (3.90)) yields the multiplicity of the 11-matter.

The spectrum of charged matter is completed by the matter in the adjoint represen-

tation 30 given in the last row of table 11. We recall that it does not originate from

codimension two fibers of XF6 , but is present if the divisor SbSU(2) is a higher genus curve in

B, cf. section 2.3. The multiplicity of charged hyper multiplets in the adjoint is calculated

using (2.8).

We complete the matter spectrum of XF6 by the number of neutral hyper multiplets,

which is computed from (2.11) using the Euler number (C.1) of XF6 . It reads

Hneut = 14 + 11[K−1B ]2 − 4[K−1B ]S7 + 4S27 − 4[K−1B ]S9 − 3S7S9 + 2S29 . (3.91)

The number T of tensor multiplets is given by (2.17) and we have V = 4. Finally, we use

SbSU(2) = {s8 = 0}, (3.88), the charged spectrum in table 11 and (3.91) to check, following

appendix A, that all 6D anomalies are canceled.

We conclude this section by analyzing codimension three singularities of the WSF of

XF6 . This determines the Yukawa points in a compactification to 4D. All geometrically

allowed Yukawa couplings of the charged matter spectrum of XF6 are given in table 12. In

order to check the last Yukawa coupling in table 12, we compute the minimal associated

primes of I(2) ∪ I(4). Indeed, it has a codimension three associated prime, which confirms

the presence of the Yukawa coupling. We emphasize that all Yukawa couplings allowed by

gauge symmetry are indeed realized.
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Figure 11. The toric diagram of polyhedron F7 and its dual. The zero section is indicated by

the dot.

3.4 Fibrations with gauge groups of rank 3: selfdual polyhedra

In the following section we analyze all toric hypersurface fibrations constructed from the

four self-dual polyhedra F7, F8, F9 and F10. The rank of the gauge group of all these

models is three and the rank of the MW-group assumes all values from zero to three. We

encounter one novelty in the analysis of codimension two fibers in XF8 and XF10 . There

we find matter representations from non-split fibers at codimension two. The Calabi-Yau

manifold XF10 is also a generalization of the Tate form, allowing for non-trivial coefficients

of the monomials x3 and y2. The vanishing loci of these coefficients support SU(2) and

SU(3) gauge groups, respectively.

3.4.1 Polyhedron F7: GF7 = U(1)3

We consider the elliptically fibered Calabi-Yau manifold XF7 with base B and general

elliptic fiber given by the elliptic curve E in PF7 . The toric diagram of PF7 = dP3 is depicted

in figure 11, where the polyhedron F7 along with a choice of homogeneous coordinates as

well as its dual polyhedron F7 are shown. For brevity, we have set ei = 1, ∀i, in the

monomials associated to the integral points in the dual polyhedron by (2.23). The toric

variety PF7 is the del Pezzo surface dP3, that is the blow-up of P2, cf. section 3.1.2, at three

points with blow-down map defined by

u→ e1e3u , w → e1e2w , v → e2e3v . (3.92)

The homogeneous coordinates on the fiber after this blow-up are [u : v : w : e1 : e2 : e3]

and take values in the line bundles associated to the following divisor classes:

Section Divisor class

u H − E1 − E3 + S9 + [KB]

v H − E2 − E3 + S9 − S7
w H − E1 − E2

e1 E1

e2 E2

e3 E3

(3.93)

The Stanley-Reisner ideal of PF7 is given by

SR = {uw, ue2, uv, e1e2, e1v, e1e3, wv, we3, e2e3} . (3.94)
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Using (2.23) the hypersurface equation forXF7 in the ambient space of the P7-fibration (3.1)

is obtained as

pF7 = s2e1e
2
3u

2v + s3e2e
2
3uv

2 + s5e
2
1e3u

2w + s6e1e2e3uvw

+s7e
2
2e3v

2w + s8e
2
1e2uw

2 + s9e1e
2
2w

2v . (3.95)

Here the sections si take values in the line bundles shown in (3.8). We observe that (3.95)

can be obtained from (3.4) by the specialization s1 = s4 = s10 = 0 and the map (3.92).

In total there are six rational sections of the elliptic fibration of XF7 with four of them

being linearly independent [41]. Their coordinates are

ŝ0 = XF7 ∩ {u = 0} :[0 : 1 : 1 : s7 : 1 : −s9] ,
ŝ1 = XF7 ∩ {e1 = 0} :[s7 : 1 : −s3 : 0 : 1 : 1] ,

ŝ2 = XF7 ∩ {e2 = 0} :[1 : s5 : −s2 : 1 : 0 : 1] ,

ŝ3 = XF7 ∩ {e3 = 0} :[s9 : −s8 : 1 : 1 : 1 : 0] ,

XF7 ∩ {v = 0} :[1 : 0 : 1 : 1 : s5 : −s8] ,
XF7 ∩ {w = 0} :[1 : 1 : 0 : s3 : −s2 : 1] ,

(3.96)

where we choose ŝ0 as the zero section and the sections ŝm, m = 1, 2, 3, as the generators

of the MW-group of XF7 .

Using Nagell’s algorithm we compute the Weierstrass form (2.1) of (3.95). The WS-

coordinates of the section ŝ1, ŝ2 and ŝ3 are given by (B.11), (B.12) and (B.13), respectively.

Furthermore, we can obtain the functions f and g from (B.1) and (B.2), respectively, by

setting s1 = s4 = s10 = 0. Since we do not find any codimension one singularity the total

gauge group of XF7 is

GF7 = U(1)3 . (3.97)

Thus we compute the Shioda map (2.5) of all rational sections ŝm, m = 1, 2, 3, as

σ(ŝm) = Sm − S0 + [KB]− π(Sm · S0) , (3.98)

where we use the following intersection relations:

π(S1 · S0) =S7 , π(S2 · S0) = 0 , π(S3 · S0) =S9 ,
π(S1 · S2) = 0 , π(S1 · S3) = 0 , π(S2 · S3) = 0 .

(3.99)

Using (3.98) and these intersection relations, together with (2.7), we compute the height

pairing (2.6) as

bmn = −π(σ(ŝm)σ(ŝn)) =


2[K−1B ] + 2S7 [K−1B ] + S7 [K−1B ] + S7 + S9

[K−1B ] + S7 2[K−1B ] [K−1B ] + S9

[K−1B ] + S7 + S9 [K−1B ] + S9 2[K−1B ] + 2S9


mn

. (3.100)

Next, we analyze the codimension two singularities of the WSF of XF7 to determine

the charged matter spectrum. We find ten codimension two singularities, which lead to the
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matter representations and the corresponding codimension two fibers in XF7 given in the

first and third column of table 13, respectively. Given all these codimension two fibers and

the positions of the rational sections, we readily compute the U(1)-charges using (2.13).

Here, the starting point of the analysis, that has led to the complete charged matter

spectrum in table 13, are the three complete intersections (2.14) evaluated for the three

rational sections ŝ1, ŝ2 and ŝ3. Then, we determine all their minimal associated prime ideals

using Singular [88], which precisely produces all the ten ideals I(k), shown in table 13. We

note that the varieties V (I(k)), k = 1, . . . , 6, are precisely the loci where the six rational

sections given in (3.96) are ill-defined and have to acquire a fiber component.

The multiplicities of the charged hyper multiplets are presented in table 13. These have

been computed following section 2.3 as the homology classes of the respective codimension

two varieties V (I(k)), k = 1, . . . , 10. In the cases where V (I(k)) is not a complete intersec-

tion, the multiplicities are calculated using the resultant technique similarly as described

in section 3.3.3.

To complete the matter spectrum of XF7 we compute the number of neutral hyper

multiplets from (2.11) using the Euler number χ(XF6) given in (C.1). It reads

Hneut = 15 + 7[K−1B ]2 − 2[K−1B ]S7 + 2S27 − 2[K−1B ]S9 − 2S7S9 + 2S29 . (3.101)

We note that there are T tensor multiplets and V = 3 vector multiplets. These results

together with the charged spectrum in table 13 and (3.101) as well as the height pair-

ing (3.100) allows us, following appendix A, to check cancelation of all 6D anomalies.

To conclude this section we analyze the codimension three singularities of the WSF of

XF7 . This determines the Yukawa points in a compactification to 4D. The geometrically

allowed Yukawa couplings of XF7 are given in table 14. Here we confirm the presence of each

Yukawa coupling by checking that the intersection of the relevant varieties is codimension

three in B.

3.4.2 Polyhedron F8: GF8 = SU(2)2 × U(1)

In this section, we consider the elliptically fibered Calabi-Yau manifold XF8 over an arbi-

trary base B and with general elliptic fiber given by the elliptic curve E in PF8 . In figure 12

the toric diagram of F8 and of its dual polyhedron are depicted. For brevity, we have set

ei = 1, ∀i, in the monomials that are associated by (2.23) to the integral points of the dual

polyhedron. The toric variety PF8 is P2, cf. section 3.1.2, blown-up at three non-generic

points. The blow-down map reads

u→ e1e
2
2e3u , v → e1v , w → e3w . (3.102)
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Representation Multiplicity Fiber Locus

1(1,1,0)

(2[K−1B ]− S9)
×([K−1B ] + S7 − S9)

V (I(1)) := {s2 = s3 = 0}

1(0,−1,0)
(2[K−1B ]− S9)
×(2[K−1B ]− S7)

V (I(2)) := {s2 = s5 = 0}

1(2,1,1) S7([K−1B ] + S7 − S9) V (I(3)) := {s3 = s7 = 0}

1(0,1,1)

(2[K−1B ]− S7)
×([K−1B ]− S7 + S9)

V (I(4)) := {s5 = s8 = 0}

1(−2,−1,−2) S7S9 V (I(5)) := {s7 = s9 = 0}

1(1,1,2) S9([K−1B ]− S7 + S9) V (I(6)) := {s8 = s9 = 0}

1(1,0,0)

2[K−1B ](4[K−1B ]− 2S7 + S9)
−2(2[K−1B ]− S7)
×([K−1B ]− S7 + S9)

V (I(7)) := {s3s8 − s5s7 = 0

s2s
2
8 − s5s6s8 + s25s9 = 0}

1(0,0,1)

2[K−1B ](2[K−1B ]− S7 + 2S9)
−2S9([K−1B ]− S7 + S9)

V (I(8)) := {s3s8 − s2s9 = 0

s5s
2
9 − s6s8s9 + s7s

2
8 = 0}

1(1,0,1)

2[K−1B ]([K−1B ] + S7
+S9)− 2S7S9

V (I(9)) := {s5s7 − s2s9 = 0

s3s
2
9 − s6s7s9 + s27s8 = 0}

1(1,1,1)

4[K−1B ]2 + 2[K−1B ](S7 + S9)
+2(−S27 + S7S9 − S29 )

V (I(10)) := {s22s5s7 + s23s
2
5

−s2s3s5s6 + s22s3s8 = 0

s2s
2
5s9 + s3s

2
5s8

−s2s5s6s8 + s22s
2
8 = 0}

Table 13. Charged matter representations under U(1)3 and corresponding codimension two fibers

of XF7
.
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Yukawa Locus

1(1,1,0) · 1(0,−1,0) · 1(1,0,0) s2 = s3 = s5 = 0

1(1,1,0) · 1(2,1,1) · 1(1,0,1) s2 = s3 = s7 = 0

1(1,1,0) · 1(0,0,1) · 1(1,1,1) s2 = s3 = s5s
2
9 − s6s8s9 + s7s

2
8 = 0

1(0,−1,0) · 1(0,1,1) · 1(0,0,1) s2 = s5 = s8 = 0

1(0,−1,0) · 1(1,0,1) · 1(1,1,1) s2 = s5 = s3s
2
9 − s6s7s9 + s27s8 = 0

1(2,1,1) · 1(−2,−1,−2) · 1(0,0,1) s3 = s7 = s9 = 0

1(2,1,1) · 1(1,0,0) · 1(1,1,1) s3 = s7 = s2s
2
8 − s5s6s8 + s25s9 = 0

1(0,1,1) · 1(1,1,2) · 1(1,0,1) s5 = s8 = s9 = 0

1(−2,−1,−2) · 1(1,1,2) · 1(1,0,0) s7 = s8 = s9 = 0

1(−2,−1,−2) · 1(1,0,1) · 1(1,1,1) s7 = s9 = s3s
2
5 − s2s5s6 + s22s8 = 0

1(1,1,2) · 1(0,0,1) · 1(1,1,1) s8 = s9 = s22s7 − s2s3s6 + s23s5 = 0

1(1,0,0) · 1(0,0,1) · 1(1,0,1)

s2s
3
9 + s27s

2
8 − s6s7s8s9 = 0

s3s
2
9 − s6s7s9 + s27s8 = 0

s5s
2
9 − s6s8s9 + s7s

2
8 = 0

Table 14. Codimension three loci and corresponding Yukawa couplings for XF7
.

Figure 12. The toric diagram of polyhedron F8 and its dual. The zero section is indicated by the

dot.

The homogeneous coordinates on the fiber after this blow-up are [u : v : w : e1 : e2 : e3]

and take values in the line bundles associated to the divisors given by:

Section Divisor class

u H − E1 − E2 − E3 + S9 + [KB]

v H − E1 − S7 + S9
w H − E3

e1 E1 − E2

e2 E2

e3 E3

(3.103)
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Figure 13. Codimension one fibers of XF8 at s7 = 0 and s8 = 0 in B. The crosses denote the

intersections with the two sections.

The Stanley-Reisner ideal of PF8 reads

SR = {uw, uv, ue1, e3v, e3e1, e3e2, we1, we2, ve2} . (3.104)

Using (2.23), the hypersurface equation for XF8 in the ambient space (3.1) with Fi = F8 is

pF8 = s1e
2
1e

4
2e

2
3u

3 + s2e
2
1e

3
2e3u

2v + s3e
2
1e

2
2uv

2

+s5e1e
2
2e

2
3u

2w + s6e1e2e3uvw + s7e1v
2w + s8e

2
3uw

2 , (3.105)

where the classes of the sections si are given in (3.8). We note that restriction of (3.4) as

s4 = s9 = s10 = 0 and application of the map (3.102) also leads to (3.105).

There are two rational sections of the fibration of XF8 . Their coordinates are

ŝ0 = XF8 ∩ {e2 = 0} : [s7 : 1 : 1 : −s8 : 0 : 1] ,

ŝ1 = XF8 ∩ {e3 = 0} : [s7 : 1 : −s3 : 1 : 1 : 0] ,
(3.106)

where we choose ŝ0 as the zero section.

We compute the Weierstrass form (2.1) of (3.105) using Nagell’s algorithm. The WS-

coordinates of the section ŝ1 are given by (B.8) after setting s4 = s9 = 0. Additionally, the

functions f and g take the form of (B.1) and (B.2), respectively, after setting s4 = s9 =

s10 = 0. This allows us to find all codimension one singularities of the WSF of XF8 . We

find two I2-singularities over the divisors SbSU(2)1
= {s7 = 0}∩B and SbSU(2)2

= {s8 = 0}∩B
in B. Along these divisors the constraint (3.105) factorizes as

SU(2)1 : pF8 |s7=0 = u · q2 ,
SU(2)2 : pF8 |s8=0 = e1 · q3 .

(3.107)

Here q2, q3 are the polynomials of degree n in [u : v : w] that remain after factoring out

u and e1, respectively. These are clearly I2-fibers, cf. figure 13, giving rise to two SU(2)

gauge groups. In summary, the gauge group of XF8 is

GF8 = SU(2)2 ×U(1) . (3.108)

Similar as in section 3.3.3, we obtain the classes of the SU(2) Cartan divisors in XF8

given by

D
SU(2)1
1 = [s7]− [u] , D

SU(2)2
1 = [s8]− [e1] . (3.109)
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This allows us to compute the Shioda map (2.5) of the section ŝ1 as

σ(ŝ1) = S1 − S0 + [KB] +
1

2
D

SU(2)2
1 , (3.110)

where we use that the two sections in (3.106) do not intersect, implying π(S1 ·S0) = 0, and

S1 · CSU(2)1
−α1

= 0 , S1 · CSU(2)2
−α1

= 1 , (3.111)

which follows from figure 13. We compute the height pairing (2.6) of ŝ1 using (2.7) as

b11 =
3

2
[K−1B ] +

1

2
S7 −

1

2
S9 . (3.112)

In order to determine the charged matter spectrum we analyze the codimension two sin-

gularities of the WSF of XF8 . For the singlets we compute the associated prime ideals of the

complete intersection (2.14) associated to ŝ1. We find seven codimension two singularities.

Five of these lead to the matter representations and the corresponding codimension

two fibers in XF8 given in the first and third column of table 15, respectively.

The representations under GF8 have been determined following the general procedure

outlined in section 2.3. The remaining two loci, s7 = s26−4s3s8 = 0 and s8 = s26−4s5s7 = 0,

support Type III singularities, which do not lead to additional matter.

We note the following subtlety. The fiber supporting the matter in the representation

(2,1)0 is non-split in the sense of [61].25 This means that the constraint (3.105) of the

elliptic fiber at the codimension two locus V (I(4)) does not fully factorize, as one expects,

over the field K of meromorphic functions on B. It only factorizes in a field extension

where certain square roots of the coefficients si are allowed. In fact, the fiber we obtain

at the locus V (I(4)) allowing only for factorizations in K is a line and a singular conic.

However, a singular conic describes two lines, i.e. the conic has to be factorized into two

linear constraints describing two lines. This factorization requires introducing square roots

of some combinations of the si. Geometrically, this means that these lines are interchanged

by a codimension three monodromy (that occur only on threefold bases B).26 The two lines

of the non-split fiber that are interchanged by this monodromy are the dashed P1’s in the

fourth row of table 15.

The multiplicities of the charged hyper multiplets are presented in table 15 in the

second row. These have been computed following section 2.3. Since the locus of the

representation (1,1)1 is not a complete intersection we compute its multiplicity as described

in section 3.3.3 by subtraction of the locus V (I(3)) with its appropriate order.

The number of neutral hyper multiplets completes the matter spectrum of XF8 . It is

computed from (2.11) using the Euler number (C.1) of XF8 and reads

Hneut = 15 + 11[K−1B ]2 − 5[K−1B ]S7 + 3S27 − 4[K−1B ]S9 − 2S7S9 + 2S29 . (3.113)

25We note that non-split fibers at codimension two are not classified.
26We thank Dave Morrison and Ron Donagi for explanations related to non-split codimension two fibers

and singular conics. We also thank Sakura Schäfer-Nameki and Craig Lawrie for explaining to us the

corresponding box graphs [90].
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Representation Multiplicity Fiber Locus

(2,2)−1/2 S7([K−1
B ]− S7 + S9) V (I(1) := {s7 = s8 = 0}

(1,2)1/2
2([K−1

B ]− S7 + S9)

(3[K−1
B ]− S9)

V (I(2)) := {s8 = 0

s23s
2
5 − s2s3s5s6 + s1s3s

2
6 + s22s5s7

−2s1s3s5s7 − s1s2s6s7 + s21s
2
7 = 0}

(2,1)1 S7([K−1
B ] + S7 − S9) V (I(3)) := {s3 = s7 = 0}

(2,1)0 S7(5[K−1
B ]− S7 − S9)

V (I(4)) := {s7 = 0

s3s
2
5 − s2s5s6 + s1s

2
6

+s22s8 − 4s1s3s8 = 0}

(1,1)1
6[K−1

B ]2 + 3[K−1
B ]S7

−S2
7 − 5[K−1

B ]S9 + S2
9

V (I(5)) := {s3s6 − s2s7 = 0

s7(−s2s6 + 2s1s7) + s3(s26

−2s5s7) + 2s23s8 = 0}\V (I(3))

(3,1)0 1 + S7
S7−[K−1

B
]

2
Figure 13 s7 = 0

(1,3)0
1 + S9−S7

2

×([K−1
B ]− S7 + S9)

Figure 13 s8 = 0

Table 15. Charged matter representations under SU(2)2×U(1) and corresponding codimension

two fibers of XF8
. The adjoint matter is included for completeness.

The base-dependent number T of tensor multiplets is given by (2.17) and we have V = 7.

Finally, we use this together with SbSU(2)1
= Sb7, SbSU(2)2

= Sb8, (3.112), the charged spectrum

in table 15 and (3.113) to check cancelation of all 6D anomalies in (A.1).

To obtain the Yukawa points in a compactification to 4D we analyze codimension three

singularities of the WSF of XF8 . All Yukawa couplings of the charged matter spectrum of

XF8 are given in table 16. Clearly, all relevant loci here are codimension three.

– 57 –



J
H
E
P
0
1
(
2
0
1
5
)
1
4
2

Yukawa Locus

(2,2)−1/2 · (1,2)1/2 · (2,1)1 s8 = s7 = s3 = 0

(2,2)−1/2 · (1,2)1/2 · (2,1)0 s8 = s7 = s2s
2
5 − s1s5s6 + s0s

2
6 = 0

(2,1)1 · (2,1)0 · (1,1)1 s7 = s2 = −s1s5s6 + s0s
2
6 + s21s8 = 0

(2,2)−1/2 · (2,2)−1/2 · (1,1)1 s6 = s7 = s8 = 0

(1,2)1/2 · (1,2)1/2 · (1,1)1 s8 = 0 = s1s6 − s2s5 = s1s7 − s3s5 = s2s7 − s3s6

Table 16. Codimension three loci and corresponding Yukawa couplings for XF8
.

Figure 14. The toric diagram of polyhedron F9 and its dual. The zero section is indicated by

the dot.

3.4.3 Polyhedron F9: GF9 = SU(2) × U(1)2

Here, we consider the elliptically fibered Calabi-Yau manifold XF9 over a base B and with

general elliptic fiber given by the toric hypersurface CF9 in PF9 . The toric data of PF9

is depicted in figure 14. Here the polyhedron F9 along with a choice of homogeneous

coordinates as well as its dual polyhedron is shown. For brevity, we have set ei = 1, ∀i,
in the monomials associated to the integral points of the dual by (2.23). The toric variety

PF9 is obtained from P2, cf. section 3.1.2, by the three non-generic blow-ups

u→ e1e2e3u , w → e1w , v → e2e
2
3v . (3.114)

After these blow-ups the homogeneous coordinates on the fiber are [u : v : w : e1 : e2 : e3],

which take values in the line bundles associated to the divisors:

Section Divisor class

u H − E1 − E2 + S9 + [KB]

v H − E2 − E3 + S9 − S7
w H − E1

e1 E1

e2 E2 − E3

e3 E3

(3.115)

The Stanley-Reisner ideal of PF9 then reads

SR = {uw, uv, ue3, e1v, e1e3, e1e2, we3, we2, ve2} . (3.116)
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Figure 15. Codimension one fiber of XF9
at s9 = 0 in B. The crosses denote the intersections

with the sections.

Using (2.23) the hypersurface equation for XF9 in the ambient space (3.1) with Fi = F9 is

pF9 = s1e
2
1e

2
2e3u

3 + s2e1e
2
2e

2
3u

2v + s3e
2
2e

3
3uv

2

+s5e
2
1e2u

2w + s6e1e2e3uvw + s7e2e
2
3v

2w + s9e1vw
2, (3.117)

where the divisor classes of the sections si are given in (3.8). We see that (3.117) can also

be obtained from (3.4) by the specialization s4 = s8 = s10 = 0 and the map (3.114).

There are four rational sections on XF6 with one linear relation between them. Their

coordinates are

ŝ0 = XF9 ∩ {u = 0} : [0 : 1 : 1 : s7 : −s9 : 1] ,

ŝ1 = XF9 ∩ {e3 = 0} : [1 : s5 : 1 : 1 : −s9 : 0] ,

ŝ2 = XF9 ∩ {e1 = 0} : [s7 : 1 : −s3 : 0 : 1 : 1] ,

XF9 ∩ {v = 0} : [1 : 0 : s1 : 1 : 1 : −s5] .

(3.118)

We choose ŝ0 as the zero section and ŝm, m = 1, 2, as the generators of the MW-

group of XF9 .

