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We consider extensions of the standard model based on open strings ending on D-branes, with gauge
bosons due to strings attached to stacks of D-branes and chiral matter due to strings stretching between
intersecting D-branes. Assuming that the fundamental string mass scale M is in the TeV range and that the
theory is weakly coupled, we discuss possible signals of string physics at the upcoming HL-LHC run
(integrated luminosity = 3000 fb~!) with a center-of-mass energy of /s = 14 TeV and at potential future
pp colliders, HE-LHC and VLHC, operating at /s = 33 and 100 TeV, respectively (with the same
integrated luminosity). In such D-brane constructions, the dominant contributions to full-fledged string
amplitudes for all the common QCD parton subprocesses leading to dijets and y + jet are completely
independent of the details of compactification and can be evaluated in a parameter-free manner. We make
use of these amplitudes evaluated near the first (n = 1) and second (n = 2) resonant poles to determine the
discovery potential for Regge excitations of the quark, the gluon, and the color singlet living on the QCD
stack. We show that for string scales as large as 7.1 TeV (6.1 TeV) lowest massive Regge excitations are
open to discovery at the > 5o in dijet (y + jet) HL-LHC data. We also show that for n = 1 the dijet
discovery potential at HE-LHC and VLHC exceedingly improves: up to 15 TeV and 41 TeV, respectively.
To compute the signal-to-noise ratio for n = 2 resonances, we first carry out a complete calculation of all
relevant decay widths of the second massive level string states (including decays into massless particles and
a massive n = 1 and a massless particle), where we rely on factorization and conformal field theory
techniques. Helicity wave functions of arbitrary higher spin massive bosons are also constructed. We
demonstrate that for string scales M < 10.5 TeV (M, < 28 TeV) detection of n = 2 Regge recurrences at
HE-LHC (VLHC) would become the smoking gun for D-brane string compactifications. Our calculations
have been performed using a semianalytic parton model approach which is cross checked against an
original software package. The string event generator interfaces with HERWIG and Pythia through
BlackMax. The source code is publicly available in the hepforge repository.
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I. INTRODUCTION

One of the most challenging problems in high-energy
physics today is to find out what is the underlying theory
that completes the standard model (SM). Despite its
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remarkable success, the SM is incomplete with many
unsolved puzzles—the most striking one being the huge
disparity between the strength of gravity and of the other
three known fundamental interactions corresponding to the
electromagnetic, weak, and strong nuclear forces. Indeed,
gravitational interactions are suppressed by a very high-

energy scale, the Planck mass Mp = G;II/ 2~ 10" GeV,
associated to a length Ip ~ 1073 m, where they are
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expected to become important. This hierarchy problem
suggests that new physics could be at play above about the

electroweak scale Mgy ~ G;l/ 2 ~300 GeV and has been
arguably the driving force behind high-energy physics for
several decades.

In a quantum theory, the hierarchy implies a severe fine-
tuning of the fundamental parameters in more than 30
decimal places in order to keep the masses of elementary
particles at their observed values. The reason is that
quantum radiative corrections to all masses generated
by the Higgs vacuum expectation value (VEV) are
proportional to the ultraviolet cutoff which in the presence
of gravity is fixed by the Planck mass. As a result, all
masses are “attracted” to about 10'¢ times heavier than
their observed values. A fine-tuned cancellation of the
radiative corrections seems unnatural, even though it is in
principle self-consistent. Naturalness implies that either
the fundamental scale of gravity must be much smaller
than the Planck mass or else there should exist a
mechanism which ensures this cancellation, perhaps
arising from a new symmetry principle beyond the SM.
Low-energy supersymmetry (SUSY) with all superpar-
ticle masses in the TeV region is a textbook example.
Indeed, in the limit of exact SUSY, quadratically divergent
corrections to the Higgs self-energy are exactly cancelled,
while in the softly broken case, they are cutoff by the
SUSY breaking mass splittings. On the other hand, for
low-mass-scale strings, quadratic divergences are cutoff
by the string scale M, and low-energy SUSY is not
needed [1]. These two diametrically opposite viewpoints
are experimentally testable at high-energy particle col-
liders, in particular at the CERN LHC.

The recent discovery of a particle with a mass around
126 GeV [2,3], which seems to be the SM Higgs, has
possibly plugged the final remaining experimental hole in
the SM, cementing the theory further. The LHC data are so
far compatible with the SM within 2¢ and its precision
tests. It is also compatible with low-energy SUSY, although
with some degree of fine-tuning in its minimal version.
Indeed, in the minimal supersymmetric standard model
(MSSM), the lightest Higgs scalar mass m;, satisfies the
inequality

3 mt[ o mE A2 A?
mi < m%COSZZﬁ—f—W? [Inm—%—i——z (1 _W)]
1
(1.1)

< (130 GeV)?,
where the first term in the rhs corresponds to the tree-level
prediction and the second term includes the one-loop
corrections due to the top and stop loops. Here, m,, m,,
mj; are the Z boson and the top and stop quark masses,
respectively; v = /v? + v3 with v; is the VEVs of the two
Higgses; tan f = v,/v; and A, is the trilinear stop scalar
coupling. Thus, a Higgs mass around 126 GeV requires a
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heavy stop m, =3 TeV for vanishing A,, or A, = 3m; =
1.5 TeV in the “best’-case scenario. These values are
obviously consistent with the present LHC bounds on
SUSY searches, but they are expected to be probed in the
next run at double energy. Theoretically, they imply a fine-
tuning of the electroweak scale at the percent to per mille
level. This fine-tuning can be alleviated in supersymmetric
models beyond the MSSM.

