

Measurements of the CPV y angle

Alexis Vallier, LAL-Orsay on behalf of the LHCb Collaboration

XI INTERNATIONAL CONFERENCE ON HYPERONS, CHARM AND BEAUTY HADRONS UNIVERSITY OF BIRMINGHAM, UK, 21-26 JULY 2014

y a standard candle to probe new physics

- γ is the least known CKM parameter:
 - BaBar: (69⁺¹⁷,-16)° [PRD 87(2013)052015]
 - Belle: (68⁺¹⁵,)° [arXiv:1301.2033]
 - LHCb: (67±12)° [LHCb-CONF-2013-006]
 - CKM Fitter: (66.5^{+1.3}-2.5)° (global fit)

$$\gamma = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right) \approx \arg\left(-V_{ub}^*\right)$$

Constraint with only the angle measurements

- The only angle measurable from tree processes (loops negligible).
- Theoretically clean : $\delta\gamma/\gamma \lesssim \mathcal{O}(10^{-7})$ [JHEP 1401(2014)051].

Excellent Standard Model reference to probe New Physics. Need a better precision from direct measurement.

Today's menu

Four recent LHCb results (to be submitted to journals soon):

- B[±] → D(K⁰_sπ⁺π⁻)K[±], Amplitude analysis, Model-dependent (1 fb⁻¹).
 [LHCb-PAPER-2014-017]
- B[±] → D(K⁰_sh⁺h⁻)K[±], Amplitude analysis, Model-independent (3 fb⁻¹).
 [LHCb-PAPER-2014-041]
- **B**⁰ → **DK***⁰, Counting analysis (3 fb⁻¹).
 [LHCb-PAPER-2014-028]
- $\mathbf{B}_{s}^{0} \rightarrow \mathbf{D}_{s}\mathbf{K}^{t}$, Time dependent analysis (1 fb⁻¹). [LHCb-PAPER-2014-038]

Time integrated measurements

Interference between $\mathbf{b} \rightarrow \mathbf{cus}$ and $\mathbf{b} \rightarrow \mathbf{ucs}$. •

- D^o and D^o must decay to the same final state: •
 - Counting Analysis : ADS ($D \rightarrow K\pi$), GLW ($D \rightarrow hh$)

$$A_{B^{\pm}} = A_D + e^{i(\delta_B \pm \gamma)} A_{\bar{D}}$$

[PLB253(1991)483, PLB265(1991)172] [PRL78(1997)3257, PRD63(2001)036005]

Dalitz plot analysis: GGSZ

$$A_{B^{\pm}}(\mathcal{D}) = A_D(\mathcal{D}) + e^{i(\delta_B \pm \gamma)} A_{\bar{D}}(\mathcal{D})$$

D meson phase space

[PRL78(1997)3257; PRD68(2003)054018; A. Bondar, Proceedings of **BINP** special analysis meeting on Dalitz analysis, 2002, unpublished] 4

Dalitz analysis of $B^{\pm} \rightarrow D(K_{s}^{0}h^{+}h^{-})K^{\pm}$

- Large asymmetry in some regions of the Dalitz plot.
- To infer something on the weak phase y, strong phase variation over the Dalitz plot must be known:
 - Model Dependent approach: use BaBar's model. [PRL 105, 081803 (2010)]
 - Model Independent approach: use CLEO-c measurements as inputs.
 [PRD 82(2010)112006]

$B^{\pm} \rightarrow D(K_{s}^{0}h^{+}h^{-})K^{\pm}Model Dependent - Method$

• Fit simultaneously $B \to DK \And B \to D\pi$

[LHCb-PAPER-2014-017]

1) Mass fit (phase-space integrated): fix signal and background yields.

2) Dalitz fit: extract $r_{_B}$, γ and $\delta_{_B}$ from cartesian coordinates.

$B^{\pm} \rightarrow D(K_{s}^{0}h^{+}h^{-})K^{\pm}MD - Dalitz fit$

- D strong phase variation evaluated with an amplitude model (BaBar latest).
- $B \rightarrow D\pi$ determine the efficiency on the Dalitz plot (assuming no CPV).
- Use only $D \rightarrow K^0_{\ s} \pi \pi$ (1 fb⁻¹).

$B^{\pm} \rightarrow D(K_{s}^{0}h^{+}h^{-})K^{\pm}MD$ - Results

- Model systematics:
 - test several alternative models.
- Leading experimental systematics:
 - Efficiency.
 - Background descriptions uncertainties.
- Results consistent with the 1fb⁻¹ model independent analysis.
- To be improved with 3fb⁻¹.