Employing Nagell’s algorithm we compute the Weierstrass form (2.1) of (3.117). The

WS-coordinates of the sections ŝ1 and ŝ2 are given by (B.9) and (B.10), respectively, after

setting the appropriate sections si to zero. To get the functions f and g we specialize (B.1)

and (B.2) as s4 = s8 = s10 = 0. Using f and g we can compute the discriminant ∆ to find

all codimension one singularities of the WSF of XF9 . We find one I2-singularity over the

divisor SbSU(2) = {s9 = 0} ∩B in B. Along this divisor the constraint (3.117) factorizes as

SU(2) : pF9 |s9=0 = e2 · q3 , (3.119)

where q3 is the polynomial that remains after factoring out e2. This is an I2-fiber, cf. fig-

ure 15, giving rise to an SU(2) gauge group. In summary, the gauge group of XF9 is

GF9 = SU(2)×U(1)2 . (3.120)

Similar as in section 3.3.3, we compute the divisor class of the Cartan divisor as

D1 = [s9]− [e2] = [s9]− E2 + E3 . (3.121)

Employing this we obtain the Shioda map (2.5) of the sections as

σ(ŝm) = Sm − S0 + [KB]− δm,2S7 +
1

2
δm,2D1 . (3.122)
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Here S0, Sm denote the divisor classes of the sections ŝ0, ŝm, m = 1, 2, respectively, and

we used the relation

Sm · C−α1 = δm,2 , π(S0 · Sm) = δm,2S7 , π(S1 · S2) = 0 , (3.123)

which can be deduced from figure 15 and the coordinates (3.118) of the sections, respec-

tively. Using these relations and (2.7), we compute the height pairing (2.6) of the ŝm as

bmn =

(
2[K−1B ] [K−1B ] + S7

[K−1B ] + S7 2[K−1B ] + 2S7 − 1
2S9

)
mn

. (3.124)

Turning to the charged matter spectrum we analyze the codimension two singularities

of the WSF of XF9 . The matter in non-trivial representations of the non-Abelian part

of GF9 follows directly from the discriminant with s9 = 0, whereas the charged singlets

are most easily seen from the primary decomposition of the complete intersections (2.14)

corresponding to the two sections ŝ1, ŝ2, respectively. We find eight codimension two

singularities. Seven of these lead to the matter representations and the corresponding

codimension two fibers in XF9 given in the first and third column of table 17, respectively.

Here, the corresponding representation under the gauge group are determined following

the general procedure explained in section 2.1. At the remaining locus s9 = s26−4s5s7 = 0,

the fiber is of Type III, cf. the discussion in section 3.3.3. Thus it does not support any

additional matter.

We note that at the locus V (I(2)) the linearly dependent section in (3.118) is singular.

At the locus V (I(7)) corresponding to matter in the representation 2(0,−1/2) the elliptic

curve (3.117) does not naively factor into three rational curves. To correctly derive its

splitting one needs to compute the associated prime ideals of the elliptic fiber at this locus.

We find three ideals corresponding to three rational curves, which indeed intersect as an

I3-fiber.

The multiplicities of the charged hyper multiplets are presented in table 17. These

have been computed following section 2.3. The multiplicities of V (I(3)) and V (I(4)) must

be calculated by appropriately subtracting the multiplicities of the loci V (I(1)), V (I(5)) and

V (I(6)), respectively, as described in section 3.3.3 and indicated in table 17.

We complete the matter spectrum of XF9 by the number of neutral hyper multiplets,

which is computed from (2.11) using the Euler number χ(XF9) given in (C.1). It reads

Hneut = 15 + 11[K−1B ]2 − 4[K−1B ]S7 + 2S27 − 6[K−1B ]S9 + 2S29 . (3.125)

The number of tensor multiplets T can be obtained by (2.17) and we have V = 5 vector

multiplets. To check that the anomalies are canceled we use SbSU(2) = {s9 = 0}, (3.124),

the charged spectrum in table 17 and (3.125), following the discussion in appendix A.

We conclude this section by analyzing codimension three singularities of the WSF of

XF9 determining the Yukawa points in a compactification to 4D. In table 18 all geometri-

cally allowed Yukawa couplings of the charged matter spectrum of XF9 are given.
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Representation Multiplicity Fiber Locus

1(1,2) S7([K−1B ] + S7 − S9) V (I(1)) := {s7 = s3 = 0}

1(1,0)

(2[K−1B ]− S7)

(3[K−1B ]− S7 − S9)
V (I(2)) := {s5 = s1 = 0}

1(0,1)

(3[K−1B ]− S9)

×(2[K−1B ] + 2S7 − S9)

−2S7([K−1B ] + S7 − S9)

V (I(3)) := {s2s27 + s23s9 − s3s6s7 = 0

s5s3 − s7s1 = 0}\V (I(1))

1(1,1)

6[K−1B ]2 + [K−1B ]

×(4S7 − 2S9)− 2S27

V (I(4)) := {s2s9s27 + s23s
2
9

−s3s6s9s7 − s37s5 = 0

s1s9s7 + s5(s3s9 − s7s6) = 0}
\(V (I(1)) ∪ V (I(5)) ∪ V (I(6)))

2(−1,−1/2) S9(2[K−1B ]− S7) V (I(5)) := {s9 = s5 = 0}

2(1,3/2) S7S9 V (I(6)) := {s9 = s7 = 0}

2(0,−1/2) 2S9(3[K−1B ]− S9)

V (I(7)) := {s9 = 0

s23s
2
5 + s3(−s6s2s5

+s26s1 − 2s7s5s1) + s7(s22s5

−s6s2s1 + s7s
2
1) = 0}

3(0,0) 1 + S9
(S9−[K−1

B ])

2 Figure 15 s9 = 0

Table 17. Charged matter representations under SU(2)×U(1)2 and corresponding codimension

two fibers of XF9
. The adjoint matter is included for completeness.

3.4.4 Polyhedron F10 & the generalized Tate form: GF10 = SU(3) × SU(2)

The elliptically fibered Calabi-Yau manifold XF10 is constructed as the fibration of the

elliptic curve E in PF10 = P2(1, 2, 3) over an arbitrary base B. Thus, the generic fiber in

PF10 is just the elliptic curve E in the Tate form of the WS equation (2.1), however, with

non-trivial coefficients in front of the terms x3 and y2, that are usually set to one.

The toric data of PF10 is encoded in the polyhedron F10, that is shown along with a

choice of homogeneous coordinates and together with its dual polyhedron in figure 16. In

the dual polyhedron, we have set ei = 1, ∀i, in the monomials that are associated to its
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Yukawa Locus

1(1,0) · 1(0,1) · 1(1,1) s1 = s5 = s2s
2
7 + s23s9 − s3s6s7

1(0,1) · 2(−1,−1/2) · 2(1,3/2) s5 = s7 = s9 = 0

1(1,1) · 2(−1,−1/2) · 2(0,−1/2) s5 = s9 = s31(s3s
2
6 + s1s

2
7 − s2s6s7) = 0

1(1,0) · 2(−1,−1/2) · 2(0,−1/2) s5 = s9 = s1 = 0

1(1,2) · 2(1,3/2) · 2(0,−1/2) s7 = s9 = s3 = 0

1(1,1) · 2(1,3/2) · 2(0,−1/2) s7 = s9 = s21(s3s
2
5 + s1s

2
6 − s2s5s6) = 0

2(0,−1/2) · 2(0,−1/2) · 1(0,1) s9 = s2s7 − s3s6 = s1s7 − s3s5 = s1s6 − s2s5 = 0

Table 18. Codimension three loci and corresponding Yukawa couplings for XF9
.

Figure 16. Polyhedron F10 and its dual. The zero section is indicated by the dot.

integral points by (2.23). We obtain PF10 = P2(1, 2, 3) by blowing-up P2, see section 3.1.2,

in the following way:

u→ e1e
2
2e

3
3u , v → e1e2e3v . (3.126)

After these blow-ups, the homogeneous coordinates on the fiber are [u : v : w : e1 : e2 : e3]

and take values in the line bundles associated to the divisor classes given by:

Section Divisor class

u H − E1 − E2 − E3 + S9 + [KB]

v H − E1 + S9 − S7
w H

e1 E1 − E2

e2 E2 − E3

e3 E3

(3.127)

The Stanley-Reisner ideal of PF10 reads

SR = {ue2, ue1, uv, e3e1, e3v, e3w, e2v, e2w, e1w} . (3.128)

Employing (2.23) we obtain the hypersurface equation for XF10 in the ambient space (3.53)

with general fiber given by P2(1, 2, 3) given by

pF10 = s1e
2
1e

4
2e

6
3u

3 + s2e
2
1e

3
2e

4
3u

2v + s3e
2
1e

2
2e

2
3uv

2

+s4e
2
1e2v

3 + s5e1e
2
2e

3
3u

2w + s6e1e2e3uvw + s8uw
2 . (3.129)
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Here the sections si take values in the line bundles associated to the divisor classes shown

in (3.8). The hypersurface equation (3.129) can also be obtained by the specialization

s7 = s9 = s10 = 0 and the map (3.126) applied to (3.4).There is one rational section of the

fibration of XF10 . Its coordinate is

ŝ0 = XF10 ∩ {e3 = 0} : [s4 : 1 : 1 : 1 : −s8 : 0] . (3.130)

Since this is the only section we naturally choose it as the zero section.

Comparison with the Tate form

Before proceeding with the analysis of XF10 , let us pause to compare with the standard

elliptic fibration with fiber in P2(1, 2, 3), that is the Tate form. We emphasize that (3.129)

describing XF10 can be viewed as a two-fold generalization of the standard Tate form of an

elliptic fibration studied e.g. in [2, 3, 91] , which is produced in the special case s8 = 1 and

s4 = 1.

First, we identify the usual projective coordinates [z : x : y] on P2(1, 2, 3) and the Tate

coefficients ai. They read

z ≡ e3 , x ≡ v , y ≡ w ,
a1 ≡ s6 , a2 ≡ s3 , a3 ≡ s5 , a4 ≡ s2 , a6 ≡ s1 .

(3.131)

Using this, we see that (3.129) is indeed in Tate form. However, we note that there are

two additional coefficients, namely s8 and s4, that do not have an analog in the standard

Tate form, because they correspond to the coefficients of y2 and x3, that are typically set

to one. As we see below, at the vanishing loci of these sections we find a SU(3)- and a

SU(2)-singularity, respectively. Thus, allowing for non-trivial s4, s8, is the first of the two

aforementioned generalizations of XF10 , compared to the standard Tate form.

In addition, consistently imposing s4 = s8 = 1 fixes the degrees of freedom in construct-

ing the fibration of the elliptic curve CF10 over the base B. Indeed, setting s4 = s8 = 1

requires their divisor classes to be trivial, [s8] = 0, [s4] = 0. This fixes S7 and S9 according

to (3.8) as

S7
!

= [KB] , S9
!

= 2S7 = 2[KB] . (3.132)

Thus, the fibration XF10 is completely fixed in terms of the canonical bundle KB of the

base B. As we see from (3.127), the coordinates u and v transform as a section of the

line bundles K3
B and KB, respectively. Using the C∗-action on PF10 , this is equivalent,

employing (3.131), to

x ∈ OB([K−2B ]) , y ∈ OB([K−3B ]) . (3.133)

Thus, we see that by relaxing s4 = s8 = 1, we also get more freedom, parametrized in the

divisors S7 and S9, in constructing the fibration of CF10 over a given base B. This is the

second generalization of XF10 in contrast to the standard Tate model.
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Figure 17. Codimension one fibers of XF10 . The crosses denote the intersections with the zero

section.

Higher codimension singularities & the spectrum of F-theory on XF10

We consider in the following the most general elliptic fibration XF10 with general, non-

trivial coefficients s4 and s8. In order to compute the Weierstrass form (2.1) of the general

hypersurface equation (3.129) we apply Nagell’s algorithm. After setting s7 = s9 = s10 = 0

in (B.1) and (B.2) we obtain the functions f and g. From this we compute the discriminant

∆ to find all codimension one singularities of the WSF of XF10 . We find one I2-singularity

over the divisor SbSU(2) = {s4 = 0} ∩ B in B and one I3-singularity over the divisor

SbSU(3) = {s8 = 0} ∩B in B. At the singularities the constraint (3.129) factorizes as

SU(2) : pF10 |s4=0 = u · q2 ,
SU(3) : pF10 |s8=0 = e1e2 · q3 ,

(3.134)

where q2 and q3 are the remaining polynomials after factoring out u and e1e2, respectively.

The reducible fibers at these loci are depicted in figure 17. Thus, the total gauge group of

XF10 is

GF10 = SU(3)× SU(2) . (3.135)

The divisor classes of the corresponding Cartan divisors can be calculated in a similar

fashion as in section 3.3.3. We obtain the classes

D
SU(2)
1 = [s4]− [u] , D

SU(3)
1 = [e1] , D

SU(3)
2 = [s8]− [e1]− [e2] . (3.136)

Next, we turn to the charged matter spectrum, which is obtained by analyzing the

codimension two singularities of the WSF of XF10 . All loci of codimension two singular-

ities directly follow from the behavior of the discriminant and the representation content

under the gauge group GF10 is determined following the general procedure outlined in sec-

tion 2.1. We find five codimension two singularities. Three of these lead to the matter

representations and the corresponding codimension two fibers in XF10 in the first and third

column of table 19, respectively. We note that the fiber corresponding to matter in the

representation (2,1) is non-split, cf. the discussion in 3.4.2. The two nodes that are iden-

tified by codimension three monodromies are drawn with dashed lines in table 19. At the

locus s4 = s26−4s3s8 = 0 the fiber is of Type III and at the locus s6 = s8 = 0 it is of Type

IV , i.e. the fiber is a degeneration of the I3-fiber at the locus s8 = 0, where the three P1’s

intersect in one point. Thus both loci do not support any additional matter. The matter

in the adjoint representations has been added to table 19 for completeness.
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Representation Multiplicity Fiber Locus

(2,3)
(2S7 − S9)

([K−1B ]− S7 + S9)
V (I(1)) :=

{s4 = s8 = 0}

(2,1)
(2S7 − S9)

(5[K−1B ]− S7 − S9)

V (I(2)) := {s4 = 0 =

−s3s25 + s2s5s6 − s1s26
−s22s8 + 4s1s3s8}

(1,3)
([K−1B ]− S7 + S9)
(6[K−1B ]− S7 − S9)

V (I(3)) := {s8 = 0

s4s
3
5 − s3s25s6

+s2s5s
2
6 − s1s36 = 0}

(3,1)
1 +

2S7−S9−[K−1
B ]

2

×(2S7 − S9)
Figure 17 s4 = 0

(1,8)
1 + S9−S7

2

×([K−1B ]− S7 + S9)
Figure 17 s8 = 0

Table 19. Charged matter representations under SU(3)×SU(2) and corresponding codimension

two fibers of XF10
. The adjoint matter is included for completeness.

In the second column of table 19 the multiplicities of the charged hyper multiplets are

presented. They have been computed following section 2.3, directly from the classes of all

varieties V (Ik), k = 1, 2, 3. This is straightforward, employing (3.8), as these varieties are

irreducible complete intersections.

Finally, the number of neutral hyper multiplets is computed from (2.11) using the

Euler number (C.1) of XF10 . It reads

Hneut = 15 + 11[K−1B ]2 − 6[K−1B ]S7 + 6S27 − 3[K−1B ]S9 − 6S7S9 + 3S29 . (3.137)

The number T of tensor multiplets is given by (2.17) and we have V = 11. We check that

all 6D anomalies, cf. appendix A, are canceled using SbSU(2) = {s4 = 0}∩B, SbSU(3) = {s8 =

0} ∩B, the charged spectrum in table 19 and (3.137).

We conclude this section by the analysis of codimension three singularities of the

WSF of XF10 and the corresponding Yukawa points in compactifications to 4D. We find

one possible Yukawa coupling of the charged matter spectrum of XF10 , which is given in

table 20.
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Yukawa Locus

(2,3) · (2,1) · (1,3) s4 = s8 = 0 = s3s
2
5 − s2s5s6 + s1s

2
6

(2,3) · (2,3) · (1,3) s4 = s6 = s8 = 0

(1,3) · (1,3) · (1,3) s5 = s6 = s8 = 0

Table 20. Codimension three loci and corresponding Yukawa couplings for XF10
.

Figure 18. The toric diagram of polyhedron F11 and its dual. The zero section is indicated by

the dot.

3.5 Fibrations with gauge groups of rank 4, 5 and no MW-torsion

In this section we analyze toric hypersurface fibrations based on the fiber polyhedra F11,

F12 and F14. These are the fibrations that give rise to F-theory models with simply-

connected gauge groups of maximal rank among all toric hypersurface fibrations, that is

four and five. Most outstanding here is XF11 that exhibits the gauge group and the matter

representations that coincide precisely with that of the Standard Model.

3.5.1 Polyhedron F11: GF11 = SU(3) × SU(2) × U(1)

We construct an elliptically fibered Calabi-Yau manifold XF11 with an arbitrary base B and

general elliptic fiber given by the elliptic curve E in PF11 . The toric data of PF11 is encoded

in figure 18, where the corresponding polyhedron F11, a choice of homogeneous coordinates

as well as its dual polyhedron F6 are shown. In the monomials that are associated to the

integral points of F6 according to (2.23), we have set ei = 1, ∀i, for brevity of our notation.

Starting from P2, we obtain the toric variety PF11 as a blow-up at four non-generic points.

The blow-down map reads

u→ e1e2e3e
2
4u , w → e1e4w , v → e2e

2
3v . (3.138)

After these blow-ups, the homogeneous coordinates on the fiber, given by [u : v : w : e1 :

e2 : e3 : e4], take values in the line bundles associated to the following divisor classes:

Section Divisor class

u H − E1 − E2 − E4 + S9 + [KB]

v H − E2 − E3 + S9 − S7
w H − E1

e1 E1 − E4

e2 E2 − E3

e3 E3

e4 E4

(3.139)
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The Stanley-Reisner ideal of PF11 can be read off from figure 18. It is given by

SR = {ue1, uw, uv, ue3, e4w, e4v, e4e3, e4e2, e1v, e1e3, e1e2, we3, we2, ve2} . (3.140)

We obtain the hypersurface equation of XF11 in the ambient space given by the PF11-

fibration (3.1) either by applying (2.23) or by specializing (3.4) as s4 = s7 = s8 = s10 = 0

and applying the map (3.138). It reads

pF11 = s1e
2
1e

2
2e3e

4
4u

3 + s2e1e
2
2e

2
3e

2
4u

2v + s3e
2
2e

2
3uv

2 + s5e
2
1e2e

3
4u

2w

+ s6e1e2e3e4uvw + s9e1vw
2 ,

(3.141)

where the sections si take values in the line bundles associated to the divisor classes in (3.8).

The elliptic fibration XF11 has three rational sections. Two of these are linear indepen-

dent, that means the MW-group of XF11 has rank one. The coordinates of the sections read

ŝ0 = XF11 ∩ {v = 0} : [1 : 0 : s1 : 1 : 1 : −s5 : 1] ,

XF11 ∩ {e3 = 0} : [1 : s5 : 1 : 1 : −s9 : 0 : 1] ,

ŝ1 = XF11 ∩ {e4 = 0} : [s9 : 1 : 1 : −s3 : 1 : 1 : 0] ,

(3.142)

where we choose ŝ0 as the zero section and ŝ1 as the generator of the MW-group.

The WSF (2.1) of (3.141) is computed using Nagell’s algorithm. The WS-coordinates

of the section ŝ1 are given by restricting (B.8) as s4 = s7 = s8 = 0. The functions f and g of

the WSF can be obtained by setting s4 = s7 = s8 = s10 = 0 in (B.1) and (B.2), respectively.

Using that we calculate the discriminant ∆. This allows us to find all codimension one

singularities of the WSF of XF11 . We find one I2-singularity over the divisor SbSU(2) =

{s3 = 0} ∩ B and one I3-singularity over the divisor SbSU(3) = {s9 = 0} ∩ B in B. Along

these divisors the constraint (3.141) factorizes as

SU(2) : pF11 |s3=0 = e1 · q3 ,
SU(3) : pF11 |s9=0 = e2u · q2 ,

(3.143)

where q2, q3 are the homogeneous polynomials in [u : v : w] of degree two and three that

remain after factoring out e1 and e2u. The corresponding I2- and I3-fibers are depicted in

figure 19. In summary, the total gauge group of XF11 is

GF11 = SU(3)× SU(2)×U(1) . (3.144)

Following the path of section 3.3.3 we calculate the classes of the Cartan divisors as

D
SU(2)
1 = [e1] , D

SU(3)
1 = [e2] D

SU(3)
2 = [u] . (3.145)

This enables the computation of the Shioda map (2.5) of the section ŝ1. It reads

σ(ŝ1) = S1 − S0 + [KB] +
1

2
D

SU(2)
1 +

1

3

(
D

SU(3)
1 + 2D

SU(3)
2

)
, (3.146)

which follows since the section ŝ1 does not intersect the zero section, see (3.142), implying

π(S1 · S0) = 0 , (3.147)
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Figure 19. Codimension one fibers of XF11 . The crosses denote the intersections with the two

sections.

and from the intersections of ŝ0 and ŝ1 with the codimension one fibers in figure 19, yielding

S1 · CSU(2)
−α1

= 1 , S1 · CSU(3)
−α1

= 0 , S1 · CSU(3)
−α1

= 1 . (3.148)

The data of the MW-group is completed by the height pairing (2.6) of ŝ1. It is computed as

b11 =
3

2
[K−1B ]− 1

2
S7 −

1

6
S9 , (3.149)

where we use the universal intersection relation (2.7) as well as (3.147).

Next, we turn to the codimension two singularities of the WSF of XF11 to calculate its

charged matter spectrum. Here, all representations under the gauge group are determined

using the methods outlined in section 2.1. The non-Abelian representations readily follow

from the discriminant, whereas the charged singlets are determined from the primary de-

composition of the complete intersection (2.14) for the section ŝ1. Using this, we find seven

singularities in codimension two. Five of these lead to the matter representations and the

corresponding codimension two fibers in XF11 given in the first and third column of ta-

ble 21, respectively. The remaining singularities at s3 = s26−4s2s9 = 0 and s6 = s9 = 0 are

of Type III and IV , respectively. Since they are just degenerations of the codimension one

fibers in figure 19 without additional P1’s, they do not yield further matter representations.

The adjoint representations in the last two rows of table 21 are shown for completeness.

The multiplicities of the charged hyper multiplets that are presented in table 21 are

straightforwardly computed from the homology class of all complete intersections V (I(k)),

k = 1, . . . , 5.

We complete the matter spectrum of XF11 by the number of neutral hyper multiplets,

which is computed from (2.11) using the Euler number χ(XF11) given in (C.1). It reads

Hneut = 16 + 11[K−1B ]2 − 4[K−1B ]S7 + 2S27 − 7[K−1B ]S9 − S7S9 + 3S29 . (3.150)

There are T tensors computed by (2.17) and we have V = 12 vector multiplets. Using

SbSU(2) = {s3 = 0}, SbSU(3) = {s9 = 0}, (3.149), the charged spectrum in table 21 and (3.150)

we check cancelation of all 6D anomalies in (A.1), following the discussion of appendix A.