Low-mass-scale superstring theory provides a brane-
world description of the SM, which is localized on
membranes extending in p + 3 spatial dimensions, the
so-called D-branes. Gauge interactions emerge as exci-
tations of open strings with endpoints attached on the
D-branes, whereas gravitational interactions are
described by closed strings that can propagate in all
nine spatial dimensions of string theory [these comprise
parallel dimensions extended along the (p + 3)-branes
and transverse dimensions]. For an illustration, consider
type II string theory compactified on a six-dimensional
torus 7°, which includes a Dp-brane wrapped around
p — 3 dimensions of T® with the remaining dimensions
along our familiar (uncompactified) three spatial dimen-
sions. We denote the radii of the internal longitudinal
directions (of the Dp-brane) by Ry, i=1,...p—3 and
the radii of the transverse directions by R7,
j=1,...9—-p; see Fig. 1.

The Planck mass, which is related to the string mass
scale by

8 Vs
M1231 =M

2 G -

determines the strength of the gravitational interactions.
Here,
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FIG. 1 (color online). D-brane setup with d parallel and d
transverse internal directions.
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(1.3)

is the volume of T°, and g; is the string coupling. It follows
that the string scale can be chosen hierarchically smaller
than the Planck mass at the expense of introducing 9 — p
large transverse dimensions felt only by gravity, while
keeping the string coupling small. For example, for a string
mass scale M~ O(1 TeV), the volume of the internal
space needs to be as large as VoMS =~ O(10°?). On the other
hand, the strength of coupling of the gauge theory living
on the D-brane world volume is not enhanced as long as
R ~ M5! remain small,

11 =2
= M3 H Rl (1.4)
i=1

¢ 2my;

The weakness of the effective four-dimensional gravity
compared to gauge interactions (ratio of v/Mp) is then
attributed to the largeness of the transverse space radii
R} ~10°%]; compared to the string length [, = M;!.
Should nature be so cooperative, a whole tower of infinite
string excitations will open up at this low-mass threshold,
and new particles of spin J follow the well-known Regge
trajectories of vibrating strings: J = J, + o’M?, where o' is
the Regge slope parameter that determines the fundamental
string mass scale

1
Ve

Only one assumption will be necessary in order to set up a
solid framework: the string coupling must be small for the
validity of the above D-brane framework and of perturba-
tion theory in the computation of scattering amplitudes. In
this case, black hole production and other strong gravity
effects occur at energies above the string scale; therefore, at
least the lowest few Regge recurrences are available for
examination, free from interference with some complex
quantum gravitational phenomena.

In a series of publications, we have computed open string
scattering amplitudes in D-brane models and have dis-
cussed the associated phenomenological aspects of low-
mass string Regge recurrences related to experimental
searches for physics beyond the SM [4-16]." We have
shown that certain amplitudes to leading order in string
coupling (but including all string « corrections) are
universal [9,10]. These amplitudes, which include 2 — 2
scattering processes involving four gluons or two gluons

M =

(1.5)

'String Regge resonances in models with low-mass string scale
are also discussed in Refs. [17-24], while Kaluza—Klein graviton
exchange into the bulk, which appears at the next order in
perturbation theory, is discussed in Refs. [25,26].
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and two quarks, are independent of the details of the
compactification, such as the configuration of branes, the
geometry of the extra dimensions, and whether SUSY is
broken or not.? This model independence makes it possible
to compute the string corrections to y + jet and dijet signals
at the LHC, which, if traced to low-mass-scale string
theory, could with 100 fb~! of integrated luminosity (at
\/s = 14 TeV) probe deviations from SM physics at a 5¢
significance for M, as large as 6.8 TeV [5,8]. Indeed, the
signal for string excitations is spectacularly dazzling: after
operating for only a few months, with merely 2.9 inverse pb
of integrated luminosity, the LHC7 CMS experiment ruled
out My < 2.5 TeV by searching for narrow resonances in
the dijet mass spectrum [30]. In fact, the LHC has the
capacity to discover strongly interacting narrow resonances
in practically all ranges up to v/s; j5c/2, and therefore, since
no significance excess above background has been
observed thus far, the ATLAS [31] and CMS [32,33]
experiments have already excluded M, < 4.5 TeV.

In this work we extend our previous studies in various
directions. In all our previous analyses, the discovery reach
was laid out processing the string amplitudes using a
semianalytic parton model approach. To confront technical
detector challenges, however, the standard approach to data
analysis is typically reliant on the existence of Monte Carlo
event simulation tools that allow complete simulation of the
signal. In this paper we are filling this gap by bringing the
excitations of open strings into the ATLAS/CMS analysis
software environment. A complete simulation with full
Pythia treatment is quite a difficult task, because this event
generator is set up in the same way perturbation theory
works and consequently handles color flow lines of
ordinary Feynman diagrams. Note that in string theory
there are processes (like gg — gy) that in ordinary field
theory work only at loop level, and their color lines do not
follow the normal lines of tree level Feynman diagrams.
The proposed strategy here is to incorporate the string
amplitudes into BlackMax [34,35], a comprehensive black
hole event generator for LHC analysis that interfaces (via
the Les Houches accord [36]) to HERWIG and Pythia. The
parton evolution and hadronization will then be performed
with the correct format for direct implementation in the
official Monte Carlo packages for simulating an actual
experiment at the LHC. The two-step approach advanced
herein can circumvent the color line technicalities and,
at the same time, facilitate the comparison with high-
multiplicity events from gravitational collapse.

The only remnant of the compactification is the relation
between the Yang—Mills coupling and the string coupling. We
take this relation to reduce to field theoretical results in the case
where they exist, e.g., gg — gg. Then, because of the required
correspondence with field theory, the phenomenological results
are independent of the compactification of the transverse space.
However, a different phenomenology would result as a conse-
quence of warping one or more parallel dimensions [27-29].
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Recently, the idea of building a 33 TeV and/or 100 TeV
circular proton-proton collider has gained momentum,
starting with an endorsement in the Snowmass Energy
Frontier report [37], and importantly followed by the
creation of two parallel initiatives: one at CERN [38]
and one in China [39]. In this paper we study the discovery
reach and exclusion limits of lowest massive Regge
excitations for the collider specifications,

Final integrated

Machine Vs (TeV) luminosity
LHC phase [ 14 300 fb~!