B[±]→ D(K⁰_sh⁺h⁻)K[±] model independent - Method-

- D strong phase variation measured by CLEO-c in a particular binning scheme.
- Analysis = counting experiment in each bins of the Dalitz plot.

$$N_{\pm i}^{+} = h_{B^{+}} \begin{bmatrix} F_{\mp i} + (x_{+}^{2} + y_{+}^{2})F_{\pm i} + 2\sqrt{F_{i}F_{-i}}(x_{+}c_{\pm i} \mp y_{+}s_{\pm i}) \end{bmatrix}$$
Fraction of pure D^o events in a given bin, taking into account the signal efficiency profile
$$CLEO-c \text{ inputs}$$

 c_i and s_i are the averaged cosine and sine of the strong phase difference in bin i.

 F_i are determine with B⁰ → D*(D⁰π⁺)µ⁻ν LHCb data. (efficiency correction from MC)

Simultaneous mass fit in every bins to extract x_{+} and y_{+} .

23/07/2014

Mass fit

- First, mass fit over the full phase space:
 - Total DK candidates ~ 2600
 - Split data into $K_s \pi \pi$ and $K_s KK$, and K_s position decay.
 - Purity ~75% in signal region.
- Fix all mass model PDF for the second fit in each Dalitz bin which determines x₁ and y₁.

B⁰→D*(D⁰π⁺)µ⁻ν efficiency discrepancy

- $B^0 \rightarrow D^*\mu^-\nu$ excellent proxy to determine the F_i :
 - High purity and statistics.
 - D^0 is tagged from the D* slow pion.
 - Small efficiency discrepancy observed between $B^{\pm} \rightarrow Dh^{\pm}$ and $B^{0} \rightarrow D^{*}\mu^{-}\nu$, in the MC.

• F_i determination:

- Fit $B^0 \rightarrow D^*\mu^-\nu$ data \rightarrow yields in dalitz bins.
- Correct these yields with the MC.

Model independent results (3 fb⁻¹)

Most precise measurement of x and y to date:

Compare to 1fb⁻¹ measurement:

- Higher statistics = smaller statistical error.
- Experimental systematic error reduced with the new $B^0 \rightarrow D^*\mu^-\nu$ control mode (prev. it was $B^{\pm} \rightarrow D\pi^{\pm}$, assuming no CPV).
- Smaller D strong phase systematic thanks to increased sample size.

Results on polar coordinates

$B^0 \rightarrow DK^{*0}$

- Both diagrams colour suppressed: **larger** r_{B} **than in B** \rightarrow **DK**.
 - Expect better sensitivity to gamma.
 - Experimentally more challenging.
- Self-tagged decay thanks to $K^{*0} \rightarrow K^{+}\pi^{-}$.
- So far only the 2-body modes available (3 fb⁻¹).

14

CPV observables

Several observables sensitive to γ can be built, for instance:

• Asymmetries in D \rightarrow CP eigenstates (KK or $\pi\pi$):

${\cal A}^{hh}_d \equiv$	$\Gamma(\overline{B}{}^0 \to D(h^+h^-)\overline{K}{}^{*0}) - \Gamma(B^0 \to D(h^+h^-)K^{*0}) \ _$	$2r_B\kappa\sin\delta_B\sin\gamma$
	$\overline{\Gamma(\overline{B}{}^0 \to D(h^+h^-)\overline{K}{}^{*0}) + \Gamma(B^0 \to D(h^+h^-)K^{*0})} -$	$\frac{1}{1+r_B^2+2r_B\kappa\cos\delta_B\cos\gamma}$

• Ratio with the DCS decay $D^0 \rightarrow K^+\pi^-$ and CF $D^0 \rightarrow K^-\pi^+$:

$$\begin{aligned} \mathcal{R}_{d}^{+} &\equiv \frac{\Gamma(B^{0} \to D(\pi^{+}K^{-})K^{*0})}{\Gamma(B^{0} \to D(K^{+}\pi^{-})K^{*0})} = \frac{r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\kappa\cos(\delta_{B} + \delta_{D} + \gamma)}{1 + r_{B}^{2}r_{D}^{2} + 2r_{B}r_{D}\kappa\cos(\delta_{B} - \delta_{D} + \gamma)} \\ \mathcal{R}_{d}^{-} &\equiv \frac{\Gamma(\overline{B}^{0} \to D(\pi^{-}K^{+})\overline{K}^{*0})}{\Gamma(\overline{B}^{0} \to D(K^{-}\pi^{+})\overline{K}^{*0})} = \frac{r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\kappa\cos(\delta_{B} + \delta_{D} - \gamma)}{1 + r_{B}^{2}r_{D}^{2} + 2r_{B}r_{D}\kappa\cos(\delta_{B} - \delta_{D} - \gamma)} \end{aligned}$$

κ is the coherence factor taking into account the effect of the B⁰ → DK⁺π⁻ non resonant contribution in the K^{*0} signal region.