We conclude our analysis with the Yukawa couplings of the charged matter spectrum of

XF11 , corresponding to the codimension three singularities of its WSF. All Yukawa points

of XF11 are presented in table 22.
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Representation Multiplicity Splitting Locus

(3,2)−1/6 S9([K−1B ] + S7 − S9) V (I(1)) := {s3 = s9 = 0}

(1,2)1/2
([K−1B ] + S7 − S9)

(6[K−1B ]− 2S7 − S9)
V (I(2)) := {s3 = 0

s2s
2
5 + s1(s1s9 − s5s6) = 0}

(3,1)−2/3 S9(2[K−1B ]− S7) V (I(3)) := {s5 = s9 = 0}

(3,1)1/3 S9(5[K−1B ]− S7 − S9)
V (I(4)) := {s9 = 0

s3s
2
5 + s6(s1s6 − s2s5) = 0}

(1,1)−1
(2[K−1B ]− S7)

(3[K−1B ]− S7 − S9)
V (I(5)) := {s1 = s5 = 0}

(8,1)0 1 + S9
S9−[K−1

B ]
2 Figure 19 s9 = 0

(1,3)0
1 + S7−S9

2

×([K−1B ] + S7 − S9)
Figure 19 s3 = 0

Table 21. Charged matter representations under SU(3) × SU(2) × U(1) and corresponding codi-

mension two fibers of XF11
. The adjoint matter is included for completeness.

3.5.2 Polyhedron F12: GF12 = SU(2)2 × U(1)2

In this section, we analyze the elliptically fibered Calabi-Yau manifold XF12 with base B

and general elliptic fiber given by the elliptic curve E in PF12 . The toric data of PF12

can be extracted from figure 20, where the fiber polyhedron F12 together with a choice of

homogeneous coordinates as well as its dual polyhedron are shown. As before, we have set

ei = 1, ∀i, in the monomials associated to the integral points of F5 by (2.23). The toric

variety PF12 is P2 blown-up at four non-generic points. In our conventions, the blow-down
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Yukawa Locus

(3,2)−1/6 · (3,1)−2/3 · (1,2)1/2 s3 = s5 = s9 = 0

(3,2)−1/6 · (3,1)1/3 · (1,2)1/2 s3 = s9 = 0 = s1s6 − s2s5
(3,1)−2/3 · (3,1)1/3 · (1,1)−1 s1 = s5 = s9 = 0

(3,2)−1/6 · (3,2)−1/6 · (3,1)1/3 s3 = s9 = s6 = 0

(1,2)1/2 · (1,2)1/2 · (1,1)−1 s1 = s5 = s3 = 0

(3,1)1/3 · (3,1)1/3 · (3,1)−2/3 s5 = s6 = s9

Table 22. Codimension three loci and corresponding Yukawa couplings for XF11
.

Figure 20. The toric diagram of polyhedron F12 and its dual. The zero section is indicated by the

dot.

map takes the form

u→ e1e2e3e4u , w → e1e
2
4w , v → e2e

2
3v , (3.151)

so that the homogeneous coordinates on the fiber after this blow-up are [u : v : w : e1 : e2 :

e3 : e4]. In the total space of the PF12-fibration constructed as in (3.1), these coordinates

have the divisor classes given by:

Section Divisor class

u H − E1 − E2 + S9 + [KB]

v H − E2 − E3 + S9 − S7
w H − E1 − E4

e1 E1 − E4

e2 E2 − E3

e3 E3

e4 E4

(3.152)

The Stanley-Reisner ideal of PF12 follows from figure 20 as

SR = {ue4, uw, uv, ue3, e1w, e1v, e1e3, e1e2, e4v, e4e3, e4e2, we3, we2, ve2} . (3.153)

The hypersurface equation for XF12 can be obtained employing (2.23). It reads

pF12 = s1e
2
1e

2
2e3e4u

3 + s2e1e
2
2e

2
3u

2v + s5e
2
1e2e

2
4u

2w + s6e1e2e3e4uvw

+ s7e2e
2
3v

2w + s9e1e
2
4vw

2 ,
(3.154)
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Figure 21. Codimension one fibers of XF12 . The crosses denote the intersections with the three

sections.

where the divisor classes of the sections si are fixed by the Calabi-Yau condition as shown

in (3.8). We note that (3.154) can also be obtained from (3.4) by the specialization s3 =

s4 = s8 = s10 = 0 and the map (3.151).

There are five rational sections of the elliptic fibration of XF12 . Their coordinates are

ŝ0 = XF12 ∩ {u = 0} : [0 : 1 : 1 : s7 : −s9 : 1 : 1] ,

ŝ1 = XF12 ∩ {e3 = 0} : [1 : s5 : 1 : 1 : −s9 : 0 : 1] ,

ŝ2 = XF12 ∩ {e4 = 0} : [1 : 1 : s2 : −s7 : 1 : 1 : 0] ,

XF12 ∩ {v = 0} : [1 : 0 : s1 : 1 : 1 : −s5 : 1] ,

XF12 ∩ {w = 0} : [1 : s1 : 0 : 1 : 1 : 1 : −s2] ,

(3.155)

where we choose ŝ0 as the zero section. Clearly, only three of these sections are linearly

independent. We choose ŝ1 and ŝ2 as the generators of the rank two MW-group of XF12 .

We compute the Weierstrass form (2.1) of (3.154) using Nagell’s algorithm. The WS-

coordinates of the sections ŝ1 and ŝ2 are given by (B.9) and (B.10), respectively, in the

limit s3 = s4 = s8 = s10 = 0. Similarly, we obtain the functions f and g from (B.1)

and (B.2) using this specialization. From this the discriminant ∆ is readily computed.

The factorization of ∆ shows the presence of two I2-singularities in XF12 over the divisors

SbSU(2)1
= {s7 = 0}∩B and SbSU(2)2

= {s9 = 0}∩B in B. At these loci, the constraint (3.154)

factorizes as

SU(2)1 : pF12 |s7=0 = e1q3 ,

SU(2)2 : pF12 |s9=0 = e2q
′
3 ,

(3.156)

where q3, q
′
3 are the remaining polynomials after factoring out e1 and e2. The corresponding

I2-fibers are depicted in figure 21. In summary, the total gauge group of XF12 is

GF12 = SU(2)2 ×U(1)2 . (3.157)

Analogous to section 3.3.3, we obtain the divisor classes of the Cartan divisors of XF12 as

D
SU(2)1
1 = [s7]− [e1] , D

SU(2)2
1 = [s9]− [e2] . (3.158)

Using these results, we compute the Shioda map (2.5) of the sections ŝm, m = 1, 2, as

σ(ŝm) = Sm − S0 + [KB] +
1

2
δm,1D

SU(2)1
1 +

1

2
δm,2D

SU(2)2
1 . (3.159)
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Here S0, Sm denote the divisor classes of the sections ŝ0, ŝm, respectively, and we used

π(S1 · S2) = π(S1 · S0) = π(S2 · S0) = 0 , (3.160)

which follows directly from (3.155) as well as

Sm · C
SU(2)1
−αi = δm,2 , Sm · C

SU(2)2
−αi = δm,1 , (3.161)

which can be deduced from figure 21. Employing these intersection relations along

with (2.7), we obtain the height pairing (2.6) as

bmn =

(
2[K−1B ]− 1

2S7 [K−1B ]

[K−1B ] 2[K−1B ]− 1
2S9

)
mn

. (3.162)

To obtain the charged matter spectrum we analyze the codimension two singularities

of the WSF of XF12 . The corresponding representation under the gauge group are deter-

mined following the general procedure outlined in section 2.1. As before all non-trivial

representations of the non-Abelian part of GF12 are easily read off from the discriminant.

The charged singlets are obtained by the primary decompositions of the two complete

intersections (2.14) associated to the sections ŝ1 and ŝ2. We find ten codimension two

singularities, eight of which lead to the matter representations and the corresponding codi-

mension two fibers in XF12 given in the first and third column of table 23, respectively. At

the remaining loci, namely s7 = s26 − 4s2s9 = 0 and s9 = s26 − 4s5s7, we find Type III

singularities and thus no additional matter, cf. section 3.3.3 for more details. We note that

the matter locus V (I(3)) agrees with the singular locus of the dependent rational section

in (3.155). For completeness, matter in the adjoint representation of GF12 is also given in

the last two rows of table 23.

The number of neutral hyper multiplets completes the matter spectrum of XF12 . It is

computed from (2.11) using the Euler number (C.1) of XF12 . It reads

Hneut = 16 + 11[K−1B ]2 − 6[K−1B ]S7 + 2S27 − 6[K−1B ]S9 + S7S9 + 2S29 . (3.163)

There are a base-dependent number T of tensor and V = 7 vector multiplets. Finally, we

use SbSU(2)1
= {s7 = 0}, SbSU(2)2

= {s9 = 0}, (3.162), the charged spectrum in table 23

and (3.163) to confirm that all 6D anomalies in (A.1) are canceled.

We conclude with the list of all codimension three singularities of the WSF of XF12

and the corresponding Yukawa points in table 24.

3.5.3 Polyhedron F14: GF14 = SU(3) × SU(2)2 × U(1)

Consider the elliptically fibered Calabi-Yau manifold XF14 with base B and general elliptic

fiber given by the elliptic curve E in PF14 . In figure 22 the toric data of PF14 is summarized

in terms of its polyhedron F14, a choice of homogeneous coordinates as well as its dual

polyhedron F3 with all monomials (shown in the patch ei = 1, ∀i) corresponding to its

integral points. Note that PF14 is the blow-up of P2 defined by the blow-up map

u→ e1e2e3e4e5u , w → e1e
2
4e

3
5w , v → e2e

2
3v . (3.164)
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Representation Multiplicity Fiber Locus

(2,2)(1/2,1/2) S7 · S9 V (I(1)) := {s9 = s7 = 0}

(1,2)(−1,−1/2) S9 · (2[K−1B ]− S7) V (I(2)) := {s9 = s5 = 0}

(2,1)(−1/2,−1) S7 · (2[K−1B ]− S9) V (I(3)) := {s7 = s2 = 0}

(1,1)(1,0)
(2[K−1B ]− S7)

(3[K−1B ]− S9 − S7)
V (I(4)) := {s5 = s1 = 0}

(1,1)(0,1)
(2[K−1B ]− S9)

(3[K−1B ]− S9 − S7)
V (I(5)) := {s2 = s1 = 0}

(1,2)(0,−1/2) S9 · (6[K−1B ]− 2S9 − S7)
V (I(6)) := {s9 = 0

s5s
2
2 − s6s2s1 + s7s

2
1 = 0}

(2,1)(−1/2,0) S7 · (6[K−1B ]− S9 − 2S7)
V (I(7)) := {s7 = 0

s9s
2
1 + s2s

2
5 − s6s5s1 = 0}

(1,1)(1,1)
2[K−1B ] · (3[K−1B ]− S7)
−S9 · (2[K−1B ]− S9)

V (I(8)) := {s9s2 − s7s5 = 0

s9s1 − s5s6 = 0}\V (I(2))

(3,1)(0,0) 1 + S7 ·
(S7−[K−1

B ])
2 Figure 21 s7 = 0

(1,3)(0,0) 1 + S9 ·
(S9−[K−1

B ])
2 Figure 21 s9 = 0

Table 23. Charged matter representations under SU(2)2×U(1)2 and corresponding codimension

two fibers of XF12 . The adjoint matter is included for completeness.
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Yukawa Locus

(1,1)(1,0) · (1,1)(0,1) · (1,1)(1,1) s2 = s5 = s1 = 0

(1,2)(0,−1/2) · (1,2)(−1,−1/2) · (1,1)(1,1) s9 = s5 = 0, s6s2 − s7s1 = 0

(2,1)(−1/2,−1) · (2,1)(−1/2,0) · (1,1)(1,1) s7 = s2 = 0, s1s9 − s5s6 = 0

(2,2)(1/2,1/2) · (2,1)(−1/2,0) · (1,2)(0,−1/2) s9 = s7 = 0, s2s5 − s6s1 = 0

(2,2)(1/2,1/2) · (1,2)(−1,−1/2) · (2,1)(−1/2,0) s9 = s7 = s5 = 0

(2,2)(1/2,1/2) · (1,2)(0,−1/2) · (2,1)(−1/2,−1) s9 = s7 = s2 = 0

(2,2)(1/2,1/2) · (2,2)(1/2,1/2) · (1,1)(1,1) s6 = s7 = s9 = 0

(1,2)(0,−1/2) · (1,2)(0,−1/2) · (1,1)(0,1) s1 = s2 = s9 = 0

(2,1)(−1/2,0) · (2,1)(−1/2,0) · (1,1)(1,0) s1 = s5 = s7 = 0

Table 24. Codimension three loci and corresponding Yukawa couplings for XF12 .

Figure 22. The toric diagram of polyhedron F14 and its dual. The zero section is indicated by

the dot.

The homogeneous coordinates [u : v : w : e1 : e2 : e3 : e4 : e5] on PF14 take values in the

line bundles associated to the following divisors:

Section Divisor class

u H − E1 − E2 + S9 + [KB]

v H − E2 − E3 + S9 − S7
w H − E1 − E4 − E5

e1 E1 − E4

e2 E2 − E3

e3 E3

e4 E4 − E5

e5 E5

(3.165)

The Stanley-Reisner ideal of PF14 is given by

SR = {ue4, ue5, uw, uv, ue3, e1e5, e1w, e1v, e1e3, e1e2,
e4w, e4v, e4e3, e4e2, e5v, e5e3, e5e2, we3, we2, ve2} .

(3.166)
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Figure 23. Codimension one fibers of XF14 . The crosses denote the intersections with the two

sections.

In order to find the hypersurface equation for XF14 we either use (2.23) or specialize (3.4)

as s2 = s3 = s4 = s8 = s10 = 0 and apply the map (3.164). It reads

pF14 = s1e
2
1e

2
2e3e4u

3 + s5e
2
1e2e

2
4e

2
5u

2w + s6e1e2e3e4e5uvw + s7e2e
2
3v

2w + s9e1e
2
4e

3
5vw

2 ,

(3.167)

where the classes of the sections si are given in (3.8).

There are four rational sections of the fibration of XF14 , two of which being linearly

independent. The coordinates of the sections are

ŝ0 = XF14 ∩ {u = 0} : [0 : 1 : 1 : s7 : −s9 : 1 : 1 : 1] ,

ŝ1 = XF14 ∩ {e5 = 0} : [1 : 1 : s1 : 1 : 1 : 1 : −s7 : 0] ,

XF14 ∩ {e3 = 0} : [1 : s5 : 1 : 1 : −s9 : 0 : 1 : 1] ,

XF14 ∩ {v = 0} : [1 : 0 : s1 : 1 : 1 : −s5 : 1 : 1] ,

(3.168)

where we choose ŝ0 as the zero section and ŝ1 as the generator of the MW-group of XF14 .

As a prerequisite for the analysis of the singularities ofXF14 , we compute its Weierstrass

form (2.1). This is obtained by applying Nagell’s algorithm to (3.167). The WS-coordinates

of the section ŝ1 are given by (B.8) after setting s2 = s3 = s4 = s8 = 0. Similarly, we obtain

the functions f and g using the specialization s2 = s3 = s4 = s8 = s10 = 0 from the general

expressions (B.1) and (B.2), respectively. To find all codimension one singularities of the

WSF of XF14 we calculate the discriminant from f and g. The discriminant ∆ factorizes

as follows: we find two I2-singularities over the divisors SbSU(2)1
= {s1 = 0} ∩ B and

SbSU(2)2
= {s9 = 0} ∩B in B and one I3-singularity over the divisor SbSU(3) = {s7 = 0} ∩B

in B. The constraint (3.167) factorizes along these divisors as

SU(2)1 : pF14 |s1=0 = w · q2 ,
SU(3) : pF14 |s7=0 = e1e4 · q3 ,

SU(2)2 : pF14 |s9=0 = e2 · q′3 ,
(3.169)

where q2, q3 and q′3 are the polynomials that remain after factoring out w, e1e4 and e2.

The fibers at these three codimension one loci are depicted in figure 23. In summary, the

gauge group of XF14 is given by

GF14 = SU(3)× SU(2)2 ×U(1) . (3.170)
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The divisor classes of the Cartan divisors are calculated in a similar way as in section 3.3.3.

They read

D
SU(2)1
1 = [w] , D

SU(3)
1 = [e4] , D

SU(3)
2 = [s7]− [e1]− [e4] , D

SU(2)2
1 = [s9]− [e2] .

(3.171)

Using these results, we compute the Shioda map (2.5) of the section ŝ1 as

σ(ŝ1) = S1 − S0 + [KB] +
1

2
D

SU(2)1
1 +

1

3

(
2D

SU(3)
1 +D

SU(3)
2

)
+

1

2
D

SU(2)2
1 . (3.172)

Here S0, S1 denote the divisor classes of the sections ŝ0, ŝ1, respectively, and we have

employed

π(S1 · S0) = 0 , (3.173)

which follows from (3.168) as well as

S1 · CSU(2)1
−α1

= 1 , S1 · CSU(3)
−αi =

(
1

0

)
, S1 · CSU(2)2

−α1
= 1 , (3.174)

which can be deduced from figure 23. Employing (3.172), we compute the height pair-

ing (2.6), using these results and the intersection (2.7), as

b11 = −1

2
[KB]− 1

6
S7 . (3.175)

Next, we determine the spectrum of charged matter by investigating the codimension

two singularities of the WSF of XF14 . As before, all matter representations under the gauge

group GF14 are determined by application of the techniques introduced in section 2.1.

Again all the non-trivial representations under the non-Abelian part of GF14 easily follow

from the discriminant ∆, while the charged singlets require the primary decomposition of

the locus (2.14) for the section ŝ1. We find nine codimension two singularities in XF14 . Six

of these lead to the matter representations and the corresponding codimension two fibers

in XF14 given in the first and third column of table 25, respectively. The remaining loci,

namely s1 = s26 − 4s5s7 = 0, s9 = s26 − 4s5s7 = 0 and s6 = s7 = 0, support two type III

and one type IV fiber, respectively, and thus do not support further representations. The

adjoint representations of GF14 are shown in the last three rows of table 25 for completeness.

We note that the fiber corresponding to the representation (2,1,2)0 is non-split, cf. sec-

tion 3.4.2 for a more detailed discussion. We have indicated the fibers that are exchanged

by codimension three monodromies by dashed lines in table 25.

The multiplicities of the charged hyper multiplets are presented in the second column of

table 25. They are computed directly from all complete intersections V (I(k)), k = 1, . . . , 5.

The matter spectrum of XF14 is completed by the number of neutral hyper multiplets,

which can be computed from (2.11) using the Euler number (C.1) of XF14 . It is given by

Hneut = 17 + 11[K−1B ]2 − 9[K−1B ]S7 + 3S27 − 6[K−1B ]S9 + 2S7S9 + 2S29 . (3.176)
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Representation Multiplicity Fiber Locus

(2,1,1)1/2
(3[K−1B ]− S7 − S9)
×(2[K−1B ]− S7)

V (I(1)) :=

{s1 = s5 = 0}

(1,3,1)−1/3 S7(3[K−1B ]− S7)
V (I(2)) := {s7 = 0

s5s6 − s1s9 = 0}

(1,1,2)1/2 S9(2[K−1B ]− S7)
V (I(3)) :=

{s5 = s9 = 0}

(2,3,1)1/6 S7(3[K−1B ]− S7 − S9)
V (I(4)) :=

{s1 = s7 = 0}

(2,1,2)0 S9(3[K−1B ]− S7 − S9)
V (I(5)) :=

{s1 = s9 = 0}

(1,3,2)1/6 S7S9
V (I(6)) :=

{s7 = s9 = 0}

(3,1,1)0
1 + 1

2(2[K−1B ]− S7 − S9)
×(3[K−1B ]− S7 − S9)

Figure 23 s1 = 0

(1, 8,1)0 1 + S7
(S7−[K−1

B ])
2 Figure 23 s7 = 0

(1,1,3)0 1 + S9
(S9−[K−1

B ])
2 Figure 23 s9 = 0

Table 25. Charged matter representations under SU(3) × SU(2)
2×U(1) and corresponding codi-

mension two fibers of XF14
. The adjoint matter is included for completeness.
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Yukawa Locus

(2,1,1)1/2 · (1,3,1)−1/3 · (2,3,1)1/6 s1 = s5 = s7 = 0

(2,1,1)1/2 · (1,1,2)1/2 · (2,1,2)0 s1 = s5 = s9 = 0

(1,3,1)−1/3 · (1,1,2)1/2 · (1,3,2)1/6 s5 = s7 = s9 = 0

(2,3,1)1/6 · (2,1,2)0 · (1,3,2)1/6 s1 = s7 = s9 = 0

(2,3,1)1/6 · (2,3,1)1/6 · (1,3,1)−1/3 s1 = s6 = s7 = 0

(1,3,2)1/6 · (1,3,2)1/6 · (1,3,1)−1/3 s6 = s7 = s9 = 0

Table 26. Codimension three loci and corresponding Yukawa couplings for XF14
.

We note that there are a base-dependent number T of tensor and V = 15 vector

multiplets. As a consistency check we confirm cancelation of all 6D anomalies follow-

ing appendix A, employing the divisors SbSU(2)1
, SbSU(2)2

, SbSU(3), (3.175), the spectrum in

table 25 and (3.176).

Finally, we list all codimension three singularities of the WSF of XF14 and the corre-

sponding Yukawa points of an F-theory compactification to 4D in table 26.

3.6 Fibrations with gauge groups of rank 5 and 6 and MW-torsion

In this section we study the toric hypersurface fibrations constructed from the fiber polyhe-

dra F13, F15 and F16. These are the three toric hypersurface fibrations that have non-trivial

Mordell-Weil torsion and give rise to non-simply connected gauge groups in F-theory.

The Calabi-Yau manifold XF13 has Mordell-Weil group Z2, XF15 has Mordell-Weil

group Z⊕Z2 and the fibration XF16 has Mordell-Weil group Z3 [41, 46]. We confirm these

findings by explicitly working out the WSF of these toric hypersurface fibrations, which

are shown to precisely take the standard form of WSF’s with these MW-torsion groups,

cf. [53].

The influence of the MW-torsion on the spectrum of F-theory was discussed recently

in [46]. There, the models considered in this section were also studied, but under the

assumption of a holomorphic zero section. Here, we relax this condition which results in

additional gauge groups and matter representations. This has interesting consequences for

the phenomenology of these models, because we find that the gauge groups and matter

representations of XF13 and XF15 are completed precisely into the ones of the Pati-Salam

and trinification model, respectively.

3.6.1 Polyhedron F13: GF13 = (SU(4) × SU(2)2)/Z2

Consider the elliptically fibered Calabi-Yau manifold XF13 with base B and general fiber

given by the elliptic curve E in PF13 . The toric diagram of the fiber polyhedron F13 as well

as a choice of homogeneous coordinates and its dual polyhedron are depicted in figure 24,

where we have set ei = 1, ∀i, in the monomials that are associated to the integral points

of F4 by (2.23).
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Figure 24. The toric diagram of polyhedron F13 and its dual. The zero section is indicated by

the dot.

We note that PF13 is the blow-up of P2 at five non-generic points, that is defined by

u→ e1e2e3e4e
2
5u , w → e1e5w , v → e2e

2
3e

3
4v . (3.177)

The homogeneous coordinates on the fiber after this blow-up are [u : v : w : e1 : e2 : e3 :

e4 : e5] and take values in the line bundles associated to the divisor classes given by:

Section Divisor class

u H − E1 − E2 − E5 + S9 + [KB]

v H − E2 − E3 − E4 + S9 − S7
w H − E1

e1 E1 − E5

e2 E2 − E3

e3 E3 − E4

e4 E4

e5 E5

(3.178)

The Stanley-Reisner ideal of PF13 follows from figure 26 as

SR = {ue1, uw, uv, ue4, ue3, e5w, e5v, e5e4, e5e3, e5e2, e1v, e1e4, e1e3, e1e2,
we4, we3, we2, ve3, ve2, e4e2} .

(3.179)

We find the hypersurface equation for XF13 in the total space of the fibration (3.1) with

Fi ≡ F13 using (2.23) or directly from (3.4) by setting s4 = s5 = s7 = s8 = s10 = 0 and by

applying the map (3.177). We obtain

pF13 = s1e
2
1e

2
2e3e

4
5u

3 + s2e1e
2
2e

2
3e

2
4e

2
5u

2v + s3e
2
2e

3
3e

4
4uv

2 + s6e1e2e3e4e5uvw + s9e1vw
2 ,

(3.180)

where the divisor classes of the si are given in (3.8).