HL-LHC or LHC phase II 14 3000 fb~!
HE-LHC 33 3000 b
VLHC 100 3000 b

that are extensively discussed in the Snowmass Energy
Frontier report [37]. For the HE-LHC and VLHC, the
second excited string states may also be within reach. The
decay widths of n = 2 resonances into massless particles
have been previously obtained in Refs. [22,23]. For a full
treatment, however, one still needs to compute the decay
widths into one massive n = 1 particle and a massless
particle. Herein, we obtain all these widths by factorizing
four-point amplitudes with one massive (n = 1) and three
massless particles.

The layout of the paper is as follows. We begin in Sec. 11
with an outline of the basic setting of intersecting D-brane
models, and we discuss general aspects of the effective low-
energy theory inherited from properties of the overarching
string theory. After that, we particularize the discussion to
three- and four-stack intersecting D-brane configurations
that realize the SM by open strings. For completness, in
Sec. III we provide a summary of previous results. In
particular, we give an overview of all formulas relevant for
the s-channel string amplitudes of lowest massive Regge
excitations leading to y + jet and dijets. Readers already
familiar with these topics may skip this section. In Secs. IV
and V, we present a complete calculation of all relevant
decay widths of the second massive level string states. The
computation is performed in a model-independent and
universal way, and so our results hold for all compactifi-
cations. Armed with the full-fledged string amplitudes of
all partonic subprocesses, in Sec. VI we quantify signal and
background rates of n = 1 and n = 2 Regge recurrences in
the early LHC phase I, HL-LHC, HE-LHC, and VLHC. In
Sec. VII we describe the input and output of the string event
generator interface (SEGI) with HERWIG and Pythia
through BlackMax and present some illustrative results.
Finally, in Sec. VIII we make a few observations on the
consequences of the overall picture discussed herein.

A point worth noting at this juncture is that the tensor-to-
scalar ratio (r = 0.201’8"8; ) inferred from the excess B-mode
power observed by the Background Imaging of Cosmic
Extragalactic Polarization (BICEP2) experiment suggests in
simple slow-roll models an era of inflation with energy
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densities of order (10'® GeV)*, not far below the Planck
density [40]. This presumably suggests that low-mass-scale
string compactifications in connection with large extra
dimension are quite hard to realize. However, one should
keep in mind that there is an ongoing controversy concerning
the effect of background on the BICEP2 result [41,42].

II. INTERSECTING D-BRANE STRING
COMPACTIFICATIONS

D-brane low-mass-scale string compactifications provide
a collection of building block rules that can be used to build
up the SM or something very close to it [43—57]. The details
of the D-brane construct depend a lot on whether we use
oriented string or unoriented string models. The basic unit of
gauge invariance for oriented string models is a U(1) field,
so that a stack of N identical D-branes eventually generates a
U(N) theory with the associated U(N) gauge group. In the
presence of many D-brane types, the gauge group becomes a
product form [JU(N;), where N; reflects the number of
D-branes in each stack. Gauge bosons (and associated
gauginos in a SUSY model) arise from strings terminating
on one stack of D-branes, whereas chiral matter fields are
obtained from strings stretching between two stacks. Each of
the two strings end points carries a fundamental charge with
respect to the stack of branes on which it terminates. Matter
fields thus posses quantum numbers associated with a
bifundamental representation. In orientifold brane configu-
rations, which are necessary for tadpole cancellation, and
thus consistency of the theory, open strings become in
general nonoriented. For unoriented strings the above rules
still apply, but we are allowed many more choices because
the branes come in two different types. There are branes for
which the images under the orientifold are different from
themselves and also branes that are their own images under
the orientifold procedure. Stacks of the first type combine
with their mirrors and give rise to U(N) gauge groups, while
stacks of the second type give rise to only SO(N) or Sp(N)
gauge groups.

A. Mass mixing effect

In three-stack intersecting brane models, one could have
one or two massive U(1)’s, depending on using Sp(1) or
U(2) to realize SU(2); while in four-stack models, one
could have two or three massive U(1)’s. In general, one can
have many U(1)’s in the intersecting brane model con-
structions including hidden sectors, and in these cases,
there will be many massive U(1)’s, which have been
studied in Refs. [58-60]. Assuming no kinetic mixing,
effectively the Lagrangian for all the U(1)’s from an
n-stack model can be written as

1 1 .
L= =3 S P =S AM A+ Y 0+ 6,0

(2.1)

066013-4



STRING RESONANCES AT HADRON COLLIDERS

where y, denotes the matter fields charged under U(1),
(a,b, ... label the stack of D-branes), g/, are the gauge
couplings, and Q,, are the charges. Note that the relation for
U(N) unification, ¢/, = g,/+/2N, holds only at M because
the U(1) couplings (¢}, ¢, ¢4, ...) run differently from the
non-Abelian SU(3) (g3) and SU(2) (g,) [61]. The U(1)
mass-squared matrix is of the form [59,62]

Mzb - gagbKalgl] jb’ (22)
where the integer-entry matrix K contains all the informa-
tion of local model constructions—wrapping numbers
which give rise to correct family multiplicity and the
MS)SM spectrum—and G;j is the metric of the complex
structure moduli space.’ In general the entries of the U(1)
mass-squared matrix are all of order of M2. This U(1)
mass-squared matrix is positive semidefinite and has one
zero eigenvalue that corresponds to the hypercharge. One
could diagonalize Mﬁb using an orthogonal matrix O such
that

A
2 0

OTM2O: EDZ,

=)

12

where the eigenvalues are sorted from small to large, i.e.,
Ai < Aj for i < j. A4y =0 corresponds to the mass of the

hypercharge gauge boson Y, = Am)- We can define the

gauge boson corresponding to the lightest massive U(1) to
be Z'. Here, we only discuss the case that there is only one
massless U(1), and thus D? contains only one zero
eigenvalue (hypercharge) and all other U(1)’s are massive.*
This transformation also takes the gauge fields from their
original basis into the physical mass eigenbasis as (with an
upper index (™))

A" =30 A,

a

(2.4)

The column vectors of the orthogonal matrix O are the
eigenvectors of M?. Since the eigenvalues are already
sorted, the first column vector gives rise to the hypercharge
combination

For toroidal models, the explicit form of G;; can be
derived; see, for example, Ref. [59].