B⁰ → **D(hh)**K^{*0}

B⁰

 $B^{0} \rightarrow D(\pi K)K^{*0}$

• Combined signal significance: 2.9σ

Implication on the value of $r_{\rm B}$

- Frequentist scan of $(r_{_B}, \gamma, \delta_{_B})$.
- $\kappa = 0.95 \pm 0.03$ from a simulation study with a realistic model of $B^0 \rightarrow DK\pi$.
- $r_{_{\rm B}}$ estimation at a 68.3% CL:

$$r_B = 0.240 \,{}^{+0.055}_{-0.048}$$

- Most precise measurement to date.
- High $r_{_{\rm B}}$ value : encouraging for a better γ measurement.

Alexis Vallier @ BEACH14

$B_{s}^{0} \rightarrow D_{s}K^{\pm}$

- CP violation in the **mixing and decay**.
- Same tree level process as presented previously.
- Time dependent measurement (more complex).
- Measure (γ-2β_s)
- Assume $\Phi_s = -2\beta_s$ and use as external input the Φ_s measurement from $B_s^0 \rightarrow J/\psi\Phi$ (much better precision).

CP violation observables

- $A_f = decay$ amplitude of B_s^0 to final state f
- $\lambda_f = (q/p)(\overline{A}_f/A_f)$

Time dependent decay rate:

$$\frac{\mathrm{d}\Gamma_{B_s^0 \to f}(t)}{\mathrm{d}t} = \frac{1}{2} |A_f|^2 (1 + |\lambda_f|^2) e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) - A_f^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_s t}{2}\right) \right]$$
$$+ C_f \cos\left(\Delta m_s t\right) - S_f \sin\left(\Delta m_s t\right) \right]$$
$$\frac{\mathrm{d}\Gamma_{\overline{B}_s^0 \to f}(t)}{\mathrm{d}t} = \frac{1}{2} |A_f|^2 \left|\frac{p}{q}\right|^2 (1 + |\lambda_f|^2) e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) - A_f^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_s t}{2}\right) \right]$$
$$- C_f \cos\left(\Delta m_s t\right) + S_f \sin\left(\Delta m_s t\right) \right]$$

$$\begin{aligned} \mathsf{CP observables:} & C_{f} = \frac{1 - r_{D_{s}K}^{2}}{1 + r_{D_{s}K}^{2}}, \\ A_{f}^{\Delta\Gamma} &= \frac{2r_{D_{s}K}\cos(\delta - (\gamma - 2\beta_{s}))}{1 + r_{D_{s}K}^{2}}, \\ S_{f} &= \frac{2r_{D_{s}K}\sin(\delta - (\gamma - 2\beta_{s}))}{1 + r_{D_{s}K}^{2}}, \\ S_{f} &= \frac{2r_{D_{s}K}\sin(\delta - (\gamma - 2\beta_{s}))}{1 + r_{D_{s}K}^{2}}, \\ S_{\overline{f}} &= \frac{2r_{D_{s}K}\sin(\delta + (\gamma - 2\beta_{s}))}{1 + r_{D_{s}K}^{2}}, \end{aligned}$$

Signal/Background discrimination

- Consider 3 D_s decays: $KK\pi$, $K\pi\pi$, $\pi\pi\pi$.
- Simultaneous 3D fit of $B_{s}^{0} \rightarrow D_{s}K^{t}$ and $B_{s}^{0} \rightarrow D_{s}\pi^{t}$.
 - $m(B_{s})$, $m(D_{s})$ and PID variable on the K/π from the B (bachelor).
- Discrimination of signal and background.
- Signal weights determination.

Decay Time fit result

23

Interpretation on y angle

- Take cfit results to make 68% CL.
- Statistical+Systematics (and Correlation) taken into account.
- Use only 1 fb⁻¹.

Perspectives

- The updated GGSZ 3fb⁻¹ improved significantly from the previous (2+1 fb⁻¹).
- $B^0 \rightarrow DK^{*0}$ and $B_s \rightarrow D_s K$ will contribute to reduce the uncertainty.
- Other $B \rightarrow DK$, $B \rightarrow DX$ analysis carried on:
 - updating from 1fb⁻¹ to 3 fb⁻¹.
 - New D decays.
- y from loop measurement coming soon.

Stay tune for the next LHCb y combination!

$B_{s}^{0} \rightarrow D_{s}K^{\pm}$ time fit inputs

- Tagging:
 - Combination of OS and SS tagging.
 - Efficiency for tagging an event : 67.53%
 - Effective tagging power: 5.07%
- Time acceptance:
 - Taken from $B_{s}^{\circ} \rightarrow D_{s}\pi^{\pm}$ (with simulation correction).
- Time resolution:
 - Use per event error, with average resolution of 47 fs.
- External inputs:
 - Γ_s , $\Delta\Gamma_s$, Γ_d , $\Gamma_{\Lambda b}$ and Δm_s fixed from other measurements