There are two seemingly rational sections of the fibration of XF13 . However, there is

one torsional relation between them, which reveals that the MW-group is pure torsion,
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Figure 25. Codimension one fibers of XF13 . The crosses denote the intersections with the zero

section.

namely Z2 [41]. The coordinates of our choice for the zero section ŝ0 and the section of

order two are

ŝ0 = XF13 ∩ {e4 = 0} : [1 : s1 : 1 : 1 : 1 : −s9 : 0 : 1] ,

XF13 ∩ {e5 = 0} : [s9 : 1 : 1 : −s3 : 1 : 1 : 1 : 0] .
(3.181)

The presence of MW-torsion restricts the matter spectrum realized in F-theory [53].

Indeed, the torsion acts on the gauge group, turning it into a non-simply connected group,

which reduces its weight lattice, i.e. the realized representations. In [46] this has recently

been understood in terms of a geometric k-fractional refinement of the coweight lattice.

In particular, it has been argued that the MW-torsion Z2 of XF13 forbids the presence

of fundamental matter in this model. We will confirm these findings in the following

explicit analysis.

We begin by computing the Weierstrass form (2.1) of (3.180). As an intermediate step

we use the birational map of XF5 to the Tate form given in [39] in the limit s5 = s7 = s8 = 0.

We obtain the local Tate coefficients (B.14) from which we readily compute the functions

f and g, that are given in (B.16). We note that the same WSF arises from the global

Tate model given (B.15), which precisely agrees with the Tate form of a model with Z2

MW-torsion as argued in [53], confirming the presence of Z2 MW-torsion in XF13 .

Using these results, we readily compute the discriminant ∆, which allows us to find

all codimension one singularities of the WSF of XF13 . We find two I2-singularities over the

divisors SbSU(2)1
= {s1 = 0}∩B and SbSU(2)2

= {s3 = 0}∩B in B as well as an I4-singularity

over the divisor SbSU(4) = {s9 = 0} ∩ B in B. Along these divisors the constraint (3.180)

factorizes as

SU(2)1 : pF13 |s1=0 = v · q2 ,
SU(2)2 : pF13 |s3=0 = e1 · q3 ,
SU(4) : pF13 |s9=0 = ue2e3 · q′2 ,

(3.182)

where q2, q3 and q′2 are the polynomials that remain after factoring out v, e1 and ue2e3.

The corresponding fibers are depicted in figure 25 and give rise to two SU(2) and one

SU(4) gauge groups. There is another potential codimension one singularity of the WSF

of XF13 , where the fiber of XF13 splits into two P1. However, as it is shown in [46], the

torsional MW-group identifies these two P1’s, so that the fiber in the quotient space is a

single singular P1. Thus, there is no additional gauge symmetry and the gauge group of
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XF13 is

GF13 = (SU(4)× SU(2)2)/Z2 . (3.183)

We note that this is precisely the Pati-Salam group. The action of the MW-torsion on

the gauge group GF13 is worked out in appendix B. To this end, we show that the WS-

coordinates of the generator of the Z2 MW-torsion, given in (B.17), pass through the

WS-coordinates of the singularities in the fiber at all codimension one loci s1 = 0, s3 = 0

and s9 = 0 in (3.182).

As before, cf. section 3.3.3, we calculate the classes of the Cartan divisors of XF13 as

D
SU(2)1
1 = [s1]− [v] , D

SU(2)2
1 = [e1] ,

D
SU(4)
1 = [s9]− [u]− [e2]− [e3] , D

SU(4)
2 = [u] , D

SU(4)
3 = [e2] .

(3.184)

Next, we calculate the charged matter spectrum of XF13 , which requires the analysis of

all its codimension two singularities. We directly read off from the discriminant of XF13 the

loci of six codimension two singularities. Four of these lead to the matter representations

in the first column of table 27 that are determined, using the techniques discussed in

section 2.1, from the corresponding codimension two fibers in XF13 given in the third

column of the same table. The remaining loci s1 = s26− 4s2s9 = 0 and s3 = s26− 4s2s9 = 0

are both of type III , that we first encountered in section 3.3.3, and, thus, do not support

additional matter representations. The three adjoint representations in the last three rows

of table 27 are shown for completeness.

We find three singularities which support the bi-fundamental representations and one

singularity leading to an anti-symmetric representation of SU(4), but no fundamental

representation. This has been anticipated before, due to the action of MW-torsion on the

gauge group GF13 given in (3.183). In addition, we find that the fibers at the loci V (I(1))

and V (I(4)), that correspond to the (2,2,1) and the (1,1,6) representation, are non-split,

cf. section 3.4.2 for more details. The P1’s drawn with a dashed line are interchanged by

codimension three monodromies.

The spectrum of matter ofXF13 is completed by the number of neutral hyper multiplets,

which is computed from (2.11) using the Euler number given in (C.1) of XF13 . It reads

Hneutral = 17 + 11[K−1B ]2 − 4[K−1B ]S7 + 2S27 − 10[K−1B ]S9 + 4S29 . (3.185)

The number T of tensor multiplets is given by the base-dependent expression (2.17) and

we have V = 27 vector multiplets. In order to check that all 6D anomalies are canceled

we use the divisors SbSU(2)1
, SbSU(2)2

and SbSU(4) as well as the charged spectrum in table 27

and (3.185). Indeed, we find that all 6D anomalies in (A.1) are canceled.

We conclude this section with the list of all geometrically allowed Yukawa couplings

of the charged matter spectrum of XF13 , that is given in table 28.

3.6.2 Polyhedron F15: GF15 = SU(2)4/Z2 × U(1)

We construct an elliptically fibered Calabi-Yau manifold XF15 over a base B and with

general fiber given by the elliptic curve E in PF15 . The toric data of PF15 is encoded in
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Representation Multiplicity Fiber Locus

(2,2,1)
(3[K−1B ]− S7 − S9)
×([K−1B ] + S7 − S9)

V (I(1)) :=

{s1 = s3 = 0}

(2,1,4) (3[K−1B ]− S7 − S9)S9
V (I(2)) :=

{s1 = s9 = 0}

(1,2,4) ([K−1B ] + S7 − S9)S9
V (I(3)) :=

{s3 = s9 = 0}

(1,1,6) S9[K−1B ]
V (I(4)) :=

{s6 = s9 = 0}

(3,1,1)
1 +

((2[K−1
B ]−S7−S9))

2

×(3[K−1B ]− S7 − S9)
Figure 25 s1 = 0

(1,3,1)
1 + (S7−S9)

2

×([K−1B ] + S7 − S9)
Figure 25 s3 = 0

(1,1,15) 1 + S9
(S9−[K−1

B ])
2 Figure 25 s9 = 0

Table 27. Charged matter representations under (SU(4) × SU(2)
2
)/Z2 and corresponding codi-

mension two fibers of XF13
. The adjoint matter is included for completeness.

Yukawa Locus

(2,2,1) · (2,1,4) · (1,2,4) s1 = s3 = s9 = 0

(1,1,6) · (2,1,4) · (2,1,4) s1 = s6 = s9 = 0

(1,1,6) · (1,2,4) · (1,2,4) s3 = s6 = s9 = 0

Table 28. Codimension three loci and corresponding Yukawa coupling for XF13
.
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Figure 26. The toric diagram of polyhedron F15 and its dual. The zero section is indicated by

the dot.

figure 26, that shows the polyhedron F15, our convention for projective coordinates as well

as the dual polyhedron F2, with the monomials (in the patch ei = 1, ∀i) associated to its

integral points. We note that PF15 is obtained from P2 by the five non-generic blow-ups

defined by

u→ e1e2e3e4u , w → e1e
2
4e5w , v → e2e

2
3e5v . (3.186)

The homogeneous coordinates on the fiber after this blow-up are [u : v : w : e1 : e2 : e3 :

e4 : e5]. Their divisor classes are given by:

Section Divisor class

u H − E1 − E2 + S9 + [KB]

v H − E2 − E3 − E5 + S9 − S7
w H − E1 − E4 − E5

e1 E1 − E4

e2 E2 − E3

e3 E3

e4 E4

e5 E5

(3.187)

The Stanley-Reisner ideal of PF15 is can be read off from figure 26 as

SR = {ue4, uw, ue5, uv, ue3, e1w, e1e5, e1v, e1e3, e1e2, e4e5, e4v, e4e3, e4e2,
wv, we3, we2, e5e3, e5e2, ve2} .

(3.188)

We use (2.23) to find the hypersurface equation for XF15 in the ambient space given by

the fibration (3.1) with PFi ≡ PF15 . Alternatively, we can set s1 = s3 = s4 = s8 = s10 = 0

in (3.4) and use the map (3.186). Either ways, we obtain

pF15 = s2e1e
2
2e

2
3u

2v + s5e
2
1e2e

2
4u

2w + s6e1e2e3e4e5uvw + s7e2e
2
3e

2
5v

2w + s9e1e
2
4e

2
5vw

2 ,

(3.189)

where the sections si assume values in the line bundles associated to the divisor classes

in (3.8).
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Figure 27. Codimension one fibers of XF15 . The crosses denote the intersections with the two

sections.

The fibration XF15 has four seemingly rational points with one linear and one torsional

relation between, showing that the MW-group is Z⊕ Z2 [41]. Their coordinates are

ŝ0 = XF15 ∩ {u = 0} : [0 : 1 : 1 : s7 : −s9 : 1 : 1 : 1] ,

ŝ1 = XF15 ∩ {e4 = 0} : [1 : 1 : s2 : −s7 : 1 : 1 : 0 : 1] ,

XF15 ∩ {e5 = 0} : [1 : s5 : −s2 : 1 : 1 : 1 : 1 : 0] ,

XF15 ∩ {e3 = 0} : [1 : s5 : 1 : 1 : −s9 : 0 : 1 : 1] ,

(3.190)

where we choose ŝ0 as the zero section and ŝ1 as the generator of the free part of the

MW-group.

Next, we compute the Weierstrass form (2.1) of (3.189). Again, we use the birational

map from XF5 in [39] to first obtain the local Tate coefficients (B.21), which determine

the WSF (B.23). The equivalent global Tate model in (B.22) is precisely of the form of an

elliptic fibration with Z⊕Z2 MW-group, that has been studied in [53]. The WS-coordinates

of the section ŝ1 are given by (B.8) after setting s1 = s3 = s4 = s8 = 0 and the torsion

point is given in (B.24).

These results allow us to compute the discriminant ∆ of XF15 . We find four I2-

singularities over the divisors SbSU(2)1
= {s2 = 0} ∩ B, SbSU(2)2

= {s5 = 0} ∩ B, SbSU(2)3
=

{s7 = 0} ∩B and SbSU(2)4
= {s9 = 0} ∩B in B. Along these divisors the constraint (3.189)

factorizes as

SU(2)1 : pF15 |s2=0 = w · q2 ,
SU(2)2 : pF15 |s5=0 = v · q′2 ,
SU(2)3 : pF15 |s7=0 = e1 · q3 ,
SU(2)4 : pF15 |s9=0 = e2 · q′3 ,

(3.191)

where q2, q
′
2, q3 and q′3 are the polynomials that remain after factoring out w, v, e1 and e2,

respectively. The corresponding codimension one fibers in XF15 are shown in figure 27. In

summary, the gauge group of XF15 is

GF15 = (SU(2)4)/Z2 ×U(1) . (3.192)

As before we confirm the action of the MW-torsion on the non-Abelian factors in ap-

pendix B by explicitly working out the WS-coordinates (B.24) of the generator of the Z2

MW-torsion.
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In order to calculate the Cartan divisors ofXF15 we use a similar logic as in section 3.3.3.

We obtain the following divisor classes:

D
SU(2)1
1 = [w] , D

SU(2)2
1 = [v] , D

SU(2)3
1 = [s7]− [e1] , D

SU(2)4
1 = [s9]− [e2] . (3.193)

With these results at hand, we compute the Shioda map (2.5) of the section ŝ1 as

σ(ŝ1) = S1 − S0 + [KB] +
1

2
D

SU(2)1
1 +

1

2
D

SU(2)4
1 . (3.194)

Here S0, S1 denote the divisor classes of the sections ŝ0, ŝ1, respectively, and we used

π(S1 · S0) = 0 , (3.195)

which directly follows from (3.190) as well as

S1 · CSU(2)1
−α1

= 1 , S1 · CSU(2)2
−α1

= 0 , S1 · CSU(2)3
−α1

= 0 , S1 · CSU(2)4
−α1

= 1 , (3.196)

which can be read off from figure 27. Using (3.194), we compute the height pairing (2.6),

b11 = −[KB] , (3.197)

where we used (2.7) and (3.195).

Next, we turn to the analysis of the codimension two singularities of the WSF of XF15

and the determination of the charged matter spectrum. As before, all representations are

determined from the codimension two fibers in XF15 following the procedure presented in

section 2.1. All codimension two singularities are easily seen from the discriminant ∆. We

find nine codimension two singularities. Seven of these lead to the matter representations

and the corresponding codimension two fibers in XF15 given in the first and third column of

table 29, respectively. At the remaining two loci s2 = s26−4s5s7 = 0 and s9 = s26−4s5s7 = 0,

the fiber is of Type III , cf. section 3.3.3, which means that there are no additional matter

representations. Again, we observe the absence of fundamental matter which is consistent

with the action of the MW-torsion on the gauge group in (3.192). The spectrum of charged

matter is completed by the matter in the adjoint representations (3,1,1,1)0, (1,3,1,1)0,

(1,1,3,1)0 and (1,1,1,3)0 given in the last four rows of table 29.

We emphasize that the representations (2,1,1,2)0 and (1,2,2,1)0 at the loci V (I(3))

and V (I(4)), respectively, arise from non-split codimension two fibers. The dashed nodes

in table 29 are interchanged by a codimension three monodromy.

The total matter spectrum of XF15 is completed by the number of neutral hyper mul-

tiplets, which is computed from (2.11) using the Euler number χ(XF15) given in (C.1).

It reads

Hneut = 17 + 7[K−1B ]2 − 4[K−1B ]S7 + 2S27 − 4[K−1B ]S9 + 2S29 . (3.198)

The number T of tensor multiplets is base-dependent, cf. (2.17), and we have V = 24 vector

multiplets. Finally, we use this together with the divisors SbSU(2)I
, I = 1, . . . , 4, (3.197),

the charged spectrum in table 29 and (3.198) to check that all 6D anomalies in (A.1)

are canceled.

Finally, we present our analysis of codimension three singularities of the WSF of XF15

and the corresponding Yukawa points in a compactification to 4D in table 30.
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Representation Multiplicity Fiber Locus

(2,2,1,1)1/2
(2[K−1B ]− S7)

×(2[K−1B ]− S9)

V (I(1)) :=

{s2 = s5 = 0}

(2,1,2,1)1/2 (2[K−1B ]− S9)S7
V (I(2)) :=

{s2 = s7 = 0}

(2,1,1,2)0 S9(2[K−1B ]− S9)
V (I(3)) :=

{s2 = s9 = 0}

(1,2,2,1)0 (2[K−1B ]− S7)S7
V (I(4)) :=

{s5 = s7 = 0}

(1,1,2,2)1/2 S7S9
V (I(5)) :=

{s7 = s9 = 0}

(1,2,1,2)1/2 (2[K−1B ]− S7)S9
V (I(6)) :=

{s5 = s9 = 0}

(1,1,1,1)1 2[K−1B ]2
V (I(7)) := {s6 = 0

s5s7 − s2s9 = 0}

(3,1,1,1)0 1 +
([K−1

B ]−S9)
2 (2[K−1B ]− S9) Figure 27 s2 = 0

(1,3,1,1)0 1 +
([K−1

B ]−S7)
2 (2[K−1B ]− S7) Figure 27 s5 = 0

(1,1,3,1)0 1 + S7
(S7−[K−1

B ])

2 Figure 27 s7 = 0

(1,1,1,3)0 1 + S9
(S9−[K−1

B ])

2 Figure 27 s9 = 0

Table 29. Charged matter representations under SU(2)
4×U(1)/Z2 and corresponding codimension

two fibers of XF15
. The adjoint matter is included for completeness.
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Yukawa Locus

(2,2,1,1)1/2 · (2,1,2,1)1/2 · (1,2,2,1)0 s2 = s5 = s7 = 0

(2,2,1,1)1/2 · (2,1,1,2)0 · (1,2,1,2)1/2 s2 = s5 = s9 = 0

(2,1,2,1)1/2 · (2,1,1,2)0 · (1,1,2,2)1/2 s2 = s7 = s9 = 0

(1,2,2,1)0 · (1,1,2,2)1/2 · (1,2,1,2)1/2 s5 = s7 = s9 = 0

(2,2,1,1)1/2 · (2,2,1,1)1/2 · (1,1,1,1)1 s2 = s5 = s6 = 0

(2,1,2,1)1/2 · (2,1,2,1)1/2 · (1,1,1,1)1 s2 = s6 = s7 = 0

(1,1,2,2)1/2 · (1,1,2,2)1/2 · (1,1,1,1)1 s6 = s7 = s9 = 0

(1,2,1,2)1/2 · (1,2,1,2)1/2 · (1,1,1,1)1 s5 = s6 = s9 = 0

Table 30. Codimension three loci and corresponding Yukawa points for polyhedron F15.

Figure 28. The toric diagram of polyhedron F16 and its dual. The zero section is indicated by

the dot.

3.6.3 Polyhedron F16: GF16 = SU(3)3/Z3

Consider the elliptically fibered Calabi-Yau manifold XF16 with base B and general fiber

given by the elliptic curve E in PF16 . The toric data of PF16 is summarized in figure 28,

where the polyhedron F16, a choice of projective coordinates as well as its dual polyhedron

F1 are depicted. The monomials associated to the integral points of F1 are presented in

the patch ei = 1, ∀i. The toric variety PF16 is the six-fold blow-up of P2 at non-generic

points, that is defined as

u→ e1e2e3e4e5e6u , w → e1e
2
4e

3
5w , v → e2e

2
3e

3
6v . (3.199)

After this blow-up the projective coordinates on the fiber are [u : v : w : e1 : e2 : e3 : e4 :

e5 : e6] and take values in the line bundles associated to the following divisor classes:

Section Divisor class

u H − E1 − E2 + S9 + [KB]

v H − E2 − E3 − E6 + S9 − S7
w H − E1 − E4 − E5

e1 E1 − E4

e2 E2 − E3

e3 E3 − E6

e4 E4 − E5

e5 E5

e6 E6

(3.200)
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The Stanley-Reisner ideal of PF16 can be seen from figure 28 to be given by

SR = {ue4, ue5, uw, uv, ue6, ue3, e1e5, e1w, e1v, e1e6, e1e3, e1e2, e4w, e4v, e4e6,
e4e3, e4e2, e5v, e5e6, e5e3, e5e2, we6, we3, we2, ve3, ve2, e6e2} .

(3.201)

We obtain the hypersurface equation for XF16 either employing (2.23) or by setting s2 =

s3 = s4 = s5 = s8 = s10 = 0 in (3.4) and applying the map (3.199). It reads

pF16 = s1e
2
1e

2
2e3e4u

3 + s6e1e2e3e4e5e6uvw + s7e2e
2
3e

3
6v

2w + s9e1e
2
4e

3
5vw

2 . (3.202)

where the divisor classes of the sections si are given in (3.8).

There are three rational sections of the fibration of XF16 with two torsional relations

between them which shows that the MW-group is Z3 [41]. The coordinates of the sec-

tions are

ŝ0 = XF16 ∩ {u = 0} : [0 : 1 : 1 : s7 : −s9 : 1 : 1 : 1 : 1] ,

XF16 ∩ {e5 = 0} : [1 : 1 : s1 : 1 : 1 : 1 : −s7 : 0 : 1] ,

XF16 ∩ {e6 = 0} : [1 : s1 : 1 : 1 : 1 : −s9 : 1 : 1 : 0] ,

(3.203)

where we choose ŝ0 as the zero section.

In order to compute the WSF (2.1) of (3.202), we first compute the Tate form using

the birational map from XF5 [39] in the limit s2 = s3 = s5 = s8 = 0. The global Tate

coefficients are given in (B.28), which is precisely of the form of an elliptic fibration with

MW-group Z3 [53]. The WSF is given in (B.29) and the WS-coordinates of the torsional

section are given in (B.30).

We readily compute the discriminant ∆, which allows us to find all codimension one

singularities of the WSF of XF16 . We find three I3-singularities over the divisors SbSU(3)1
=

{s1 = 0} ∩B, SbSU(3)2
= {s7 = 0} ∩B and SbSU(3)3

= {s9 = 0} ∩B in B. The hypersurface

constraint (3.202) factorizes along these divisors as

SU(3)1 : pF16 |s1=0 = vw · q1 ,
SU(3)2 : pF16 |s7=0 = e1e4 · q3 ,
SU(3)3 : pF16 |s9=0 = e2e3 · q′3 ,

(3.204)

where q1, q3 and q′3 are homogeneous polynomials in [u : v : w] that remain after factoring

out vw, e1e4 and e2e3. The corresponding fibers are depicted in figure 29. In summary,

the gauge group of XF16 is

GF16 = SU(3)3/Z3 . (3.205)

We note that this is precisely the gauge group of the trinification model. Here we confirmed

the action of the MW-torsion on the non-Abelian factors in appendix B by explicitly

working out the Weierstrass coordinates (B.30) of the generator of the Z3-torsion.

We calculate the classes of the Cartan divisors in the same fashion as in section 3.3.3.

Using (3.204) we obtain the classes

D
SU(3)1
1 = [v] , D

SU(3)1
2 = [w] , D

SU(3)2
1 = [e4] ,

D
SU(3)2
2 = [s7]− [e1]− [e4] , D

SU(3)3
1 = [e3] , D

SU(3)3
2 = [s9]− [e2]− [e3] .

(3.206)
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Figure 29. Codimension one fibers of XF16
.

The determination of the charged matter spectrum requires the knowledge of the codi-

mension two singularities of the WSF of XF16 . Again, we then extract the corresponding

representation data by application of the general recipe outlined in section 2.1. By investi-

gation of the discriminant of XF16 we readily find three codimension two singularities that

lead to bi-fundamental representations. These and their corresponding codimension two

fibers in XF16 are listed in the first and third column of table 31, respectively.

There are three additional codimension two singularities at s6 = s9 = 0, s6 = s7 = 0

and s1 = s6 = 0, that, however, yield fibers of Type IV in XF16 , that do not support any

additional matter.

Again, we do not find fundamental matter, confirming the restrictions imposed on the

spectrum of XF16 by the MW-torsion. The spectrum of charged matter is completed by

the matter in the adjoint representations (8,1,1), (1,8,1) and (1,1,8) given in the last

three rows of table 31. We recall that they do not originate from codimension two fibers

of XF16 , but are present if the divisors SbG are higher genus curves in B. The multiplicity

of charged hyper multiplets in the adjoint is given by (2.8).

We complete the matter spectrum of XF16 by the number of neutral hyper multiplets,

which is computed employing the Euler number (C.1) of XF16 from (2.11). It reads

Hneut = 18 + 11[K−1B ]2 − 9[K−1B ]S7 + 3S27 − 9[K−1B ]S9 + 3S7S9 + 3S29 . (3.207)

The base-dependent number T of tensor multiplets is given by (2.17) and we have V = 24

vector multiplets. Finally, we use this together with the divisors SbSU(3)I
for I = 1, 2, 3, the

charged spectrum in table 31 and (3.207) to confirm cancelation of all 6D anomalies (A.1).

By analyzing the codimension three singularities of the WSF of XF16 , we finally cal-

culate all Yukawa couplings of the charged matter spectrum of XF16 , that are given in

table 32.