The hidden sector could have massless U(1), which leads to
the hidden photon scenario. Some models (e.g., SM™" [63,64])
may have a massless U(1)g_,, but it must develop a mass to

avoid long-range force. We omit this discussion here.
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Y, = A ) Zo (2.5)
and the second column vector gives rise to
zZ, =AY =3 "0h A, (2.6)

a

and so on. Conversely, one could also write the gauge
bosons in the original basis in terms of the mass eigenstates

Aa = ZoaiAz('m)

After the mass mixing, the Lagrangian in the U(1) gauge
boson mass eigenbasis reads

— __ZF

+3 0+ 5" A Yy,

(2.7)

_ —D2 (m))z
(2.8)

Since the elements in the orthogonal matrix O are in
general irrational numbers (except for the first column, for
which the entrees are all fractional numbers which give rise
to to the hypercharge), the gauge charges in the U(1) mass
eigenbasis are not quantized. A matter field carrying Q,
under U(1),, with the gauge coupling ¢, after the mass

mixing couples to the gauge field A(m)

a’

in the mass

eigenbasis, with strength gf m) l =5 ,9.0,0,. Thus,
all the matter fields raised from the D-brane can couple to
all the anomalous U(1)’s. Since the elements of the U(1)
mass-squared matrix are around the same order, the entries
of the orthogonal matrix O are in general of order O(1).
Thus, the anomalous U(1)’s could couple to all the SM

particles with sizable strength [59].

B. Higgs mechanism and Z — Z' mixing

The Higgs field(s) is (are) also realized as (an) open
string(s) stretching between two stacks of D-branes and
hence is (are) charged under the two U(1)’s. After the mass
mixing, the Higgs field(s) would be also charged under all
the U(1)’s in the mass eigenbasis and couple to all these
massive U(1) gauge bosons. Thus, after the electroweak
symmetry breaking, all the gauge boson masses would be
corrected. The covariant derivative reads

(m) ~(m) 4 (m)
YY —i E gl 1 l

(2.9)

D, =0, —igA;T" —i

where T¢ =¢“/2 is the SU(2) generator and Y, the
hypercharge gauge boson. Effectively, the mass terms of
all the U(1)’s take the form
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1

102
— 5% A+ gy

n 2
+(ﬂnﬁ+gﬂ;+2§:¢”Q9MWQ]
i=2

1
+-DHAM ),

5 (2.10)

where v is the VEV of the Higgs. A, and Aj give rise to W=,

and the mass mixing only occurs within A3, A" One
needs to perform another diagonalization to determine the
mass eigenstates of all the massive U(1) gauge bosons. The
special form of Eq. (2.10) ensures there is only one
massless eigenstates A, = —=—(gyA; + g»Y,) which

V5t
will be identified to be the photon. And the electric charge
remains unchanged, i.e., e = —22_ However, the Z boson

N
would be a mixture of Zg); and all the Af-m) . The mass of the
Z boson is corrected by

v /2 1}2
MZZE gz_"g%“v_o M%/ .

Hence, the mass of the Z' gauge boson cannot be very
light; otherwise, it would violate the constraints on
Z — 7' mixing from the electroweak precision test [65].
In addition, as mentioned earlier, all the anomalous
U(1)’s could couple to all the SM particles with sizable
strength. LEP II and the LHC both set stringent bounds
on them. In particular, the bound from LEP II on Z’ reads
My /gy - > 6 TeV [66,67]. Because of the QCD back-
ground, the LHC could set bounds on the Z’' by either
examining the leptonic Drell-Yan processes pp — Z' —
It~ [68,69] or examining the dijet resonances from a
heavy Z’ [33]. These bounds are quite strong. Though it
is difficult for the LHC to distinguish low-energy
hadronic final states due to the QCD background, the
LHC bound on a leptophobic Z' [for example, Z' for
U(1)g] is not that strong [70]. However, it is very likely
that the Z’ from D-brane models would couple to all the
SM particles with sizable strength. Thus, in general,
unless there is some fine-tuning, this type of Z’ has to be
quite massive (22 TeV) to pass all the current exper-
imental constraints from colliders. We also would like to
point out here that, although in general Z’ [the lightest
anomalous U(1)] can be much lighter than the string
scale, this is a model-dependent question. For many
cases, especially for intersecting brane models with fewer
extra U(1)’s [e.g., the minimal D-brane model U(3) x
Sp(1) x U(1) with only one additional (massive) U(1)],
the mass of Z’' can also be closed to the string scale.

(2.11)
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C. SM from D-brane constructs

While the existence of Regge excitations is a completely
universal feature of string theory, there are many ways of
realizing the SM in such a framework. Individual models
use various D-brane configurations and compactification
spaces. Consequently, these may lead to very different SM
extensions, but as far as the collider signatures of Regge
excitations are concerned, their differences boil down to a
few parameters. The most relevant characteristics is how
the U(1), hypercharge is embedded in the U(1) associated
to D-branes. One U(1) (baryon number) comes from the
“QCD” stack of three branes, as a subgroup of the U(3)
group that contains SU(3) color, but obviously one needs at
least one extra U(1). As noted in Sec II' A, in D-brane
compactifications the hypercharge always appears as a
linear, nonanomalous combination of the baryon number
with one, two, or more U(1)s. The precise form of this
combination bears down on the photon couplings; however,
the differences between individual models amount to
numerical values of a few parameters.

The minimal embedding of the SM particle spectrum
requires at least three brane stacks [71] leading to three
distinct models of the type U(3) x U(2) x U(1) that were
classified in Refs. [71,72]. In such minimal models, the
color stack a of three D-branes is intersected by the
(weak doublet) stack b and by one (weak singlet) D-brane
¢ [71]. For the two-brane stack b, there is a freedom of
choosing physical state projections leading either to U(2)
or to the symplectic Sp(1) representation of Weinberg—
Salam SU(2),.