4 The toric Higgs branch of F-theory

In section 3 we discussed in great detail the geometric derivations of the gauge groups and

matter spectra of all genus-one fibrations XFi based on the 16 polyhedra. Here we show

that the effective SUGRA theories obtained from these fibrations are not isolated from

each other but connected by means of the Higgs mechanism. This section is devoted to

the study of those transitions and the resulting network of theories summarized in figure 1.
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Representation Multiplicity Fiber Locus

(3, 3̄,1) S7(3[K−1B ]− S7 − S9)
V (I(1)) :=

{s1 = s7 = 0}

(3,1, 3̄) S9(3[K−1B ]− S7 − S9)
V (I(2)) :=

{s1 = s9 = 0}

(1,3, 3̄) S7S9
V (I(3)) :=

{s7 = s9 = 0}

(8,1,1)
1 +

((2[K−1
B ]−S7−S9))

2

×(3[K−1B ]− S7 − S9)
Figure 29 s1 = 0

(1,8,1) 1 + S7
(S7−[K−1

B ])
2 Figure 29 s7 = 0

(1,1,8) 1 + S9
(S9−[K−1

B ])
2 Figure 29 s9 = 0

Table 31. Charged matter representations under SU(3)
3
/Z3 and corresponding codimension two

fibers of XF16
. The adjoint matter is included for completeness.

Yukawa Locus

(3, 3̄,1) · (3,1, 3̄) · (1,3, 3̄) s1 = s7 = s9 = 0

(3, 3̄,1) · (3, 3̄,1) · (3, 3̄,1) s1 = s6 = s7 = 0

(3,1, 3̄) · (3,1, 3̄) · (3,1, 3̄) s1 = s6 = s8 = 0

(1,3, 3̄) · (1,3, 3̄) · (1,3, 3̄) s6 = s7 = s9 = 0

Table 32. Codimension three loci and corresponding Yukawa points for F16.

As we have noted earlier, this network is nothing but the field theoretic realization of the

network of extremal transitions relating the XFi that are induced by blowing up/down in

the toric ambient varieties PFi of their genus-one fibers. This network, to which we refer

to as the toric Higgsing diagram, is a powerful consistency check for the results of section 3
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and exhibits some remarkable features:

• The Higgsing diagram is symmetric with respect to the horizontal axis corresponding

to the self dual polyhedra, all of which have a gauge group rank equal to three.

• The rank of the gauge groups of a polyhedron and its dual sum up to six.

• Every toric hypersurface fibration can be reached upon a chain of Higgsings starting

from one of the three manifolds XF13 , XF15 and XF16 which exhibit non trivial MW-

torsion.

• Both the analysis on the geometrical side (see sections 3.2.1, 3.2.2 and 3.2.3) and the

Higgsings (see section 4.2) lead to the conclusion that the MW-torsion in the XFi

with fibers in F13, F15 and F16, manifests itself as discrete gauge symmetries in the

XFi with fibers in their respective dual polyhedra F1, F2 and F4.

In the following we discuss the above features and the Higgsing diagram in more detail.

In order to illustrate the relevant features of the Higgsing we focus on a particular sub-

branch of the Higgsing diagram which we depict in figure 30. This includes the transition

of the effective theory derived from F-theory on XF9 to that on XF5 . This transition is

convenient in order to discuss certain (unphysical) redefinitions of the divisor classes that

are sometimes needed in order to match the field theoretic results with the geometrical

computation. In this example we also describe the matching between the gauge group

generators before and after the Higgsing, and how this information can be inferred from

the toric diagram (see section 4.1). After these redefinitions we obtain a perfect match of

the massless spectrum of the effective theory after Higgsing with that obtained from the

geometrical computation. While our results apply for any generic two-dimensional base B,

we also discuss the Higgsing for the specific case of a P2 base. Here we comment on specific

boundary strata of the moduli space where a specific Higgsing might not be possible but

different equivalent Higgsings are.

In section 4.2 we focus on the theories corresponding to the genus-one fibrations XF1 ,

XF2 and XF4 . The field theoretical Higgsings imply the presence of discrete gauge sym-

metries Z3, Z2 and Z4 which confirms the results of the geometrical computations. In

section 4.3 we discuss the full chain of Higgs transitions. There we summarize the rele-

vant redefinitions of the gauge group generators and divisor classes needed to match the

spectrum obtained in the geometrical computations of section 3.

4.1 Toric Higgsing: an example

We are interested in Higgs transitions relating two supersymmetric vacua in a 6D N = 1

SUGRA theory. This requires that the vacuum expectation value (VEV) of the Higgs field

triggering this transition must preserve supersymmetry. This is guaranteed by imposing

flatness of the D-term potential along the direction of the VEV. As it has been observed

in [92], for the case of a Higgs field that is not in the adjoint representation, at least two

hyper multiplets with identical quantum numbers have to acquire a VEV in order to achieve

a D-flat direction.
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Figure 30. A subbranch of the Higgsing chain which we use to illustrate certain features relevant

for all Higgsings. We use the Higgsing from XF9
→ XF5

to demonstrate the type of bundle and

charge redefinitions which are needed in order to match a Higgsed model with the geometrical

computations. The Higgsings to XF1
, XF2

and XF4
are used to confirm the presence of discrete

gauge symmetries.

Furthermore, the Higgs mechanism of interest here has to relate two toric hypersurface

fibrations. Transitions of this type have a clear geometric interpretation in terms of the toric

diagrams. This can be seen as follows. First recall that the coefficients si which appear in

the hypersurface constraint of XFk correspond to integral points in the dual polyhedron F ∗k ,

see (2.23). As we have seen in section 3, many XFk exhibit hyper multiplets at codimension

two loci of the form {si = sj = 0}, where si and sj are neighboring vertices in the dual

polyhedron F ∗k connected by an edge. If the Higgs fields are of this type, they lead to a toric

Higgsing, i.e. the resulting theory is associated to a new toric hypersurface fibration XFk′ ,

k′ 6= k.27 Here the polyhedron Fk′ is obtained from Fk by blowing up the dual polyhedron

F ∗k precisely at the edge connecting the vertices corresponding to si, sj , respectively, and

taking its dual. In Fk, this corresponds to the blow-down associated to removing the corner

that is dual to the aforementioned edge in F ∗k . Note that, since the Higgs fields in the toric

breaking are never in the adjoint representation, the toric Higgsing is not rank preserving.

To exemplify this, consider the Calabi-Yau manifold XF9 . There the possible toric

Higgs fields are, cf. section 3.4.3,

1(1,2) : {s3 = s7 = 0} , 1(1,0) : {s1 = s5 = 0} , (4.1)

2(−1,−1/2) : {s5 = s9 = 0} , 2(1,3/2) : {s7 = s9 = 0} . (4.2)

27Non-toric Higgsings on the other hand are transitions for which the resulting fibration can not anymore

be described by one of the 16 polyhedra.
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(a)

(b) (c)

Figure 31. (a) Possible toric Higgsings in XF9 . The transitions to XF5 are achieved by Higgs fields

in the representations 2(−1,−1/2) (b) or 2(1,3/2) (c).

Considering the group theoretical breaking that could be induced by these fields, we see

that taking the Higgs fields in any of the singlet representations in (4.1), for instance 1(1,2)

leads to SU(2)×U(1), which coincides with the gauge group of the fibration XF6 , while a

VEV in the 2(−1,−1/2) or 2(1,3/2) (see (4.2)) leads to U(1)2, i.e. the gauge group expected

for XF5 . In figure 31 (a) we depict the polyhedron which is dual to F9 on the right and

highlight in different colors the edges corresponding to the fields in (4.1) and (4.2). They

have to be blown up, i.e. subdivided by a new ray, for each of the possible toric Higgsings.

In the actual polyhedron of F9, we indicate the vertices that are dual to these edges and

get cut off in the toric Higgsings. In the following we consider the Higgsing from XF9 to

XF5 in more detail.

In the case of Higgs fields in the representation 2(−1,−1/2), the Higgsing corresponds to

a removal of the lower left corner in the polyhedron F9 and to a blow-up at its dual edge,

which is the edge between s5 and s9, in its dual polyhedron (see figure 31 (b)). After that,

we obtain the toric diagram of F5 as given in section 3.3.2. Similarly, if we pick VEVs

in the 2(1,3/2) representation, we observe that after the Higgsing, the resulting polyhedron

and its dual both have to be reflected along the horizontal axis (see figure 31 (c)) in order

to recover figure 31 (b). Thus, the obtained effective theories after these two Higgsings are

physically equivalent.

However, we note that the geometrical computations leading to the spectrum of XF5

have been made for the polyhedron given in figure 31 (b). Thus, whenever we perform a

Higgsing with the Higgs in the representation 2(1,3/2) (leading to figure 31 (c)) we have to

transform certain divisor classes in order to match the multiplicities of hyper multiplets

resulting from the Higgsing with those found geometrically. More general, the “Higgsed”

polyhedron of F9 can be brought to the canonical form (i.e. the one used for the compu-

tation of the matter spectrum and multiplicities) by means of an SL(2,Z) transformation,
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which acts simultaneously on the polyhedron and its dual. This transformation deter-

mines how to transform the divisor classes in order to recover precisely the effective theory

obtained by the geometric computation on XF5 , as we demonstrate next.

4.1.1 Matching the charged spectrum

In order to match the charged spectrum in the Higgsed theory arising from F-theory on

XF9 with that on XF5 , we first have to relate the generators of the gauge groups before

and after the Higgsing. In XF9 , the U(1) generators are (see (3.118))

σ(ŝ1) = [e3]− [u]− [K−1B ] , σ(ŝ2) = [e1]− [u]− [K−1B ]− S7 +
1

2
D1 , (4.3)

with D1 being the class of the SU(2) Cartan divisor given in (3.121) as D1 = S9 − [e2].

The Shioda maps in XF5 are given by (see (3.75))

σ(ŝ′1) = [e1]− [e2]− [K−1B ] , σ(ŝ′2) = [u]− [e2]− [K−1B ]− S9 . (4.4)

Let us consider first the canonical Higgsing induced by VEVs in the 2(−1,−1/2). As

shown in figure 31 this corresponds to blowing down the divisor e3 = 0. We see that after

setting its divisor class [e3] = 0, the following relations hold

σ(ŝ′1) = σ(ŝ2)−σ(ŝ1) +
1

2
D1− [K−1B ] +S7−S9 , σ(ŝ′2) = −σ(ŝ1) +D1− 2([K−1B ] +S9) .

(4.5)

Since the vertical divisors [K−1B ], S7 and S9 do not contribute to the U(1) charges, these

equations allow us to make contact with the charges in XF5 (which we denote by Q′1
and Q′2). Indeed, recalling that Dynkin labels and U(1)-charges are computed according

to (2.12) and (2.13), respectively, we translate (4.5) into the charge relation28

Q′1 = Q2 −Q1 + T 3 , Q′2 = −Q1 + 2T 3 , (4.6)

with Q1, Q2 being the U(1)-charges and T 3 = 1
2D1 the Cartan generator of the

SU(2) in XF9 .

For the Higgsing with fields in the 2(1,3/2) representation we can proceed in a similar

manner. In this case, according to figure 31, one has to set the divisor class [u] = 0. In

addition, one must take into account that the toric diagram is reflected with respect to

the canonical one (compare figure 31 (c) with figure 8, including the location of the zero

section). This implies that the classes of [e3], [v] and [e1] in XF9 get mapped to [u], [e1]

and [v] in XF5 , respectively. Hence, the Shioda maps (4.3) for XF9 , written in terms of

divisor classes on XF5 , read

σ(ŝ1) = [u]− [K−1B ] , σ(ŝ2) = [v]− 3[K−1B ] + S7 +
1

2
D1 . (4.7)

Writing both (4.4) and (4.7), in terms of the exceptional divisors E1, E2 as well as the

hyperplane class H using (3.8), we find the following relations among them

σ(ŝ′1) = σ(ŝ2)− σ(ŝ1) +
1

2
D1 − S9 , σ(ŝ′2) = σ(ŝ1) +D1 − 2S9 , (4.8)

28Note here the importance of the fact that the choices of zero sections in XF5 , cf. figure 8, and XF9 after

Higgsing, cf. figure 31 (b), are different. This corresponds to an SL(2,Z)-transformation of the U(1)-charges.
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VEV: 2(−1,−1/2) VEV: 2(1,3/2)

Q′1 = (Q2 −Q1 + T 3) Q′1 = (Q2 −Q1 + T 3)

Q′2 = (−Q1 + 2T 3) Q′2 = (Q1 + 2T 3)

1(1,2) 1(1,−1) 1(1,1)

1(1,0) 1(−1,−1) 1(−1,1)

1(0,1) 1(1,0) 1(1,0)

1(1,1) 1(0,−1) 1(0,1)

2(−1,−1/2) 1(0,0) + 1(1,2) 1(1,0) + 1(0,−2)

2(1,3/2) 1(0,−2) + 1(1,0) 1(1,2) + 1(0,0)

2(0,−1/2) 1(−1,−1) + 1(0,1) 1(0,1) + 1(−1,−1)

3(0,0) 1(−1,−2) + 1(1,2) + 1(0,0) 1(1,2) + 1(−1,−2) + 1(0,0)

Table 33. Possible state decompositions from XF9
to those of XF5

for different Higgses.

from which it follows that the U(1)-charge redefinition in this case is given by

Q′1 = Q2 −Q1 + T 3 , Q′2 = Q1 + 2T 3 . (4.9)

The charge formulas in both cases agree with the field theory expectations i.e. there

is a complete gauge singlet in the decomposition of the Higgs field into representations of

the residual gauge symmetry. The decomposition of the states for both cases is given in

table 33. We observe that, indeed, all charged states in XF5 have been reproduced.

In order to match their multiplicities as well, we first recall the basic fact that a hyper

multiplet consists of two half-hypers transforming in representations conjugate to each

other. Thus, in order to compute the resulting multiplicities after Higgsing, one has to

take into account all states transforming under the representation of interest together with

their complex conjugates. For example, note that in the branching induced by 2(−1,−1/2),

the states 2(0,−1/2) and 1(1,1) decompose as

2(0,−1/2) → 1(−1,−1) + 1(0,1) , 1(1,1) → 1(0,−1) , (4.10)

thus, the multiplicity of hyper multiplets in the representation 1(0,1) after the Higgsing must

be computed as the sum of the multiplicities of 2(0,−1/2) and 1(1,1) in XF9 . Similarly, note

that every Higgs doublet decomposes into a neutral and a charged singlet. In computing

the multiplicity of such charged singlets after Higgsing, one has to take into account that

two of these are absorbed as longitudinal components of the massive W bosons from the

broken SU(2).

In the case of the Higgsing induced by a VEV in the 2(−1,−1/2) representation ofXF9 , we

can directly compare the resulting multiplicities with the geometric result of section 3.3.2.

However, in the case where we turn on VEVs for the fields in the representation 2(1,3/2), the

multiplicities only match after performing a redefinition of divisor classes. Indeed, we note
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that on the dual polyhedron, the reflection29 relating figure 31 (c) with figure 8 enforces an

exchange of the sections s5 and s1 in XF9 with s7 and s3 in XF5 , respectively. From (3.8)

we see that this effectively amounts to a shift in the bundles S7 and S9 from XF9 to XF5 ,

which is given by

S7 → 2[K−1B ]− S7 , S9 → S9 . (4.11)

Using the shift (4.11) for the second Higgsing, we find that in both cases (either VEVs

in 2(−1,−1/2) or 2(1,3/2)), there is a perfect agreement with the spectrum in table (9) of the

toric hypersurface fibration XF5 .

4.1.2 Matching of the neutral spectrum: Higgsing & Euler numbers

So far we have matched only the charged spectrum of the Higgsed theory of XF9 with

that computed geometrically on XF5 . In this section we work out the counting of complex

structure moduli, that determine the number of neutral hyper multiplets by (2.11), before

and after Higgsing. We show that the mismatch of the Hodge numbers h(2,1)(XF5) −
h(2,1)(XF9) ≥ 0 precisely agrees with the amount of massless neutral singlets contributed

from the Higgs multiplets.

First, let us discuss the geometric side of the matching. For a given Calabi-Yau man-

ifold X, the amount of complex structure moduli can be inferred from its Euler number

χ(X) as

h(2,1)(X) = h(1,1)(X)− χ(X)

2
, (4.12)

with h(1,1)(X) given by

h(1,1)(X) = 1 + rk(GX) + h(1,1)(B) , (4.13)

where rk(GX) is the rank of the total gauge group GX of X. Thus, in an extremal transition

from a toric hypersurface fibration XFi to XFj , with the same base B, the change in h(2,1)

reads

h(2,1)(XFj )− h(2,1)(XFi) = rk(GFj )− rk(GFi) +
χ(XFi)− χ(XFj )

2
. (4.14)

For the specific Higgsing XF9 → XF5 , their Euler numbers are given according to (C.1) as

χ(XF9) = −24[K−1B ]2 + 4[K−1B ](2S7 + 3S9)− 4(S27 + S29 ) ,

χ(XF5) = −24[K−1B ]2 + 8[K−1B ](S7 + S9)− 2(2S27 + 2S29 − S7S9) ,
(4.15)

so that the difference in their Hodge numbers h(2,1) is given by

h(2,1)(XF5)− h(2,1)(XF9) = S9(2[K−1B ]− S7)− 1 . (4.16)

Here the −1 is the contribution from the change in the rank of the gauge group.

29Another possibility to bring the polyhedron F9 “Higgsed” by 2(1,3/2) back to the canonical form of F5,

is to rotate it by 90 degrees clockwise. In this case, the bundle redefinitions are S7 → 2[K−1
B ]−S9, S9 → S7 .
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Next, in the corresponding field theories we consider the canonical Higgsing, that is

induced by a Higgs in the representation 2(−1,−1/2). The multiplicity of hyper multiplets in

the representation 2(−1,−1/2) is S9(2[K−1B ]−S7), cf. table 17. This is also the number of new

uncharged singlets produced in the Higgsing XF9 → XF5 . However, out of those neutral

singlets, exactly one gets massive, as can be seen from the D- term potential.30 This is also

closely related to Goldstone’s theorem: as three vectors have been lifted (an entire SU(2)

is broken), three hyper multiplets must be removed from the massless spectrum. Two of

these hyper multiplets are charged, as we discussed in the previous section, while the third

one must be neutral, since it provides the longitudinal component of a massive U(1). In

fact, only the simultaneous removal of three vectors and three hyper multiplets makes it

possible for the purely gravitational anomaly in (A.1) to cancel after the Higgs mechanism.

Thus, there are precisely S9(2[K−1B ] − S7) − 1 massless singlets after the Higgsing,

which precisely agrees with (4.16). In other words, we observe that the neutral massless

hyper multiplets resulting from the Higgs mechanism become the complex structure moduli

that were gained in the transition XF9 → XF5 . In this work, we explicitly confirm the

matching of the complex structure moduli for all toric Higgs transitions between two toric

hypersurface fibrations .

4.1.3 Allowed regions for base P2

While we considered in the previous sections the Higgsings for fibrations over an arbitrary

two dimensional base, we regard it appropriate to devote some time on a concrete example

with base P2 in order to discuss some subtleties that might arise.

Choosing the base fixes the range of allowed divisor classes for S7 and S9 [39]. Ex-

panding these divisors and the canonical class KP2 in terms of the hyperplane class HB on

P2, we have

S7 = n7HB , S9 = n9HB , KP2 = −3HB , (4.17)

with n7 and n9 being positive integral coefficients.

The effectiveness condition on all divisor classes [si] in (3.8) that occur for a given

manifold XFi imposes constraints on the allowed values for n7 and n9. These allowed

values depend on the choice of the fiber. For the case of XF9 and XF5 the allowed regions

are depicted in figure 32. A choice of a point in this diagram constitutes a consistent

fibration. Note that the allowed region for XF5 is fully contained inside that of XF9 . Thus,

there are compactifications XF9 inside the blue region in figure 32, for which the transition

to XF5 is not possible because the effectiveness condition for some coefficient si in XF5

would be violated.

Indeed, this can also be seen from the field theory perspective, as for the points outside

the allowed region for XF5 , the multiplicity of Higgses in the representation 2(−1,− 1
2
),

that reads

S9
(
2[K−1B ]− S7

)
= n9 (6− n7) , (4.18)

30In the case of an adjoint Higgs, all neutral hyper multiplets remain massless as the D-term is exactly zero.
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n7

Toric Higgsing XF9 → XF5 allowed

Allowed strata for XF9 where the toric
Higgsing with 2(−1,−1/2) is not possible

XF9 ≡ XF5

XF5 ≡ XF7 , adjoint Higgsing allowed

n9

Figure 32. Allowed regions of S7 and S9 for XF9 (blue and purple regions) and XF5 (purple

region) with base B = P2.

is smaller than two. Recall that in order to have a D-flat potential we need at least two

Higgs fields in the same representation to acquire a VEV.31 We also observe that the Higgs

mechanism is possible for all points (n7, n9) in the interior of the allowed region of XF5 .

However, for certain points on the boundary of the allowed region for XF5 we see that

the amount of doublets does not suffice for a supersymmetry preserving Higgsing. These

points are

• 0 ≤ n7 ≤ 3, n9 = 0: here we see that s9 belongs to the trivial bundle. Since in XF9

the locus of the SU(2) singularity is precisely {s9 = 0}, cf. (3.119), it is removed and

the gauge group of XF9 at these points equals that of XF5 , namely U(1) × U(1). In

addition, we see that the spectra of XF5 and XF9 in tables 9 and 17, respectively,

match perfectly. Hence we are at points where the strata of the moduli spaces of the

two theories overlap and a transition among them is trivial.

• n7 = 6, n9 = 3: at this point there are no states in XF9 which transform in the

2(−1,− 1
2
), so that the toric Higgsing is again not possible. Note also that since s9 does

not belong to the trivial bundle, the SU(2) factor is part of the gauge symmetry of

the effective theory. However, in the hypersurface constraint for XF5 , the sections

s1, s5 and s8 transform in the trivial bundle. Hence, at this particular point one can

shift the toric coordinates u, v and w in order to globally set the section s1 = 0 [42],

resulting in a non-toric U(1). This shows that the effective theory of XF5 coincides

with that of XF7 precisely at the point n7 = 6, n9 = 3. Since the rank of the gauge

groups of XF9 and XF7 coincide, no toric Higgsing is possible. However, on XF9 , one

sees that there is one hyper multiplet in the adjoint of SU(2). In fact one can use this

field to induce an adjoint (non-toric) Higgsing which leads precisely to the effective

31Note that in this region, a different Higgsing with 2(1, 3
2
) is possible.
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theory of XF5 at n7 = 6, n9 = 3. Indeed, we have explicitly computed that at this

particular stratum in moduli space the numbers of complex structure moduli in XF7

and XF9 coincide. Similarly, we have confirmed that the entire matter spectrum in

XF7 is reproduced (with the correct multiplicities) after the adjoint breaking from

XF9 . We omit all the details and just state the corresponding U(1) redefinitions, in

terms of the generators in XF9 :

Q′1 = −3T3 − 2Q1 +Q2 , Q′2 = −T3 − 2Q1 +Q2 , Q′3 = −2T3 −Q1 . (4.19)

Looking at the Calabi-Yau constraint for XF9 we also observe that, by a shift in the

toric coordinates, we can set s1 = 0. Hence, the hypersurface constraint for XF7

only contains the additional monomial s8w
2u which is absent in the one of XF9 . At

n7 = 6, n9 = 3 the coefficient s8 is just a constant, cf (3.8), i.e. one degree of freedom.

On the field theory side, this degree of freedom corresponds precisely to the single

adjoint Higgs on XF9 .

4.2 Higgsings to theories with discrete gauge symmetries

From the analysis carried out in section 3, we observe that the presence of discrete gauge

symmetries is exclusive to the polyhedra F1, F2 and F4. On the field theory side, we can

use the Higgs mechanism to track the discrete symmetries as well, since these correspond to

surviving remnants of broken U(1) symmetries. In fact, one can use the Higgsing diagram to

show that the only Higgs mechanism for which the U(1)s are broken to a discrete subgroup,

are those leading precisely to F1, F2 and F4, as expected geometrically. In this section we

want to discuss in some detail those Higgsings leading to the toric hypersurface fibrations

with discrete symmetries. To this end, we focus on the possible Higgs branches of XF6 ,

XF5 and XF3 .

In many of the transitions considered here, the charge of the Higgs fields does not

allow us to directly infer whether or not there is a non-trivial discrete symmetry. Consider

for example the Higgsings from XF9 → XF6 , with the toric Higgses given in (4.1). One

possibility is to have VEV fields in the representation 1(1,2). In principle one might think

that, given the charge of the Higgses, there is a discrete remnant of the second U(1).

However, this leftover symmetry is trivial, since there is an SL(2,Z) transformation which

maps the charge of the Higgses from (1, 2) to (1, 0). As discussed in section 4.1, the field

1(1,0) allows for a geometrically equivalent breaking, where it becomes clear that no discrete

symmetries are present in XF6 as there the U(1) charge is minimal.

More general, if we break a U(1)n gauge symmetry by the VEV of a field φ, there is

no discrete symmetry left provided the existence of an SL(n,Z) which makes its charge

minimal. In other words, after the SL(n,Z) transformation of the VEV field, the charge

(q1, q2, . . . , qn) takes the form (1, 0, . . . , 0). In this new basis it is obvious that no discrete

gauge group is left after the breaking. In other cases a seeming discrete group can be

embedded into an unbroken U(1) or the center of a non-Abelian gauge group, showing

again the absence of a discrete group.
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VEV: 2− 3
2

VEV: 12

Q′ = (3T 3 −Q) Q′ = Q mod 2

2− 3
2

10 + 1−3 2 1
2

2 1
2

11 + 1−2 2 1
2

12 1−2 10

11 1−1 11

30 10 + 13 + 1−3 30

Table 34. Branching of representations under the possible Higgsings of XF6 to XF3 and XF4 .

XF6 Higgs branches

From the spectrum in XF6 given in table 11 we see that there are two possible toric

Higgsings, depending on whether the Higgs fields are taken in the representation 2−3/2
or 12. In the first case the SU(2) × U(1) symmetry in XF6 is broken to a single U(1),

so that this Higgs branch leads to XF3 . In the second case the SU(2) symmetry remains

unbroken, as expected from a Higgsing to XF4 . The splitting of the states in either cases

proceeds according to table 34. Using these branchings of the representations on XF6 into

representations of GF3 , we can compute the multiplicities of the multiplets after Higgsing

using table 11. They read

13 : (S9 − S7)
(
[K−1B ]− S7 + S9

)
12 : ([K−1B ]− S9 + S7)

(
6[K−1B ]− 2S9 + S7

)
11 : 12[K−1B ]2 + [K−1B ] (8S7 − S9)− 4S27 + S7S9 − S29 .

(4.20)

The above multiplicities agree with our geometrical result for the spectrum of XF3 , see

table 7. Note also that naively, due to the non-primitive U(1)-charge of the Higgs field

2− 3
2
, we expect a surviving discrete Z3 symmetry. However, this symmetry is contained

in the surviving U(1) symmetry in XF3 , i.e. there is no discrete gauge group on XF3 as

expected geometrically.

In contrast, we see that the U(1)-charge of the VEV 12 triggering the transition XF6 →
XF4 is non-minimal. Thus, we expect a discrete gauge symmetry to be left unbroken, in

addition to the SU(2) gauge factor. The decomposition of representations for this Higgsing

is given in table 34. There we see that the doublet after the Higgsing carries a half integral

charge with respect to the discrete gauge factor. Hence, one has to rescale all charges

by a factor of two, so that all charges become integral. Thus, we see that the resulting

discrete symmetry is in fact Z4. Note that in this case, the discrete factor is of physical

relevance, since we can not embed it into the local gauge group of XF4 . This implies that

in a four dimensional theory, there will be gauge invariant couplings which are absent due

to selection rules imposed by the Z4-symmetry.
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VEV: 1(−1,−2) VEV: 1(−1,1) VEV: 1(0,2)

Q′1 = (2Q1 −Q2) Q′1 = (Q1 +Q2) Q′1 = (Q1), QZ2 = Q2 mod 2

1(1,−1) 13 10 1(1,−)

1(1,0) 12 11 1(1,+)

1(−1,−2) 10 13 1(1,+)

1(−1,−1) 11 12 1(1,−)

1(0,2) 12 12 1(0,+)

1(0,1) 11 11 1(0,−)

Table 35. Branching of representations under the possible Higgsings of XF5
to XF3

(first two

columns) and XF2 (third column).

The multiplicities of charged states following from tables 34 and 11 are given by

21 :
(
[K−1B ]− S7 + S9

) (
6[K−1B ]− 2S9 + 2S7

)
,

12 : 6[K−1B ]2 + [K−1B ] (13S7 − 5S9)− 3S27 − 2S7S9 + S29 ,

30 : 1 + ([K−1B ]− S7 + S9)
(−S7 + S9)

2
.

(4.21)

This precisely agrees with the geometrically obtained spectrum of XF4 in table 5. We

emphasize that charges of the matter states w.r.t to the Z4, that we have obtained by

Higgsing XF6 , precisely coincide with those computed by intersections with the four-section

in (3.48).

XF5 Higgs branches

In XF5 there are two possible toric Higgsing to XF3 . The Higgs fields in that case are in the

representations 1(−1,−2) or 1(1,−1), cf. table 9. The branching of the representations of XF5

into representations of GF3 are shown in table 35. The resulting spectrum matches that

in (4.20), cf. table 7, up to redefinitions of S7 and S9, that correspond to the transformations

needed in order to bring the resulting polyhedron to its canonical form in figure 7.

Similarly, the polyhedron allows for an additional toric Higgsing from XF5 to XF2 which

is triggered by VEVs in the representation 1(0,−2). This leaves the first U(1) unbroken,

together with a remnant discrete Z2 symmetry from the second U(1). The multiplicities

of the charged matter in XF2 that are deduced by Higgsing from XF5 are obtained from

the group-theoretical branchings shown in table 35 and the spectrum of XF5 in table 9.

They read

1(1,−) : 6[K−1B ]2 + 4[K−1B ] (S9 − S7) + 2S27 − 2S29 ,
1(1,+) : 6[K−1B ]2 + 4[K−1B ] (S7 − S9)− 2S27 + 2S29 ,
1(0,−) : 6[K−1B ]2 + 4[K−1B ] (S7 + S9)− 2S27 − 2S29 ,

(4.22)

which precisely matches the geometrical result in table 3.
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VEV: 13

Q′Z3
= q mod 3

13 10

12 12

11 11

Table 36. Branching of representations under the toric Higgsing of XF3 to XF1 .

XF3 Higgs branches

In the spectrum of XF3 , the singlet 13 allows for a toric Higgsing. In this transition, the

U(1) symmetry gets broken to a Z3 subgroup. The decomposition of representations of

XF3 for this Higgsing is shown in table 36.

As mentioned before, 6D hyper multiplets in the representation 12 under the discrete

group Z3 are equivalent to hyper multiplets in the representation 11. Hence, there is only

one type of charged hyper multiplet in XF1 . This is in agreement with the geometrical

computation (see section 3.2.1), where one sees a single codimension two locus supporting

an I2-fiber. From the Higgsing we can read of the multiplicity of this charged state as

11 : 3
(
6[K−1B ]2 − S27 + S7S9 − S29 + [K−1B ](S7 + S9)

)
. (4.23)

4.3 The complete Higgsing chain

Having summarized the relevant features of the toric Higgsing procedure, we devote this

section to a complete account on all possible toric Higgsings, that are summarized in

appendix D, tables 37–39. In these tables we indicate in the first column, which toric

hypersurface fibrations XFi → XFj , i 6= j, are to be related. Then, in the second column,

we state the possible toric Higgsings and which fields are to be identified as the Higgs

fields that acquire a VEV in the transition. We note that all toric Higgsings between

the same two toric hypersurface fibrations are physically equivalent. In the third column

the U(1)-generators on XFj are expressed in terms of the U(1)-generators and Cartan

generators on XFi . We have checked explicitly in all Higgsings that all matter charges of

the fibration XFj determined in section 3 are obtained. In addition, in some Higgsings, the

unbroken non-Abelian gauge group factors are interchanged in the Higgsing process. In

these cases, the change of the order of non-Abelian factors is indicated in the third column

of the tables in appendix D. In addition in most of the cases, an SL(2,Z)-transformation

on the “Higgsed” polyhedron is necessary in order to bring it into the canonical form used

for the geometric computations in section 3. These transformations determine a unique

redefinition of the divisor classes, similar as in (4.11), that is necessary in order to compare

the matter multiplicities of the representations obtained after the Higgsing with the ones

obtained by inspecting the geometry of XFj . The relevant redefinitions are shown in the

last column of the tables in appendix D.

The decompositions of the representations on XFi under the group GFi into represen-

tations of the unbroken gauge group GFj after Higgsing can be found in appendix E for all

– 102 –



J
H
E
P
0
1
(
2
0
1
5
)
1
4
2

canonical toric Higgsings. We have checked in all cases that the matter spectra obtained by

Higgsing the theory on XFi to the one corresponding to XFj agree with those of section 3,

which provides another non-trivial check of the geometric analysis presented there.

We conclude this section with one final observation. As highlighted before, we observe

that for every transition between two toric hypersurface fibrations XFj → XFk there exists

a dual transition between XF ∗k
→ XF ∗j

. This symmetry of the Higgs diagram in figure 1

can be directly understood from the interpretation of the toric Higgsing on the level of the

fiber polyhedron and its dual as we will explain in the following.

As pointed out in section 4.1, a toric Higgsing acts exactly as a blow-down in the

original polyhedron Fj and a blow-up F ∗j in its dual polyhedron:

(Fj , F
∗
j )

Higgs−→ (Fj
blow-down−→ Fk , F

∗
j

blow-up−→ F ∗k ) , (4.24)

with j > k. Next we consider the inverse of the above process: we take F ∗k as the starting

polyhedron with Fk as its dual. From the diagram (4.24), we know that there exists a

blow-up map from F ∗j to F ∗k . However, now we take its inverse map as the blow-down from

F ∗k to F ∗j . The same can analogously be done for the dual polyhedron Fk whose blow-up

map is obtained from the inverse of the blow-down map in (4.24). Consequently, we arrive

at the following map for the dual Higgs transition

(F ∗k , Fk)
Dual Higgs−→ (F ∗k

blow-down−→ F ∗j , Fk
blow-up−→ Fj) . (4.25)

The above relation holds for every toric Higgsing and hence shows, that every Higgs

transition has indeed a dual counterpart. However in general we observe more equivalent

transitions between higher polyhedra than in their dual counterparts. In the geometry

this reflects the fact, that in polyhedra with a larger area, there are more ways to embed

subpolyhedra. On the field theory side this corresponds to less representations, that can

be used for the Higgsing. An example is the transition XF15 → XF12 which can be equally

realized by cutting any of the four vertices in the square of F15. However the dual transition

F5 → F2 can only be achieved by deleting the unique node and hence there is only one

Higgsing possible.

5 Conclusions

In this work we have analyzed F-theory compactifications on all toric hypersurface fibra-

tions XFi . In these manifolds the genus-one fibers are given as a hypersurface in any of

the 2D toric varieties associated to the reflexive polyhedra Fi depicted in figure 2. For

each of these 16 Calabi-Yau manifolds we have computed the full MW-group (cf. with the

results of [41] for the toric MW-group) and determined all codimension one, two and three

singularities and the corresponding reducible fibers in the crepant resolutions XFi . Our

work presents the first complete analysis of all these aspects. In the course of our study,

we have encountered some codimension two fibers which are non-split and others whose

complete splitting is visible only by computing their associated prime ideals. In addition,

we have computed the Hodge numbers of the XFi in the case of Calabi-Yau threefolds. All
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these geometric results determine the gauge groups, matter representations and Yukawa

couplings of the effective SUGRA theories of F-theory on these manifolds. We have shown

that these effective theories are anomaly-free in 6D, which proves in turn the completeness

of our analysis of codimension one and two singularities of all these models [93].

The gauge groups we have found range from rank zero to six with up to three U(1)-

factors corresponding to a rank three MW-group of rational sections. The Calabi-Yau

manifolds XF1 , XF2 and XF4 , that are constructed as fibrations of the cubic in P2, the

biquadric in P1×P1 and the quartic32 in P2(1, 1, 2), respectively, do not have a section and

lead to F-theory models with discrete gauge groups Z3, Z2 and Z4. We have established

a relationship between the order of the multi-section in these Calabi-Yau manifolds and

the order of the discrete gauge group. Furthermore, we have shown the existence (and

computed the multiplicity) of I2-singularities that support matter charged only under these

discrete groups. We have also a proposal for a “Shioda-map” of multi-sections, that allowed

us to consistently compute the charges of all matter fields under these discrete gauge groups.

In addition, by an explicit computation of the respective generators of their rank one MW-

groups, we have demonstrated that XF2 and XF3 (which is constructed as a fibration of the

elliptic curve in dP1) both yield effective theories with one U(1)-gauge field. Most notably,

we have found the first F-theory realization of charged singlets with U(1)-charge q = 3

in XF3 . Furthermore, the non-trivial consistency conditions imposed on the U(1)-charge

lattice of a model in quantum gravity [89] have been checked.

We emphasize that the non-toric nature of the generator of the MW-group of the fibra-

tion XF3 was key to obtaining this U(1)-charge. We expect that the presence of non-toric

sections can lead to more exotic U(1)-charge assignments of matter than those that occur

in toric cases. Such a situation can be desirable as these exotic charge assignments could

serve to control the phenomenology of particle physics models constructed in F-theory.

Besides these geometrical advances, we have shown that those extremal transitions

between all toric hypersurface fibrations XFi , which are induced by toric blow-downs in the

toric varieties PFi , can be described by a corresponding Higgs mechanism in the effective

theories of F-theory on the XFi . Although this correspondence between geometry and

physics is expected to hold in general, also in chiral F-theory compactifications to 4D,33

we considered here the 6D case.

We have explicitly worked out the full network of all toric Higgs transitions, shown

in figure 1, in the 6D SUGRA theories of these F-theory models. Cutting off a vertex

in a polyhedron Fi corresponds to a blow down in PFi , which implies the removal of a

corresponding divisor in XFi . After this blow-down, a new monomial can be added to

the hypersurface constraint of XFi , resulting in a new Calabi-Yau manifold XFi′ . In the

effective theory of F-theory on XFi , this transition corresponds to giving a VEV to a

particular matter field along a D-flat direction and a consequent breakdown of the gauge

symmetry of the theory. For all extremal transitions, we have identified the relevant matter

field that has to acquire a VEV and matched the effective theory after Higgsing with the

32As remarked already, this case has been subject of recent attention in [54–56].
33As 4D chirality is induced by G4-flux in F-theory, this requires the understanding of the behavior of

G4-flux during extremal transitions in Calabi-Yau fourfolds, which is discussed in [94]. The results of [95]

will be crucial for carrying out any quantitative analysis in this context.
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one obtained geometrically from F-theory on XFi′ . As an explicit example, for a specific

choice of the base B = P2, we have described the transition XF9 → XF5 for all strata in

moduli space, that are labeled by (n7, n9), cf. figure 32. There we have found that a D-flat

Higgsing in the effective theory is only possible for those points (n7, n9), that are allowed

for both XF9 and XF5 . In this context, we have also commented on the different gauge

groups that appear on the boundary of the allowed region for (n7, n9) in XF5 .

We have found that the full toric Higgs network in figure 1 is beautifully mirror sym-

metric under the exchange of a polyhedron Fi and its dual F ∗i .34 This gave rise to a number

of interesting observations: the toric hypersurface fibrations XFi and XF ∗i
always have the

same amount of U(1)-symmetries and the ranks of their gauge groups, GFi and GF ∗i , always

sum up to six. Indeed, this sum rule of the rank of the gauge group is a direct consequence

of the sum rule for the volumes of Fi and its dual F ∗i .35 The duality between XFi and XF ∗i

is realized also on the level of the Higgs transitions, i.e. for every toric Higgs transition

XFi → XFi′ , there is a dual Higgs transition XF ∗
i′
→ XF ∗i

. In addition, we have observed

that this duality maps discrete symmetries in F-theory to Mordell-Weil torsion.

Finally, let us highlight some features of toric hypersurface fibrations, which make them

attractive for particle physics applications. First, recall that the presence of discrete sym-

metries is a desirable feature in field theoretic constructions beyond the standard model.36

So far, all efforts towards embedding the standard model in F-theory have been based on

compactifications with a zero section, which are typically free of discrete symmetries.37

Since discrete symmetries arise naturally in genus one-fibrations with multi-sections, this

type of compactifications constitutes a promising new arena for engineering semi-realistic

particle physics models.

In addition, we have found concrete toric hypersurface fibrations, that directly realize

the gauge group and representations of the Standard Model (XF11), the Pati-Salam model

(XF13) and the trinification model (XF16). Even more interestingly, we have found that the

Standard Model can be obtained via toric Higgsings from the Pati-Salam or the trinification

model, both of these models being at the same time the two theories with the maximal

non-Abelian gauge groups among all toric hypersurface fibrations.

Outlook

For future directions it would be interesting to use the effective theories we have obtained

for particle physics applications. Since the Pati-Salam and trinification model are the two

maximal toric enhancements of the Standard Model, as we have seen, they are natural

candidates for toric unified model building in F-theory. It would be fascinating to work

out the phenomenological implications of this observation.

34We note that a similar observation has been made for elliptically fibered toric K3 surfaces in [96].
35We thank Albrecht Klemm for explaining this fact to us.
36The reader is referred to [97–101] for a selection of discrete symmetries which have been invoked in

order to forbid certain unappealing operators in supersymmetric models.
37Instead of discrete symmetries, the phenomenology of these models is kept under control by virtue of

additional U(1) symmetries. Discrete symmetries can arise by a manual breakdown of these additional

U(1)s. This possibility has been studied in e.g [102, 103].
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Clearly, the results of this paper most directly apply to six dimensional or to non-chiral

four dimensional compactifications of F-theory. Thus, a natural and most straightforward

extension of this work, that would also be crucial for phenomenological applications, is the

inclusion and construction of G4-flux as well as the computation of the chiral indices of

all the matter representations found in all toric hypersurface fibrations XFi , following the

recipe and techniques described in [42].

The beautiful realization of mirror symmetry in the Higgs network and related obser-

vations like the sum rule for the gauge groups and the connection between Mordell-Weil

torsion and discrete symmetries are topics of further investigation. It would be exciting

to understand all these observations by unveiling a common structure underlying all toric

hypersurface fibrations, for example a master gauge group into which all gauge groups GFi
could be embedded. This might require a departure from the toric framework.

There has been a lot of recent progress in obtaining matter representations in F-theory

using deformations or, in physical terms, the Higgs mechanism [104, 105]. It would be very

interesting to see how the results about the Higgs network of the toric hypersurface fibra-

tions obtained here can be worked out using the deformation techniques employed there.

Finally, it would be interesting to use the toric hypersurface fibrations studied here also

for compactifications of M-theory to engineer 3D N = 2 gauge theories and to study their

Coulomb-branches and phase structures, see [106–109] (and also the seminal works [110,

111]) for recent detailed analyses of the phase structure of 3D SU(N)-gauge theories for

all N ≤ 5.
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A Anomaly cancellation conditions in 6D

In this appendix we summarize the consistency relations that have to be obeyed by an

anomaly-free 6D SUGRA theory. We follow the conventions and notations of [24, 39, 80],

to which we also refer for further details.

There are three qualitatively different types of anomalies, the pure gravitational

anomalies, the mixed gauge-gravitational anomalies and the pure gauge anomalies. De-
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pending on the number of gauge group factors, mixed anomalies between different gauge

group factors are present. A theory is referred to as anomaly-free if all one-loop anomalies

are canceled by the contributions from the anomalous variations of Green-Schwarz (GS)

counter-terms.

For an effective SUGRA theory in 6D, the anomaly cancellation conditions read:

trR4 : H − V + 29T = 273 , (trR2)2 : 9− T = a · a (Pure gravitational)

trF 2
κ trR2 : −1

6

(
Aadjκ −

∑
R

xRAR

)
= a·

(
bκ
λκ

)
(Non-Abelian-gravitational)

FmFntrR2 : −1

6

∑
q

xqm,qnqmqn = a· bmn (Abelian-gravitational)

trF 4
κ : Badjκ −

∑
R

xRBR = 0 , (Pure non-Abelian)

trF 2
κ trF 2

κ :
1

3

(∑
R

xRCR − Cadjκ

)
=

(
bκ
λκ

)2

FmFnFkFl :
∑
q

xqm,qn,qk,qlqmqnqkql = b(mn· bkl) (Pure Abelian)

FmFntrF 2
κ :

∑
R,qm,qn

xR,qm,qnqmqnAR =

(
bκ
λκ

)
· bmn (Non-Abelian-Abelian)

FmtrF 3
κ :

∑
R,qm

xR,qmqiER = 0 . (A.1)

Here, we have given the terms in the 6D anomaly polynomial, whose coefficients are the

respective anomalies. The Ricci tensor is denoted by R and the field strengths of the non-

Abelian and Abelian gauge field for the gauge group factorGκ and themth U(1) are denoted

by Fκ and Fm, respectively. The overall number of hyper, vector and tensor multiplets

is denoted by H, V and T , respectively and the variables ‘x·’ denote the multiplicities

of certain charged hyper multiplets: xR, xR,qm and xR,qm,qn are the number of hyper

multiplets in the representation R, in the representation R with charge qm under U(1)m
and in the representation R with charges {qm, qn} under U(1)m×U(1)n, respectively; xqm,qn
and xqm,qn,qk,ql denote the number of matter hyper multiplets with charges (qm, qn) and

(qm, qn, qk, ql) under U(1)m ×U(1)n and U(1)m ×U(1)n ×U(1)k ×U(1)l, respectively.

In the contributions from the GS counter-terms, a, bκ and bmn are the anomaly co-

efficients. These transform as vectors of SO(1, T ), and are determined by the underlying

microscopic theory. In our F-theory compactification these coefficients can be readily in-

terpreted in terms of geometrical objects. We have

a = [KB] , bκ = SbGκ , bmn = −π(σ(ŝn) · σ(ŝm)) , (A.2)

where KB is the canonical divisor of B, SbGκ is the divisor on B defined in (2.2) sup-

porting the non-Abelian group Gκ and π(σ(ŝn) · σ(ŝm)) is the Néron-Tate height pairing

defined in (2.6). Under these identifications, the inner product in (A.1) is replaced by the

intersection pairing on the base B.
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In addition, in the anomalies (A.1), we have made use of the following group theoretical

relations between traces in different representations R:

trRF
2
κ = ARtrF 2

κ , trRF
3
κ = ERtrF 3

κ , trRF
4
κ = BRtrF 4

κ + CR(trF 2
κ )2 . (A.3)

Here ‘tr’ denotes the trace with respect to the fundamental representation, while trR is the

trace for a given representation R. For κ = SU(N) with N > 3, the group theory factors

in (A.3) assume the following values:38

Representation Dimension AR BR CR ER

Fundamental N 1 1 0 1

Adjoint N2 − 1 2N 2N 6 0

Antisymmetric N(N − 1)/2 N − 2 N − 8 3 N − 4

(A.4)

For the specific case of SU(2) and SU(3), the coefficients AR coincide with those given

in the table. In contrast to that, the coefficients BR and ER are equal to zero in both

cases. The actual coefficient CR can be computed using the values for BR and CR in the

above table, as CR + 1
2BR, for N = 2, 3. Finally, the coefficient λκ in (A.1) corresponds to

the group normalization constant defined by λκ = 2cκ/Eadjκ , where cκ is the dual Coxeter

number for the group Gκ and Eadjκ is ER for the adjoint representation. For Gκ = SU(N),

we have λκ = 1.