In the bosonic sector, the open strings terminating on
QCD stack a contain the standard SU(3) octet of gluons g
and an additional U(1), gauge boson C,, most simply the
manifestation of a gauged baryon number symmetry:
U@3),~SU(3)xU(1),. On the U(2), stack, the open
strings correspond to the electroweak gauge bosons Ay, and
again an additional U(1),, gauge field X,,. So the associated
gauge groups for these stacks are SU(3) x U(1),,
SU(2), xU(1),, and U(1),, respectively. We can further
simplify the model by eliminating X ,; to this end instead
we can choose the projections leading to Sp(1) instead of
U(2) [73]. The U(1)y boson Y,, which gauges the usual
electroweak hypercharge symmetry, is a linear combination
of C,, the U(1), boson B, and perhaps a third additional
U(1) gauge field Xﬂ.5 The fermionic matter consists of
open strings located at the intersection points of the three
stacks. Concretely, the left-handed quarks are sitting at the
intersection of the a and the b stacks, whereas the right-
handed u quarks come from the intersection of the a and ¢
stacks, and the right-handed d quarks are situated at the
intersection of the a stack with the ¢’ (orientifold mirror)

>In the notation of (2.1), C, X, and B correspond to A, A, and
A.. We will freely switch between these two notations depending
on which is more convenient for the discussion.
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TABLE 1. Chiral fermion spectrum of the U(3) x Sp(1) x U(1)
D-brane model.

Name Representation 0, 0. Oy
U; (3.1) -1 1 -2
D (3.1 -1 -1 3
L (1,2) 0 =
E; 1, D 0 -2 1
0 3.2 I 0 3

stack. All the scattering amplitudes between these SM
particles essentially only depend on the local intersection
properties of these D-brane stacks.

The chiral fermion spectrum of the U(3) x Sp(1) x
U(1) D-brane model is given in Table I. In such a minimal
D-brane construction, the coupling strength of C,, is down
by root 6 when compared to the SU(3). coupling g3, and
the hypercharge

1

1
QY:_Qa_EQc

. (2.12)

is free of anomalies. However, the Q, (gauged baryon
number) is anomalous. This anomaly is canceled by the f-D
version of the Green—Schwarz (GS) mechanism [74-79].
The vector boson Y}, orthogonal to the hypercharge, must
grow a mass in order to avoid long-range forces between
baryons other than gravity and Coulomb forces. The
anomalous mass growth allows the survival of global
baryon number conservation, preventing fast proton
decay [62].

In the U(3) x Sp(1) x U(1) D-brane model, the U(1),
assignments are fixed (they give the baryon number), and
the hypercharge assignments are fixed by the SM.
Therefore, the mixing angle 6p between the hypercharge
and the U(1), is obtained in a similar manner to the way the
Weinberg angle is fixed by the SU(2), and the U(1),
couplings (g, and gy, respectively) in the SM. The
Lagrangian containing the U(1), and U(1), gauge fields
is given by

L =g\B,J% + $,C ¢, (2.13)
where IAS# = cos@pY, +sindpY) and @M = —sin6pY, +
cos OpY), are canonically normalized. Substitution of these
expressions into (2.13) leads to

L =7Y,(g)cosOpJ — ¢y sinOpJ()

+ Y}, (¢} sinO@pJ + gycosOpJi),  (2.14)
with ¢} cos OpJy — ¢4 sin@pJi. = gyJiy. We have seen
that the hypercharge is anomaly free if Jy = 1J¢ —1J%,
yielding

PHYSICAL REVIEW D 90, 066013 (2014)

1 1
gy cos Op =59 and ¢}sin@p =g9r (2.15)
From (2.15) we obtain the following relations:
9
tanfp = —,
anfp 3,
gy \? (QY )2
~— ) + (=) =1, and
<2£/1> 643
1 1 1
(2.16)

- =
4g2 3644 g3

We use the evolution of gauge couplings from the weak
scale M as determined by the one-loop beta functions of
the SM with three families of quarks and leptons and one
Higgs doublet,

1 1 by M

- = n_;
(li(MZ) 2 MZ

1 =2,3,Y,
“i(M) l

(2.17)

where @; = ¢?/4r and by = -7, b, = —19/6, by = 41/6.
We also use the measured values of the couplings at
the Z pole a3(M,) = 0.118 +0.003, a,(M,) = 0.0338,
ay(Mz) = 0.01014 (with the errors in a, y less than 1%)
[80]. Running couplings up to 5 TeV, which is where the
phenomenology will be, we get x = sinfp ~ 0.14. When
the theory undergoes electroweak symmetry breaking,
because Y’ couples to the Higgs, one gets additional
mixing. Hence, Y’ is not exactly a mass eigenstate. The
explicit form of the low-energy eigenstates A, Z,, and Z),
is given in Ref. [81].

We pause to summarize the degree of model dependency
stemming from the multiple U(1) content of the minimal
model containing three stacks of D-branes. First, there is an
initial choice to be made for the gauge group living on the »
stack. This can be either Sp(1) or U(2). In the case of
Sp(1), the requirement that the hypercharge remains
anomaly free is sufficient to fix its U(1), and U(1),
content, as explicitly presented in Egs. (2.15) and (2.16).
Consequently, the fermion couplings, as well as the mixing
angle 6p between hypercharge and the baryon number
gauge field are wholly determined by the usual SM
couplings. The alternative selection—that of U(2) as the
gauge group tied to the b stack—branches into some further
choices. This is because the Q,, O, Q. content of the
hypercharge operator

Oy = ¢qQ4 + ¢, Qp + c.0, (218)
is not uniquely determined by the anomaly cancelation
requirement. In fact, as seen in Ref. [71], there are three
possible embeddings with one more possibility for the

hypercharge combination besides (2.12). This final choice
does not depend on further symmetry considerations.
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2-Left

3-Baryonic

4-Leptonic

I

Sp(1)

u),

FIG. 2 (color online). Pictorial representation of the U(1) x
Sp(1), x U(1); x U(1)g D-brane model.