B Additional data on toric hypersurface fibrations

In this appendix we provide the explicit expressions for f and g of the WSF of the Jacobian

fibrations of XF1 , XF2 and XF4 . Additionally, we present the explicit WS-coordinates of the

rational sections of XF3 , XF5 and XF7 . The functions f , g as well as the WS-coordinates

of the rational sections of all other toric hypersurface fibrations XFi can be obtained by

specializing the ones presented here. Finally, we derive the Tate form, the WSF and the

WS-coordinates of the generators of the MW-torsion of the toric hypersurface fibrations

XF13 , XF15 and XF16 .

WSF of J(XF1)

Here we explicitly write out the polynomials f and g of the WSF of the Jacobian fibration

J(XF1). The discriminant ∆ is calculated straightforwardly from these quantities but is

omitted here due to the length of its explicit form. The functions f , g in the WSF of (3.4)

read

f =
1

48
(−(s26 − 4(s5s7 + s3s8 + s2s9))

2 + 24(−s6(s10s2s3 − 9s1s10s4 + s4s5s8

+ s2s7s8 + s3s5s9 + s1s7s9) + 2(s10s
2
3s5 + s1s

2
7s8 + s2s3s8s9 + s1s3s

2
9

+ s7(s10s
2
2 − 3s1s10s3 + s3s5s8 + s2s5s9)

+ s4(−3s10s2s5 + s2s
2
8 + (s25 − 3s1s8)s9)))) (B.1)

38See [80] for further details.
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g =
1

864
((s26 − 4(s5s7 + s3s8 + s2s9))

3 − 36(s26 − 4(s5s7 + s3s8 + s2s9))

× (−s6(s10s2s3 − 9s1s10s4 + s4s5s8 + s2s7s8 + s3s5s9 + s1s7s9)

+ 2(s10s
2
3s5 + s1s

2
7s8 + s2s3s8s9 + s1s3s

2
9 +s7(s10s

2
2 −3s1s10s3 +s3s5s8 +s2s5s9)

+ s4(−3s10s2s5 + s2s
2
8 + (s25 − 3s1s8)s9))) + 216((s10s2s3 − 9s1s10s4 + s4s5s8

+ s2s7s8 + s3s5s9 + s1s7s9)
2 + 4(−s1s210s33 − s21s10s37 − s24(27s21s

2
10 + s10s

3
5

+ s1(−9s10s5s8 + s38)) + s10s
2
3(−s2s5 + s1s6)s9 − s1s23s8s29

− s27(s10(s22s5 − 2s1s3s5 − s1s2s6) + s1s8(s3s8 + s2s9))

− s3s7(s10(−s2s5s6 + s1s
2
6 + s22s8 + s3(s

2
5 − 2s1s8) + s1s2s9)

+ s9(s2s5s8 − s1s6s8 + s1s5s9)) + s4(−s210(s32 − 9s1s2s3)

+ s10(s6(−s2s5s6 + s1s
2
6 + s22s8) + s3(s

2
5s6 − s2s5s8 − 3s1s6s8))

+ (s10(2s
2
2s5+3s1s3s5− 3s1s2s6)+s8(−s3s25+s2s5s6− s1s26− s22s8+2s1s3s8))s9

+ (−s2s25+s1s5s6+2s1s2s8)s
2
9− s21s39+s7(s10(2s2s

2
5− 3s1s5s6 + 3s1s2s8+9s21s9)

− s8(s2s5s8 − s1s6s8 + s1s5s9)))))) (B.2)

WSF of J(XF2) and the cubic form of the biquadric

First, we present the explicit expressions for f and g in the WSF of the Jacobian fibration

J(XF2), where we omit the expression of the discriminant ∆. The functions f , g in the

WSF of (3.12) read

f =
1

48

[
− (−4b1b10 + b26 − 4(b5b7 + b3b8 + b2b9))

2

+ 24(−b6(b10b2b5 + b2b7b8 + b3b5b9 + b1b7b9)

+ 2(b10(b1b5b7 + b22b8 + b3(b
2
5 − 4b1b8) + b1b2b9) + b7(b1b7b8 + b2b5b9)

+ b3(b5b7b8 + b2b8b9 + b1b
2
9)))

]
,

(B.3)

and

g =
1

864

[
(−4b1b10 + b26 − 4(b5b7 + b3b8 + b2b9))

3

− 36(−4b1b10 + b26 − 4(b5b7 + b3b8 + b2b9))

× (−b6(b10b2b5 + b2b7b8 + b3b5b9 + b1b7b9)

+ 2(b10(b1b5b7 + b22b8 + b3(b
2
5 − 4b1b8) + b1b2b9)

+ b7(b1b7b8 + b2b5b9) + b3(b5b7b8 + b2b8b9 + b1b
2
9)))

+ 216((b10b2b5 + b2b7b8 + b3b5b9 + b1b7b9)
2

− 4(b2b3b5b7b8b9 + b21b10(−4b10b3b8 + b27b8 + b3b
2
9) + b10(b

2
3b

2
5b8 + b22b5b7b8

+ b2b3(−b5b6b8 + b2b
2
8 + b25b9)) + b1(b

2
10(b3b

2
5 + b22b8) + b2b

2
7b8b9 + b23b8b

2
9

+ b3b7(b7b
2
8 − b6b8b9 + b5b

2
9)

+b10(−4b23b
2
8 + b3b6(b6b8 − b5b9) + b2b7(−b6b8 + b5b9)))))

]
.

(B.4)

Second, the explicit expressions of the s̃i in (3.27) obtained by mappingXF2 toXF5 read

s̃1 = b1 ,
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s̃2 =
1

b8

(
b2b8 − b1b9 − b1

√
−4b10b8 + b29

)
,

s̃3 =
1

b28

(
− 2b1b10b8 + 2b3b

2
8 − b2b8b9 + b1b

2
9

− b2b8
√
−4b10b8 + b29 + b1b9

√
−4b10b8 + b29

)
,

s̃5 = b5 ,

s̃6 =
1

b8

(
b6b8 − b5b9 − b5

√
−4b10b8 + b29

)
,

s̃7 =
1

b28

(
− 2b10b5b8 + 2b7b

2
8 − b6b8b9 + b5b

2
9

− b6b8
√
−4b10b8 + b29 + b5b9

√
−4b10b8 + b29

)
,

s̃8 = b8 ,

s̃9 = −
√
−4b10b8 + b29 . (B.5)

WSF of J(XF4)

The explicit expressions for f and g in the WSF of the Jacobian fibration J(XF4) associated

to XF4 with hypersurface equation (3.17) read

f4 =
1

48
[−24d9(−2d5d

2
6 + d4d6d7 − 2d3d6d8 + d2d7d8

− 2d1d
2
8 − 2d2d4d9 + 8d1d5d9)− (d27 − 4(d6d8 + d3d9))

2] ,
(B.6)

and

g4 =
1

864
[36d9(−2d5d

2
6 + d4d6d7 − 2d3d6d8

+ d2d7d8 − 2d1d
2
8 − 2d2d4d9 + 8d1d5d9)(d

2
7 − 4(d6d8 + d3d9))

+ (d27 − 4(d6d8 + d3d9))
3 + 216d29[4d2d5d6d7 − 4d1d5d

2
7

+ d22d
2
8 + d4(−2d2d6d8 + 4d1d7d8)

− 4d22d5d9 + d24(d
2
6 − 4d1d9)− 4d3(d5d

2
6 + d1d

2
8 − 4d1d5d9)]] .

(B.7)

WS-coordinates of the non-toric section of XF3

As we have shown in section 3.3.1, there is one additional rational section, besides the toric

section ŝ0, of the fibration of XF3 . The section ŝ1 has coordinates [x1 : y1 : z1] in the WSF

that are given by

x1 =
1

12
(12s21s

6
9 + 4(2s2(s

2
5 − 3s1s8)− 3s1s5s6)s

5
9 + ((s26 − 4s5s7)s

2
5 + 12(s22 + 2s1s3)s

2
8

− 4(4s3s
2
5 + s2s6s5 − 3s1(s

2
6 + 2s5s7))s8)s

4
9 − 2s8(−4(s6s7 + 3s4s8)s

2
5

+ (s36 − 10s3s8s6 + 4s2s7s8)s5 + 2s8(9s1s6s7 + 6s1s4s8 + s2(s
2
6 + 6s3s8)))s

3
9

+ s28(s
4
6 − 2s5s7s

2
6 − 8s25s

2
7 + 12(s23 + 2s2s4)s

2
8 − 4(9s4s5s6 − s7(5s2s6 + 6s1s7)
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+ s3(s
2
6 + 2s5s7))s8)s

2
9 − 2s38(12s3s4s

2
8 + 2(s7(s3s6 + 4s2s7)− 3s4(s

2
6 + 2s5s7))s8

+ s6s7(s
2
6 − 4s5s7))s9 + s48((s

2
6 − 4s5s7)s

2
7 + 4(2s3s7 − 3s4s6)s8s7 + 12s24s

2
8)) ,

y1 =
1

2
(2s31s

9
9 + s1(2s2(s

2
5 − 3s1s8)− 3s1s5s6)s

8
9 + ((s3s

2
5 − s2s6s5 + s1(s

2
6 − s5s7))s25

+ 6s1(s
2
2 + s1s3)s

2
8 + (−2s22s

2
5 + 2s1s2s6s5 + s1(3s1(s

2
6 + 2s5s7)− 4s3s

2
5))s8)s

7
9

− s8(2(s32 + 6s1s3s2 + 3s21s4)s
2
8 − (s5s6s

2
2 + (6s3s

2
5 − 4s1(s

2
6 + 2s5s7))s2

+ s1(6s4s
2
5 + 2s3s6s5 − 9s1s6s7))s8 + s5(3s4s

3
5 + 2s3s6s

2
5 − 3s2s7s

2
5 − 2s2s

2
6s5

+ s1s6s7s5 + 2s1s
3
6))s

6
9 + s28(s1s

4
6 − s2s5s36 + s3s

2
5s

2
6 + 7s1s5s7s

2
6 + 9s4s

3
5s6

− 8s2s
2
5s7s6 + s1s

2
5s

2
7 + 6(s3(s

2
2 + s1s3) + 2s1s2s4)s

2
8 − s3s35s7 + (−4s23s

2
5

− 8s2s4s
2
5 − 6s1s4s6s5 + s22s

2
6 + 6s21s

2
7 + 2s2(s2s5 + 7s1s6)s7 + s3(2s1(s

2
6 + 2s5s7)

− 6s2s5s6))s8)s
5
9 − s38(s8(6s2s8 − 5s5s6)s

2
3 − 5s6s7(s

2
5 − 2s1s8)s3

+ 5s7(s6s8s
2
2 − s5(s26 + s5s7)s2 + 2s1s7s8s2 + s1s6(s

2
6 + 2s5s7))

+ s4(5(2s26 + s5s7)s
2
5 − 10(s3s5 + s2s6)s8s5 + 6(s22 + 2s1s3)s

2
8))s

4
9

+ s48(2(s33 + 6s2s4s3 + 3s1s
2
4)s

2
8 − (6s24s

2
5 + s23s

2
6 − 4(s22 + 2s1s3)s

2
77

+ 2s3(s3s5 − 3s2s6)s+2s4(s2s
2
6 + 7s3s5s6 − 3s1s7s6 + 2s2s5s7))s8

+ 5(s4s5s6(s
2
6 + 2s5s7) + s7(s7(2s1s

2
6 − s2s5s6 + s1s5s7)− s3s5(s26 + s5s7))))s

3
9

− s58(3s8(2s2s8 − 3s5s6)s
2
4 + (s46 + (7s5s7 − 4s3s8)s

2
6 + 2s2s7s8s6 + s25s

2
7

− 8s3s5s7s8 + 6s8(s8s
2
3 + s1s

2
7))s4 + s7(s6s8s

2
3 − (s36 + 8s5s7s6 − 6s2s7s8)s3

+ s7(9s1s6s7 + s2(s
2
6 − s5s7))))s29 + s68(3s8(−s26 − 2s5s7 + 2s3s8)s

2
4

+ s7(2s
3
6 + s5s7s6 − 2s3s8s6 + 4s2s7s8)s4 + s27(2s8s

2
3 − 2s26s3 − 3s5s7s3 + 3s1s

2
7

+ 2s2s6s7))s9 + s78(−2s28s
3
4 + 3s6s7s8s

2
4 + s27(−s26 + s5s7 − 2s3s8)s4

+ s37(s3s6 − s2s7))) ,
z1 = s7s

2
8 + s9(s5s9 − s6s8) . (B.8)

WS-coordinates of the two rational sections of XF5

In addition to ŝ0, there are two rational sections of the fibration of XF5 . The WS-

coordinates have been worked out first in [38, 39]. We reproduce these results here for

convenience.

The section ŝ1 has coordinates [x1 : y1 : z1] in the WSF given by

x1 =
1

12
(s26 − 4s5s7 + 8s3s8 − 4s2s9) ,

y1 =
1

2
(s3s6s8 − s2s7s8 − s3s5s9 + s1s7s9) ,

z1 = 1 .

(B.9)
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The section ŝ2 has coordinates [x2 : y2 : z2] in the WSF given by

x2 =
1

12
(12s27s

2
8 + s29(s

2
6 + 8s3s8 − 4s2s9) + 4s7s9(−3s6s8 + 2s5s9)) ,

y2 =
1

2
(2s37s

3
8 + s3s

3
9(−s6s8 + s5s9) + s27s8s9(−3s6s8 + 2s5s9)

+ s7s
2
9(s

2
6s8 + 2s3s

2
8 − s5s6s9 − s2s8s9 + s1s

2
9) ,

z2 = s9 .

(B.10)

WS-coordinates of the three rational sections of XF7

There are three rational sections of the fibration of XF7 besides ŝ0 [41, 45]. The following

results have been obtained using the birational map in [39] in the special case s1 = 0.

The coordinates of ŝ1 in the WSF, denoted by [x1 : y1 : z1], are

x1 =
1

12
(s26s

2
7 − 4s5s

3
7 + 8s3s

2
7s8 − 12s3s6s7s9 + 8s2s

2
7s9 + 12s23s

2
9) ,

y1 =
1

2
(−2s33s

3
9 + s2s

3
7(−s7s8 + s6s9) + s23s7s9(−2s7s8 + 3s6s9)

+ s3s
2
7(s6s7s8 − s26s9 + s9(s5s7 − 2s2s9))) ,

z1 = s7 .

(B.11)

Similarly, the coordinates of ŝ2 in WSF, denoted by [x2 : y2 : z2], read

x2 =
1

12
(s26 − 4s5s7 − 4s3s8 + 8s2s9) ,

y2 =
1

2
(s2s7s8 + s3s5s9 − s2s6s9) ,

z2 = 1 .

(B.12)

Finally, the coordinates of ŝ3 in the WSF, that we denote by [x3 : y3 : z3], are

x3 =
1

12
(12s27s

2
8 + s29(s

2
6 + 8s3s8 − 4s2s9) + 4s7s9(−3s6s8 + 2s5s9)) ,

y3 =
1

2
(−2s37s

3
8 + s27s8s9(3s6s8 − 2s5s9) + s3s

3
9(s6s8 − s5s9)

+ s7s
2
9(−s26s8 + s5s6s9 + s8(−2s3s8 + s2s9)))

z3 = s9 .

(B.13)

Tate form, WSF and the MW-torsion of XF13

In this appendix we determine two Tate forms and the WSF of XF13 . We explicitly derive

the WS-coordinates of its torsional section and use this to show, that the MW-torsion

acts on all codimension one singularities in XF13 , i.e. on all non-Abelian gauge group

factors in GF13 .

We directly employ the birational map in [39] for s5 = s7 = s8 = 0 to obtain a Tate

form for the hypersurface constraint (3.180) of XF13 . The Tate coefficients we naively

obtain read

a1 =
s26 + 2s2s9

s6
, a2 = − s2s9(−s26 + s2s9)

s26
,

a3 = s2s6s9 , a4 = s1s3s
2
9 , a6 = s1s2s3s

3
9 . (B.14)
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Due to the poles at s6 = 0, this Tate model is clearly globally ill-defined. However, there

exists an equivalent Tate model with WSF identical to the one of (B.14). It reads

y2 + s6xyz = x
(
x2 + s1s

2
9s3z

4 − s2s9xz2
)
. (B.15)

This is precisely of the form of an elliptic curve with Z2 MW-torsion given in [53], after

the shift y → y − 1
2s6xz. Thus, the MW-group is indeed Z2, in agreement with the results

of [41, 46].

The following analysis is presented in the patch z = 1 without loss of generality. The

Weierstrass equation of (B.15) takes the form

y2 =
1

864
(s26−4s2s9−12x)(s46−8s2s

2
6s9+16s22s

2
9−72s1s3s

2
9−6s26x+24s2s9x−72x2) . (B.16)

The coordinates of the section of order two in (B.15) are{
x =

1

12
(s26 − 4s2s9), y = 0

}
. (B.17)

At the loci of codimension one singularities, s1 = 0 and s3 = 0, the WSF takes the form

y2 =
1

864
(s26 − 4s2s9 − 12x)2(s26 − 4s2s9 + 6x) , (B.18)

and on the locus s9 = 0 it reads

y2 =
1

864
(s26 − 12x)2(s26 + 6x) , (B.19)

showing that the A4- and both A2-singularities at codimension one in the fibration are

located exactly at the point of order two. This implies that the Z2 associated to the

torsional section acts on all non-Abelian gauge group factors, rendering the gauge group

GF13 = (SU(4)× SU(2)2)/Z2 . (B.20)

Tate form, WSF and the MW-torsion of XF15

Here, we determine two Tate forms and the WSF of XF15 . The explicit WS-coordinates

of its torsional section allow us to show that the MW-torsion acts on all codimension one

singularities in XF15 , i.e. on all non-Abelian gauge group factors in GF15 .

We apply the birational map in [39] for s1=s3=s8= 0 to (3.189) to obtain the Tate

coefficients

a1 =
s26 − 2s5s7 + 2s2s9

s6
, a2 =

s2s
2
6s9 − (s5s7 − s2s9)2

s26
, a3 = s2s6s9 , a4 = a6 = 0 .

(B.21)

Clearly this Tate form has poles at s6 = 0 and is ill-defined. Fortunately, there exists an

equivalent Tate model that has the same Weierstrass equation as (B.21). It reads

y2 + s6xyz = x(x2 − (s7s5 + s2s9)xz
2 + s2s7s5s9z

4) . (B.22)
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Now we see that this elliptic curve is precisely of the form of the elliptic curve with a Z2⊕Z
MW-group studied in [53]. This result agrees with the findings in [41, 46]. We note that

the Tate coefficients (B.21) can be parametrized as a1 = γ1, a2 = −(γ2 + δ2), a4 = γ2δ2
according to [46], where we obtain γ1 = s6, γ2 = s3s8 and δ2 = s2s9.

Let us work in the patch z = 1 without loss of generality. The WSF of (B.21), (B.22)

reads

y2 =
1

864
(s26 − 4s5s7 − 4s2s9 − 12x)(s46 − 8s5s

2
6s7 + 16s25s

2
7 − 8s2s

2
6s9

−40s2s5s7s9 + 16s22s
2
9 − 6s26x+ 24s5s7x+ 24s2s9x− 72x2) , (B.23)

in which the coordinates of the point of order two are{
x =

1

12
(s26 − 4s5s7 − 4s2s9), y = 0

}
. (B.24)

At s2 = 0 and s9 = 0, the location of two SU(2) singularities, the WSF simplifies to

y2 =
1

864
(s26 − 4s5s7 − 12x)2(s26 − 4s5s7 + 6x) , (B.25)

and at s5 = 0 and s7 = 0, the location of the two other SU(2)’s, it reads

y2 =
1

864
(s26 − 4s2s9 − 12x)2(s26 − 4s2s9 + 6x) . (B.26)

Thus, the section of order two goes through all A2-singularities, which implies that the Z2

acts on all non-Abelian gauge group factors, i.e.

GF15 = (SU(2)4)/Z2 ×U(1) . (B.27)

Tate form, WSF and the MW-torsion of XF16

Here, we compute a Tate form and the WSF of XF16 . Using the explicit WS-coordinates of

the Z3 MW-generator, we show that the MW-torsion acts on the entire gauge group GF16 .

The Tate form of the hypersurface equation (3.202) is obtained employing the birational

map of [39] for s2 = s3 = s5 = s8 = 0:

y2 + s6xyz − s1s7s9z3 = x3 . (B.28)

This is the normal form of an elliptic curve with Z3 torsion [53], in agreement with [41, 46].

We work in the patch z = 1 in the following, without loss of generality. The WSF reads

y2 −
(s1s7s9

2

)2
=

1

864
(s26 − 12x)(s46 + 36s1s6s7s9 − 6s26x− 72x2) , (B.29)

from which we obtain the WS-coordinates of the order three section as{
x =

1

12
s26, y =

s1s7s9
2

}
. (B.30)

This section passes through the A3 singularities as we see from (B.29) at s1 = 0, s7 = 0,

s9 = 0:

y2 =
1

864
(s26 − 12x)2(s26 + 6x) . (B.31)

Thus, the Z3 acts on all SU(3)’s and the gauge group is

GF16 = SU(3)3/Z3 . (B.32)
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C Euler numbers of the Calabi-Yau threefolds XFi

In this section we present the explicit expressions for the Euler numbers of all Calabi-Yau

threefolds XFi that are constructed as toric hypersurface fibrations over an arbitrary two-

fold base B with their fibrations parametrized by two divisors S7 and S9, see section 3.1.1.

The Euler numbers are computed using the presentation of the vertical cohomology

ring of XFi as a quotient ring in its divisors, see [48, 112], and the adjunction formula. For

a detailed explanation in an F-theory context and many explicit examples, we refer the

reader to [42].

The following table contains our results for the Euler numbers of XFi , where we denote

the first Chern class of the base B by c1, implicitly invoke Poincaré duality between divisors

and forms and suppress the integral over B:

Manifold Euler number χ(XFi)

XF1 −6(4c21 − c1S7 + S27 − c1S9 − S7S9 + S29 )

XF2 −4(6c21 − 2c1S7 + S27 − 2c1S9 + S29 )

XF3 −2(12c21 − 3c1S7 + 3S27 − 4c1S9 − 2S7S9 + 2S29 )

XF4 −4(6c21 − 2c1S7 + 3S27 − 2c1S9 − 2S7S9 + S29 )

XF5 −2(12c21 − 4c1S7 + 2S27 − 4c1S9 − S7S9 + 2S29 )

XF6 −2(12c21 − 4c1S7 + 4S27 − 4c1S9 − 3S7S9 + 2S29 )

XF7 −4(4c21 + S27 − S7S9 + S29 − c1(S7 + S9))

XF8 −2(12c21 − 5c1S7 + 3S27 − 4c1S9 − 2S7S9 + 2S29 )

XF9 −4(6c21 − 2c1S7 + S27 − 3c1S9 + S29 )

XF10 −6(4c21 − 2c1S7 + 2S27 − c1S9 − 2S7S9 + S29 )

XF11 −2(12c21 − 4c1S7 + 2S27 − 7c1S9 − S7S9 + 3S29 )

XF12 −2(12c21 − 6c1S7 + 2S27 − 6c1S9 + S7S9 + 2S29 )

XF13 −4(6c21 − 2c1S7 + S27 − 5c1S9 + 2S29 )

XF14 −2(12c21 − 9c1S7 + 3S27 − 6c1S9 + 2S7S9 + 2S29 )

XF15 −4(4c21 − 2c1S7 + S27 − 2c1S9 + S29 )

XF16 −6(4c21 − 3c1S7 + S27 − 3c1S9 + S7S9 + S29 )

(C.1)
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D The full Higgs chain of toric hypersurface fibrations

The complete Higgs chain of all toric Higgs transition XFi → Xj , the relevant hyper

multiplets acquiring VEVs, the U(1)-generators and the necessary redefinitions of divisors

classes are shown in tables 37, 38 and 39.