The SM embedding in four D-brane stacks leads to many
more models that have been classified in Refs. [82,83]. To
make a phenomenologically interesting choice, we focus
on models where U(2) can be reduced to Sp(1). Besides
the fact that this reduces the number of extra U(1)’s, one
avoids the presence of a problematic Peccei—Quinn sym-
metry, associated in general with the U(1) of U(2) under
which Higgs doublets are charged [71]. We then impose
baryon and lepton number symmetries that determine
completely the model U(3)- x Sp(1), x U(1), x U(1)g,
as described in Refs. [47,83]. A schematic representation
of the D-brane structure is shown in Fig. 2. The
corresponding fermion quantum numbers are given in
Table II. The two extra U(1)’s are the baryon and lepton
numbers, B and L, respectively; they are given by the
following combinations:

B = 05/3; L=20;

Oy =c101r + 303 + 40y, (2.19)

with ¢; = 1/2, ¢ = 1/6, and ¢4 = —1/2, or equivalently
by the inverse relations
Q5 =3B; Q1L =1L;

Qir =20y — (B—-L). (2.20)

As usual, the U(1) gauge interactions arise through the
covariant derivative

TABLE II.  Chiral fermion spectrum of the U(3). x Sp(1), x
U(1), x U(1)g D-brane model.

Name Representation 03 O Oir Oy
U, (3.1) —1 0 —1 -2
D, (3.1) -1 0 1 :
L; (1,2) 0 1 0 -1
E; 1, 1) 0 -1 1 1
0; (3, 2) 1 0 0 L

PHYSICAL REVIEW D 90, 066013 (2014)

D (2.21)

u = 8;4 - lggCﬂQS - ig:tBquL - igllBquRs
where ¢, g5, and ¢} are the gauge coupling constants. We
can define Y, and two other fields Y’ s Y” , that are related

I
to C,,B,, B, by the orthogonal transformation [84]

CoCp —CyS, +S45¢C,  SySy +CySyC,
0= CoS, CuC,+5,50S, —S4Cp+CySoS, |.
—Sg S¢Cg C¢C0

(2.22)

with Euler angles 6, w, and ¢. Equation (2.21) can be
rewritten in terms of Y,, Y}, and Y} as follows:

D, = 0, —iY, (=S99 Qir + CpS,, 9,011 + CoC,,95053)
—iY,[CySydh Qir + (CyCy + SpS4S,,)94 011
+(CyySoSp — CyS, ) 9505
- ’Y;; [CoCyd) Qg + (=CySy + CySoS,)94 Q11
+(C,C,Sp + S(/,Sv,)g/3Q3]. (2.23)

Now, by demanding that Y, has the hypercharge Qy

given in Eq. (2.19), we fix the first column of the
rotation matrix O,

Cﬂ Yﬂc3gY/gg
EM = Y/‘C4gY/g£1 . (224)
B, Y.c19v/9)

and we determine the value of the two associated Euler
angles

0 = —arcsin[c,gy/ )] (2.25)

and

y = arcsinfc,gy / (6,Co)]. (2.26)
The couplings ¢, and ¢, are related through the
orthogonality condition,

(@) =G -G)
9%u) g \% 9
with ¢} fixed by the relation g3(M,) = v/6g;(M,) [61].
The field Y, then appears in the covariant derivative
with the desired Qy. The ratio of the coefficients in
Eq. (2.24) is determined by the form of Egs. (2.19) and
(2.21). The value of gy is determined so that the
coefficients in Eq. (2.24) are components of a normal-
ized vector so that they can be a row vector of O. The
rest of the transformation (the ellipsis part) involving

(2.27)
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Y’,Y" is not necessary for our calculation. The point is
that we now know the first row of the matrix O, and
hence we can get the first column of OT,~ which gives
the expression of Y, in terms of C,,B,, B,,

_ C30y
9%

CngB + C49YB

gll H % M
This is all we need when we calculate the interaction
involving Y,; the rest of O, which tells us the expres-
sion of Y, ¥Y” in terms of C, X, B, is not necessary. For
later convenience, we define «,7,¢ as

Y,

C, + (2.28)

Y,=«C,+nB, +&B,; (2.29)
therefore,
C3Gy C19y CaGy
K= , n= , E= . (2.30)
% 9 A

The expression for the C — Y mixing parameter k is the
same as that of the U(3)x Sp(l)x U(1) minimal
D-brane model.

Note that with the ‘“canonical” charges of the right-
handed neutrino Q;; = Qg = —1 the combination B — L
is anomaly free, while for Q;; = Qr = +1, both B and
B — L are anomalous.” As mentioned already, anomalous
U(1)’s become massive necessarily due to the GS
anomaly cancellation, but nonanomalous U(1)’s can also
acquire masses due to effective six-dimensional anoma-
lies associated, for instance, to sectors preserving N = 2
SUSY [86,87].7 These two-dimensional “bulk” masses
become therefore larger than the localized masses asso-
ciated to four-dimensional anomalies, in the large volume
limit of the two extra dimensions. Specifically for
Dp-branes with (p — 3)-longitudinal compact dimen-
sions, the masses of the anomalous and, respectively,
the nonanomalous U(1) gauge bosons have the following
generic scale behavior:

anomalous U(1),: My = ¢,M,

nonanomalous U(1),,: Mz = g,M3V,. (2.31)

Here, ¢, is the gauge coupling constant associated to the
group U(1),, given by g, « g,/,/V|, where g, is the
string coupling and V| is the internal D-brane world
volume along the (p —3) compact extra dimensions, up
to an order 1 proportionality constant. Moreover, V, is
the internal two-dimensional volume associated to the

®We noted elsewhere [85] that such right-handed neutrinos
would have left their imprint on the photons of the cosmic
microwave background.

"In fact, also the hypercharge gauge boson of U(1)y can acquire
a mass through this mechanism. To keep it massless, certain
topological constraints on the compact space have to be met.

PHYSICAL REVIEW D 90, 066013 (2014)

effective six-dimensional anomalies giving mass to the
nonanomalous U(1),.* For example, for the case of
D5-branes, for which the common intersection locus is
just four-dimensional Minkowski space, V|| = V, denotes
the volume of the longitudinal, two-dimensional space
along the two internal D5-brane directions. Since internal
volumes are bigger than one in string units to have
effective field theory description, the masses of non-
anomalous U(1) gauge bosons are generically larger than
the masses of the anomalous gauge bosons.

In principle, in addition to the orthogonal field mixing
induced by identifying anomalous and nonanomalous U(1)
sectors, there may be kinetic mixing between these sectors.
In all the D-brane models discussed in this section,
however, since there is only one U(l) per stack of
D-branes, the relevant kinetic mixing is between U(1)’s
on different stacks and hence involves loops with fermions
at brane intersection. Such loop terms are typically down by
g?/167% ~0.01 [88].” Generally, the major effect of the
kinetic mixing is in communicating SUSY breaking from a
hidden U(1) sector to the visible sector, generally in
modification of soft scalar masses. Stability of the weak
scale in various models of SUSY breaking requires the
mixing to be orders of magnitude below these values [88].
For a comprehensive review of experimental limits on the
mixing, see Ref. [91]. Moreover, none of the D-brane
constructions discussed above have a hidden sector—all the
U(1)’s (including the anomalous ones) couple to the visible
sector. In summary, kinetic mixing between the nonanom-
alous and the anomalous U(1)’s in every basic model
discussed in this paper will be small because the fermions
in the loop are all in the visible sector. In the absence of
electroweak symmetry breaking, the mixing vanishes.

III. LOWEST MASSIVE REGGE EXCITATIONS
OF OPEN STRINGS

The most direct way to compute the amplitude for the
scattering of four gauge bosons is to consider the case of
polarized particles because all nonvanishing contributions
can be then generated from a single, maximally helicity
violating (MHYV), amplitude—the so-called partial MHV

¥t should be noted that, in spite of the proportionality of the
U(1), masses to the string scale, these are not string excitations
but zero modes. The proportionality to the string scale appears
because the mass is generated from anomalies, via an analog of
the GS anomaly cancellations: either four-dimensional anoma-
lies, in which case the GS term is equivalent to a Stiickelberg
mechanism, or from effective six-dimensional anomalies, in
which case the mass term is extended in two more (internal)
dimensions. The nonanomalous U(1), can also grow a mass
through a Higgs mechanism. The advantage of the anomaly
mechanism vs an explicit VEV of a scalar field is that the global
symmetry survives in perturbation theory, which is a desired
property for the baryon and lepton number, protecting proton
stability and small neutrino masses.

’See also Refs. [89,90].
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amplitude [92]. Assume that two vector bosons, with the
momenta k; and k,, in the U(N) gauge group states
corresponding to the generators 7% and 7% (here in the
fundamental representation), carry negative helicities while
the other two, with the momenta k5 and k, and gauge group
states 7% and 7%, respectively, carry positive helicities.
(All momenta are incoming.) Then the partial amplitude for
such an MHV configuration is given by [93,94]

A(AT,A5, AT AL) =4¢° Tr(TH T T T%)

(12)*
" 12)(23)(34) (41)

V(kl’ k2’ k3’ k4)7

(3.1)

where g is the U(N) coupling constant, (i) are the standard
spinor products written in the notation of Refs. [95,96], and
the Veneziano form factor,

V(ki koo ) = V(s 1) = — B(=s/ M3 —u/M3)
T(1—s/MJT(1 - u/M3)
5 , (3.2)
(1 +¢t/M3)
is the function of Mandelstam variables, s = 2k k,,

t =2k ks, u=2kky; s+ t+u=0. (For simplicity we
drop carets for the parton subprocess.) The physical content
of the form factor becomes clear after using the well-known
expansion in terms of s-channel resonances [97],

B(—s/M?, —u/M?)
_ _ZMZ —2n

which exhibits s-channel poles associated to the propaga-
tion of virtual Regge excitations with masses \/nM. Thus,
near the nth level pole (s —» nM?),

{H(u + M2J) } (3.3)

an

(u+ M2J).

(3.4)

In specific amplitudes, the residues combine with the
remaining kinematic factors, reflecting the spin content
of particles exchanged in the s channel, ranging from J = 0
to J = n 4+ 1. The low-energy expansion reads

7% su stu

Vis,tbuymwl————-003)—+---. 3.5
(5.0.0) 1~ =€) T + (33)

Interestingly, because of the proximity of the eight
gluons and the photon on the color stack of D-branes,
the gluon fusion into y + jet couples at tree level [5]. This
implies that there is an order g3 contribution in string

theory, whereas this process is not occurring until order g@f

PHYSICAL REVIEW D 90, 066013 (2014)

(loop level) in field theory. One can write down the total
amplitude for this process projecting the gamma ray onto
the hypercharge,

M(gg = rg) = cos Oy M(gg9 = Yg)

= kcos Oy M(gg — Cg), (3.6)
where « is the (model-dependent) C-Y mixing coefficient.

Consider the amplitude involving three SU(N) gluons
g1, 92,93 and one U(1) gauge boson y, associated to the
same U(N) stack,

To =T¢, Te=Tb  T&=T¢  T%=QI
(3.7)
where [ is the N x N identity matrix and Q is the U(1)

charge of the fundamental representation. The color factor

Tr(TmTazTas Ta4) — Q(dabc + ifabc) , (3.8)
where the totally symmetric symbol d“’¢ is the sym-
metrized trace while f¢*¢ is the totally antisymmetric
structure constant (see Appendix A).