Higgs transition VEV U(1) Generators Divisor Class Matching

XF16 → XF14

(3,1, 3̄) Q = −(T 8
1 + T 8

3 ) trivial

(1,3, 3̄) Q = −(T 8
2 + T 8

3 )
S7 → S9

S9 → 3[K−1
B ]− S7 − S9

(3, 3̄,1) Q = −(T 8
1 + T 8

2 )
S7 → S9
S9 → S7

XF15 → XF12

(2,2,1,1)(1/2)
Q′1 = T 3

2 + Q
trivial

Q′2 = T 3
1 + Q

(2,1,2,1)(1/2)
Q′1 = T 3

3 + Q S7 → 2[K−1
B ]− S7

Q′2 = T 3
1 + Q S9 → S7

(1,1,2,2)(1/2)
Q′1 = T 3

4 + Q S7 → 2[K−1
B ]− S9

Q′2 = T 3
3 + Q S9 → 2[K−1

B ]− S7

(1,2,1,2)(1/2)
Q′1 = T 3

4 + Q S7 → S9
Q′2 = T 3

2 + Q S9 → 2[K−1
B ]− S7

XF14 → XF12

(2,3,1)1/6
Q′1 = T 8 + 2Q

trivial
Q′2 = 2T 8 − T 3 + Q

(1,3,2)1/6
Q′1 = 2T 8 − T 3 + Q S7 → S9

Q′1 = T 8 + 2Q S9 → 3[K−1
B ]− S7 − S9

XF14 → XF11

(1,1,2)1/2 Q′ = Q1 − T 3 S7 → S9
S9 → 2[K−1

B ]− S7

(2,1,1)1/2 Q′ = Q− T 3 S7 → S9
S9 → 2[K−1

B ]− S7

XF13 → XF11

(2,1,4) Q′ = T 15 − T 3 trivial

(1,2,4) Q′ = T 15 − T 3 S7 → 2[K−1
B ]− S7

S9 → S9

XF12 → XF9

(2,1)(−1/2,−1)

Q′1 = Q1 − T 3

trivial
Q′2 = Q2 − 2T 3

(1,2)(−1,−1/2)

Q′1 = 2T 3 −Q1 S7 → S9
Q′2 = T 3 −Q2 S9 → 2[K−1

B ]− S7

XF12 → XF8

(1,1)(1,0) Q′ = Q2

S7 → S7
S9 → [K−1

B ]− S7 + S9

(1,1)(0,1)
Q′ = Q1 , SU(2)′1 = SU(2)2 S7 → [K−1

B ]− S7 + S9
SU(2)′2 = SU(2)1 S9 → S7

Table 37. Data of toric Higgs transitions for F-theory compactified on XF16 −XF12 .
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Higgs transition VEV U(1) Generators Divisor Class Matching

XF12 → XF7
(2,2)( 1

2
, 1
2
)

Q′1 = 2Q2 −Q1 + T 3
1 S7 → S9

S9 → 2[K−1B ]− S7Q′2 = Q1 −Q2 − T 3
1 − T 3

2

Q′3 = Q2 + 2T 3
1 + T 3

2

XF11 → XF10 (1,1)−1 -
S7 → S7

S9 → [K−1B ]− S7 + S9

XF11 → XF9
(3,2)− 1

6

Q′1 = Q− 2T 8
1 + T 3

2 trivial
Q′2 = 2T 3

2 − 3T 8
1

XF11 → XF8
(3,1) 1

3
Q′ = 2T 8 −Q

S7 → S9
S9 → S7

XF10 → XF6 (3,2) Q′ = T 8 − 2T 3 trivial

XF9 → XF6

1(1,2) Q′ = 2Q1 −Q2

S7 → 2[K−1B ]− S7
S9 → [K−1B ]− S7 + S9

1(1,0) Q′ = Q2

S7 → S7
S9 → [K−1B ]− S7 + S9

XF9 → XF5

2(−1,− 1
2
)

Q′1 = Q2 −Q1 + T 3

trivial
Q′2 = −Q1 + 2T 3

2(1, 3
2
)

Q′1 = Q2 −Q1 + T 3 S7 → 2[K−1B ]− S7
Q′2 = Q1 + 2T 3 S9 → S9

XF8 → XF6 (2,1)1 Q′ = (Q+ 2T 3
1 ) trivial

XF8 → XF5 (2,2)1/2
Q′1 = Q− T 1

2 trivial
Q′2 = 2(T 1

3 − T 2
3 )

XF7 → XF5

1(0,−1,0)
Q′1 = −Q1 +Q3

trivial
Q′2 = Q3

1(1,1,0)

Q′1 = Q1 −Q2 S7 → [K−1B ]− S7 + S9
Q′2 = Q3 S9 → S9

1(2,1,1)

Q′1 = Q2 −Q3 S7 → 2[K−1B ]− S7
Q′2 = Q1 −Q2 −Q3 S9 → [K−1B ]− S7 + S9

1(0,1,1)

Q′1 = −Q1 S7 → S9
Q′2 = Q2 −Q3 S9 → [K−1B ]− S7 + S9

1(−2,−1,−2)
Q′1 = Q1 −Q3 S7 → 2[K−1B ]− S9
Q′2 = Q1 − 2Q2 S9 → 2[K−1B ]− S7

1(1,1,2)

Q′1 = Q1 −Q2 S7 → [K−1B ]− S7 + S9
Q′2 = Q1 +Q2 − 2Q3 S9 → 2[K−1B ]− S7

Table 38. Data of toric Higgs transitions for F-theory compactified on XF12 −XF7 .
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Higgs transition VEV U(1) Generators Divisor Class Matching

XF6 → XF4 12 Q′Z4
= 2Q mod 4 trivial

XF6 → XF3 2− 3
2

Q′ = 3T 3 −Q trivial

XF5 → XF3

1(−1,−2) Q′1 = 2Q1 −Q2

S7 → S9
S9 → S7

1(−1,1) Q′1 = Q1 +Q2 trivial

XF5 → XF2 1(0,−2)
Q′1 = Q1

trivial
QZ2 = Q2 mod 2

XF3 → XF1 13 Q′Z3
= Q mod 3 trivial

Table 39. Data of toric Higgs transitions for F-theory compactified on XF6
−XF3

.

E Group theoretical decomposition of representations

In tables 40, 41, 42, 43, 44 and 45 we show the explicit decompositions of representations

of the group GFi into representations of the unbroken group GFj for each Higgs transition

XFi → XFj .

Breaking Starting Multiplets Target Multiplets

XF16 → XF14

VEV: (3,1, 3̄)

(3, 3̄,1) (2, 3̄,1)−1/6 + (1, 3̄,1)1/3

(3,1, 3̄)
(2,1,2)0 + (2,1,1)1/2

+(2,1,1)−1/2 + (1,1,1)0

(1,3, 3̄) (1,3,2)1/6 + (1,3,1)−1/3

(8,1,1)
(3,1,1)0 + (2,1,1)1/2

+(2,1,1)−1/2 + (1,1,1)0

(1,8,1) (1,8,1)0

(1,1,8)
(1,1,3)0 + (1,1,2)1/2

+(1,1,2)−1/2 + (1,1,1)0

Table 40. Group theoretical decompositions of representation in toric Higgsings of XF16
.
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Breaking Starting Multiplets Target Multiplets

XF15 → XF12

VEV: (2,2,1,1)(1/2)

(2,2,1,1) 1
2

(1,1)(1,1) + (1,1)(1,0)

+(1,1)(0,1) + (1,1)(0,0)

(2,1,2,1) 1
2

(2,1)( 1
2
,1) + (2,1)( 1

2
,0)

(2,1,1,2)0 (1,2)(0, 1
2
) + (1,2)(0,− 1

2
)

(1,2,2,1)0 (2,1)( 1
2
,0) + (2,1)(− 1

2
,0)

(1,1,2,2) 1
2

(2,2)( 1
2
, 1
2
)

(1,2,1,2) 1
2

(1,2)(1, 1
2
) + (1,2)(,0 1

2
)

(1,1,1,1)1 (1,1)(1,1)

(3,1,1,1)0 (1,1)(0,1) + (1,1)(0,−1) + (1,1)(0,0)

(1,3,1,1)0 (1,1)(1,0) + (1,1)(−1,0) + (1,1)(0,0)

(1,1,3,1)0 (3,1)(0,0)

(1,1,1,3)0 (1,3)(0,0)

XF14 → XF12

VEV: (2,3,1)1/6

(2,1,1)1/2 (1,1)(1,0) + (1,1)(1,1)

(1,3,1)1/3 (2,1)(−1/2,0) + (1,1)(−1,−1)

(1,1,2)1/2 (1,2)(1,1/2)

(2,3,1)1/6
(2,1)(1/2,0) + (2,1)(1/2,1)

+(1,1)(0,−1) + (1,1)(0,0)

(2,1,2)0 (1,2)(0,−1/2) + (1,2)(0,1/2)

(1,3,2)1/6 (2,2)(1/2,1/2) + (1,2)(0,−1/2)

(3,1,1)0 (1,1)(0,0) + (1,1)(0,1) + (1,1)(0,−1)

(1,8,1)0
(3,1)(0,0) + (1,1)(0,0)

+(2,1)(1/2,1) + (2,1)(−1/2,−1)

(1,1,3)0 (1,3)(0,0)

XF14 → XF11

VEV: (1,1,2)1/2

(2,1,1)1/2 (2,1)1/2

(1,3,1)1/3 (1,3)1/3

(1,1,2)1/2 (1,1)0 + (1,1)1

(2,3,1)1/2 (2,3)1/6

(2,1,2)0 (1,2)1/2 + (1,2)−1/2

(1,3,2)1/6 (3,1)2/3 + (3,1)−1/3

(1,1,3)0 (1,1)1 + (1,1)−1

Table 41. Group theoretical decompositions of representation in toric Higgsings of XF15
−XF14

.
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Breaking Starting Multiplets Target Multiplets

XF13 → XF11

VEV: (2,1,4)

(2,2,1) (2,1)−1/2 + (2,1)1/2

(2,1,4) (1,1)−1 + (1,1)0 + (1,3)−1/3 + (1,3) 2
3

(1,1,6) (1,3)− 1
3

+ (1,3) 1
3

(1,2,4) (2,3)1/6 + (2,1)−1/2

(1,1,15) (1,8)0 + (1,1)0 + (1,3) 2
3

+ (1,3)− 2
3

(1,3,1) (3,1)0

(3,1,1) (1,1)0 + (1,1)−1 + (1,1)1

XF12 → XF9

VEV: (2,1)(−1/2,−1)

(2,2)(1/2,1/2) 2(0,−1/2) + 2(1,3/2)

(1,2)(−1,−1/2) 2(−1,−1/2)

(2,1)(−1/2,−1) 1(−1,−2) + 1(0,0)

(1,1)(1,0) 1(1,0)

(1,1)(0,1) 1(0,1)

(1,2)(0,−1/2) 2(0,−1/2)

(2,1)(−1/2,0) 1(−1,−1) + 1(0,1)

(1,1)(1,1) 1(1,1)

(1,3)(0,0) 3(0,0)

(3,1)(0,0) 1(−1,−2) + 1(1,2) + 1(0,0)

XF12 → XF8

VEV: (1,1)(1,0)

(2,2)(1/2,1/2) (2,2)1/2

(1,2)(−1,−1/2) (1,2)−1/2

(2,1)(−1/2,−1) (2,1)−1

(1,1)(1,0) (1,1)0

(1,1)(0,1) (1,1)1)

(1,2)(0,−1/2) (1,2)−1/2

(2,1)(−1/2,0) (2,1)0

(1,1)(1,1) (1,1)1

(1,3)(0,0) (1,3)0

(3,1)(0,0) (3,1)0

Table 42. Group theoretical decompositions of representation in toric Higgsings of XF13 −XF12 .
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Breaking Starting Multiplets Target Multiplets

XF12 → XF7

VEV: (2,2)( 1
2
, 1
2
)

(2,2)(1/2,1/2) 1(−1,0,−1) + 1(0,1,1)

1(−1,−1,−2) + 1(0,0,0)

(1,2)(−1,−1/2) 1(0,0,1) +1(0,−1,0)

(2,1)(−1/2,−1) 1(1,0,0)+1(−2,−1,−2)

(1,1)(1,0) 1(1,1,0)

(1,1)(0,1) 1(2,1,1)

(1,2)(0,−1/2) 1(1,1,1) + 1(1,0,0)

(2,1)(−1/2,0) 1(0,0,1) + 1(1,1,1)

(1,1)(1,1) 1(1,0,1)

(1,3)(0,0) 1(0,1,1) + 1(0,−1,−1)

(3,1)(0,0) 1(1,1,2) + 1(−1,−1,−2)

XF11 → XF10 trivial

XF11 → XF9

VEV: (3,2)− 1
6

(3,2)− 1
6

1(0,0) + 1(1,2) + 2(0, 1
2
) + 2(−1,− 3

2
)

(1,2) 1
2

1(1,1) + 1(0,−1)

(3,1)− 2
3

1(0,1) + 2(−1,− 1
2
)

(3,1) 1
3

1(1,1) + 2(0,− 1
2
)

(1,1)−1 1(1,0)

(8,1)0 2(1, 3
2
) + 2(−1,− 3

2
) + 1(0,0) + 3(0,0)

(1,3)0 1(0,0) + 1(1,2) + 1(−1,−2)

XF11 → XF8

VEV: (3,1) 1
3

(3,2)− 1
6

(2,2)1/2 + (1,2)−1/2

(1,2) 1
2

(1,2)− 1
2

(3,1)− 2
3

(1,1)−1 + (2,1)0

(3,1) 1
3

(2,1)0 + (1,1)0

(1,1)−1 (1,1)1

(8,1)0 (3,1)0 + (2,1)1 + (2,1)−1 + (1,1)0

(1,3)0 (1,3)0

XF10 → XF6

VEV: (3,2)

(3,2) 2−1/2 + 23/2 + 1−2 + 10

(1,2) 11 + 1−1

(3,1) 11/2 + 1−1

(1,3) 10 + 12 + 1−2

(8,1) 30 + 23/2 + 2−3/2 + 10

Table 43. Group theoretical decompositions of representation in toric Higgsings of XF12 −XF10 .
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Breaking Starting Multiplets Target Multiplets

XF9 → XF6

VEV: 1(1,2)

1(1,2) 10

1(1,0) 12

1(0,1) 1−1

1(1,1) 11

2(−1,−1/2) 2−3/2

2(1,−3/2) 21/2

2(0,−1/2) 2−1/2

3(0,0) 30

XF9 → XF5

VEV:

2(−1,−1/2)

1(1,2) 10

1(1,0) 1(−1,−1)

1(0,1) 1(1,0)

1(1,1) 1(0,−1)

2(−1,−1/2) 1(0,0) + 1(1,2)

2(1,−3/2) 1(0,−2) + 1(1,0)

2(0,−1/2) 1(−1,−1) + 1(0,1)

3(0,0) 1(−1,−2) + 1(1,2) + 1(0,0)

XF8 → XF6

VEV: (2,1)1

(2,2)1/2 2 1
2

+ 2− 3
2

(1,2)1/2 2 1
2

(2,1)1 10 + 12

(2,1)0 11 + 1−1

(1,1)1 11

(3,1)0 10 + 12 + 12

(1,3)0 (1,3)0

XF8 → XF5

VEV: (2,2) 1
2

(2,2)1/2 1(−1,0) + 1(−1,−2) + 1(0,2) + 1(0,0)

(1,2)1/2 1(0,−1) + 1(1,1)

(2,1)1 1(1,1) + 1(1,−1)

(2,1)0 1(0,1) + 1(0,−1)

(1,1)1 1(−1,−1)

(3,1)0 1(0,2) + 1(0,−2) + 1(0,0)

(1,3)0 1(1,2) + 1(−1,−2) + 1(0,0)

Table 44. Group theoretical decompositions of representation in toric Higgsings of XF9 −XF8 .
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Breaking Starting Multiplets Target Multiplets

XF7 → XF5

VEV: 1(0,−1,0)

1(1,1,0) 1(−1,0)

1(0,−1,0) 1(0,0)

1(2,1,1) 1(−1,1)

1(0,1,1) 1(1,1)

1(−2,−1,−2) 1(0,−2)

1(1,1,2) 1(1,2)

1(1,0,0) 1(−1,0)

1(0,0,1) 1(1,1)

1(1,0,1) 1(0,1)

1(1,1,1) 1(0,1)

XF6
→ XF4

VEV: 12

2− 3
2

2 1
2

2 1
2

2 1
2

12 10

11 11

30 30

XF6
→ XF3

VEV: 2− 3
2

2− 3
2

10 + 1−2

2 1
2

11 + 1−2

12 1−2

11 1−1

30 10 + 13 + 1−3

XF5
→ XF3

VEV: 1(−1,−2)

1(1,−1) 13

1(1,0) 12

1(−1,−2) 10

1(−1,−1) 11

1(0,2) 12

1(0,1) 11

XF5
→ XF2

VEV: 1(0,2)

1(1,−1) 1(1,−)

1(1,0) 1(1,+)

1(−1,−2) 1(1,+)

1(−1,−1) 1(1,−)

1(0,2) 1(0,+)

1(0,1) 1(0,−)

XF3
→ XF1

VEV: 13

13 10

12 12

11 11

Table 45. Group theoretical decompositions of representation in toric Higgsings of XF7
−XF3

.
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[16] M. Cvetič, J. Halverson, D. Klevers and P. Song, On finiteness of Type IIB

compactifications: magnetized branes on elliptic Calabi-Yau threefolds, JHEP 06 (2014) 138

[arXiv:1403.4943] [INSPIRE].

[17] A. Grassi and V. Perduca, Weierstrass models of elliptic toric K3 hypersurfaces and

symplectic cuts, Adv. Theor. Math. Phys. 17 (2013) 741 [arXiv:1201.0930] [INSPIRE].

[18] A.P. Braun, Y. Kimura and T. Watari, On the classification of elliptic fibrations modulo

isomorphism on K3 surfaces with large Picard number, arXiv:1312.4421 [INSPIRE].

– 124 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/0550-3213(96)00172-1
http://arxiv.org/abs/hep-th/9602022
http://inspirehep.net/search?p=find+EPRINT+hep-th/9602022
http://dx.doi.org/10.1016/0550-3213(96)00242-8
http://arxiv.org/abs/hep-th/9602114
http://inspirehep.net/search?p=find+EPRINT+hep-th/9602114
http://dx.doi.org/10.1016/0550-3213(96)00369-0
http://arxiv.org/abs/hep-th/9603161
http://inspirehep.net/search?p=find+EPRINT+hep-th/9603161
http://dx.doi.org/10.4310/ATMP.2011.v15.n5.a2
http://dx.doi.org/10.4310/ATMP.2011.v15.n5.a2
http://arxiv.org/abs/0802.2969
http://inspirehep.net/search?p=find+EPRINT+arXiv:0802.2969
http://dx.doi.org/10.1088/1126-6708/2009/01/058
http://arxiv.org/abs/0802.3391
http://inspirehep.net/search?p=find+EPRINT+arXiv:0802.3391
http://dx.doi.org/10.1016/j.nuclphysb.2008.07.031
http://arxiv.org/abs/0805.1057
http://inspirehep.net/search?p=find+EPRINT+arXiv:0805.1057
http://dx.doi.org/10.1088/1126-6708/2009/01/059
http://arxiv.org/abs/0806.0102
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.0102
http://dx.doi.org/10.1088/1126-6708/2007/05/079
http://arxiv.org/abs/hep-th/0609032
http://inspirehep.net/search?p=find+EPRINT+hep-th/0609032
http://dx.doi.org/10.1007/JHEP11(2012)166
http://arxiv.org/abs/1205.3192
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.3192
http://dx.doi.org/10.1088/1126-6708/2009/08/046
http://arxiv.org/abs/0906.4672
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.4672
http://dx.doi.org/10.1016/j.nuclphysb.2009.12.013
http://dx.doi.org/10.1016/j.nuclphysb.2009.12.013
http://arxiv.org/abs/0908.1784
http://inspirehep.net/search?p=find+EPRINT+arXiv:0908.1784
http://dx.doi.org/10.1007/JHEP05(2014)028
http://arxiv.org/abs/1312.5746
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.5746
http://arxiv.org/abs/1407.6359
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.6359
http://arxiv.org/abs/1408.0006
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.0006
http://dx.doi.org/10.1088/1126-6708/2007/01/031
http://dx.doi.org/10.1088/1126-6708/2007/01/031
http://arxiv.org/abs/hep-th/0606109
http://inspirehep.net/search?p=find+EPRINT+hep-th/0606109
http://dx.doi.org/10.1007/JHEP06(2014)138
http://arxiv.org/abs/1403.4943
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.4943
http://dx.doi.org/10.4310/ATMP.2013.v17.n4.a2
http://arxiv.org/abs/1201.0930
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.0930
http://arxiv.org/abs/1312.4421
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.4421


J
H
E
P
0
1
(
2
0
1
5
)
1
4
2

[19] M.R. Douglas, D.S. Park and C. Schnell, The Cremmer-Scherk mechanism in f-theory

compactifications on K3 manifolds, JHEP 05 (2014) 135 [arXiv:1403.1595] [INSPIRE].

[20] V. Kumar, D.R. Morrison and W. Taylor, Mapping 6D N = 1 supergravities to F-theory,

JHEP 02 (2010) 099 [arXiv:0911.3393] [INSPIRE].

[21] V. Kumar, D.R. Morrison and W. Taylor, Global aspects of the space of 6D N = 1

supergravities, JHEP 11 (2010) 118 [arXiv:1008.1062] [INSPIRE].

[22] T.W. Grimm and W. Taylor, Structure in 6D and 4D N = 1 supergravity theories from

F-theory, JHEP 10 (2012) 105 [arXiv:1204.3092] [INSPIRE].

[23] L.B. Anderson and W. Taylor, Geometric constraints in dual F-theory and heterotic string

compactifications, JHEP 08 (2014) 025 [arXiv:1405.2074] [INSPIRE].

[24] D.S. Park and W. Taylor, Constraints on 6D supergravity theories with abelian gauge

symmetry, JHEP 01 (2012) 141 [arXiv:1110.5916] [INSPIRE].

[25] V. Kumar, D.S. Park and W. Taylor, 6D supergravity without tensor multiplets, JHEP 04

(2011) 080 [arXiv:1011.0726] [INSPIRE].

[26] F. Bonetti, T.W. Grimm and T.G. Pugh, Non-supersymmetric F-theory compactifications

on Spin(7) manifolds, JHEP 01 (2014) 112 [arXiv:1307.5858] [INSPIRE].

[27] F. Bonetti, T.W. Grimm, E. Palti and T.G. Pugh, F-theory on Spin(7) manifolds:

weak-coupling limit, JHEP 02 (2014) 076 [arXiv:1309.2287] [INSPIRE].

[28] D.R. Morrison and W. Taylor, Classifying bases for 6D F-theory models, Central Eur. J.

Phys. 10 (2012) 1072 [arXiv:1201.1943] [INSPIRE].

[29] D.R. Morrison and W. Taylor, Toric bases for 6D F-theory models, Fortsch. Phys. 60

(2012) 1187 [arXiv:1204.0283] [INSPIRE].

[30] G. Martini and W. Taylor, 6D F-theory models and elliptically fibered Calabi-Yau threefolds

over semi-toric base surfaces, arXiv:1404.6300 [INSPIRE].

[31] T.W. Grimm and T. Weigand, On abelian gauge symmetries and proton decay in global

F-theory GUTs, Phys. Rev. D 82 (2010) 086009 [arXiv:1006.0226] [INSPIRE].

[32] S. Krause, C. Mayrhofer and T. Weigand, G4 flux, chiral matter and singularity resolution

in F-theory compactifications, Nucl. Phys. B 858 (2012) 1 [arXiv:1109.3454] [INSPIRE].

[33] T.W. Grimm and H. Hayashi, F-theory fluxes, chirality and Chern-Simons theories, JHEP

03 (2012) 027 [arXiv:1111.1232] [INSPIRE].

[34] D.S. Park, Anomaly equations and intersection theory, JHEP 01 (2012) 093

[arXiv:1111.2351] [INSPIRE].
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