The full MHV amplitude can be obtained [93,94] by
summing the partial amplitudes (3.1) with the indices
permuted as

MI(g7.95.95.7%)
12 42Tr (T4 T T T%)V (kl,,,kzﬁ,k3”7k4)’
026)(2535)(3,4)(41,)

(3.9)

where the sum runs over all six permutations ¢ of {1,2,3}
and i, = 6(i), N = 3. Note that in the effective field theory
of gauge bosons there are no Yang—Mills interactions that
could generate this scattering process at the tree level.
Indeed, V =1 at the leading order of Eq. (3.5), and the
amplitude vanishes due to the following identity:

| |

(12)(23)(34)(41)  (23)(31)(14)(42)
|

B (12)(24)(@3)

Similarly, the antisymmetric part of the color factor (3.8)
cancels out in the full amplitude (3.9). As a result, one obtains

=0. (3.10)

M(g7.95.95.77)
= 8Qd"¢g3(12)*
p(s, u, 1)

<12><24><13><34>>’ (3.11)

" ( pis, b u)
(12)(23)(34)(41)
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where

(1 —s/M;)
r(1+t/M?)

T(1—1t/M3)
1+ s/M§)>’
(3.12)

u(s, t,u) =T(1 —u/M?) (

All nonvanishing amplitudes can be obtained in a similar way.
In particular,

Mgi.95.95.7%)

= 80d"g3(13)*
p(t s, u) u(t, u,s)
§ (<13><24><14><23> - <13><24><12><34>)’ (3.13)

and the remaining ones can be obtained either by appropriate
permutations or by complex conjugation.

To obtain the cross section for the (unpolarized) partonic
subprocess gg — gy, we take the squared moduli of
individual amplitudes, sum over final polarizations and
colors, and average over initial polarizations and colors. As
an example, the modulus square of the amplitude (3.9) is

IM(g7.97.95.73)

su(s,u,t)|?
. ﬂ(t )

9 t?
— 64Q2dabcdabcgé3¥ S,Ll(Su l/t)

(3.14)

Taking into account all 4(N? — 1)? possible initial polari-
zation/color configurations and the formula [98]

PHYSICAL REVIEW D 90, 066013 (2014)

where

2(N? —4)

W =Ny

(3.17)

Before proceeding, we need to make precise the value of Q.
If we were considering the process gg — Cg, then Q =
\/1/6 due to the U(N) normalization condition [71].
However, for gg — yg there are two additional projections
given in (3.6): from C, to the hypercharge boson Y,
yielding a mixing factor «, and from Y, onto a photon,
providing an additional factor cos 6y. This gives

1
— KCOS Ow.

0= (3.18)

The two most interesting energy regimes of gg — gy
scattering are far below the string mass scale M and near
the threshold for the production of massive string excita-
tions. At low energies, Eq. (3.16) becomes

(M(gg = gr)P
4
~ GiQ2C(N )4’;48@ Fut) (shu<M?). (3.19)

The absence of massless poles, at s = 0, etc., translated into
the terms of effective field theory, confirms that there are no

be b (N2 —1)(N? —4) exchanges of massless particles contributing to this proc-
Zd" €d?¢ = 16N ; (3.15)  ess. On the other hand, near the string threshold s ~ M2,
ab,c
we obtain the average squared amplitude [5] M 44wt
s P |M(99—’97)|2%49§Q2C(N)m (s~ M3).
su(s,t,u)  su(s,u,t)|? ’ *
Miag = )P = gf@PC){| HE ) ) (3.20
(s t)+(s < u)} (3.16) The general form of (3.9) for any given four external
gauge bosons reads
|
M(AT, A5, AT A]) = 4¢4°(12)* { Vi Tr(THT2T3T% + T2T4T%T%)
(12)(23)(34)(41)
1%
+ - Tr(T“THT3T% + T T2T%T)
(13)(34)(42)(21)
1%
+ > Tr(THTHT2T% + THTHT4T*) |, (3.21)
(14)(42)(23)(31)
where
V,=V(s,t,u), V,.=V(t,u,s), V,=V(u,s,1). (3.22)

The modulus square of the four-gluon amplitude, summed over final polarizations and colors and averaged over all
4(N? — 1)? possible initial polarization/color configurations, follows from (3.21) and is given by [9]
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(M(g9 = g9)I?
1 1 1 2N?
4(3 - N?)
+ m (SVS +tV, + MVM)2:| . (323)

The average square amplitudes for two gluons and two
quarks are given by

IM(gg = qq)?
fHurl1 1 N
=N, — — | —— 2
EIANG 82 |:2N ut (tVt + MVM) N2 -1 V,Vu:| b
(3.24)
(M(qg — gg)|*
24+u [(N*=1)21 N> -1
- gg 52 |: 2N3 u_t<tvl‘ + uvu)z - VtVu )
(3.25)
and
(M(qg = q9)
s2 + u? N>-11
=% [VsVu - WE(SVS + MVM)2:| :
(3.26)

The amplitudes for the four-fermion processes like quark-
antiquark scattering are more complicated because the respec-
tive form factors describe not only the exchanges of Regge
states but also of heavy Kaluza—Klein (KK) and winding states
with amodel-dependent spectrum determined by the geometry
of extra dimensions. Fortunately, they are suppressed, for two
reasons: (i) the QCD SU(3) color group factors favor gluons
over quarks in the initial state, and (ii) the parton luminosities in
proton-proton collisions at the LHC, at the parton center-of-
mass energies above 1 TeV, are significantly lower for quark-
antiquark subprocesses than for gluon-gluon and gluon-quark
[14]. The collisions of valence quarks occur at higher lumi-
nosity; however, there are no Regge recurrences appearing in
the s channel of quark-quark scattering [9].
|

4 2 2
IM(gg = gg)|? =25, <N 4+ (12/N7)

M* N2 -1
M
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In the following we isolate the contribution from the first
resonant state in Egs. (3.23)—(3.26). For partonic center-of-
mass energies /s < M, contributions from the Veneziano
functions are strongly suppressed, as ~(1/s/M,)8, over SM
processes; see Eq. (3.19). [Corrections to SM processes at
Vs <M, are of order (\/s/M,)*; see Eq. (3.5).] To
factorize amplitudes on the poles due to the lowest massive
string states, it is sufficient to consider s = M?2. In this limit,
V is regular, while

u t
> Vi=m —3-
s — Mj s —M;

V,—

(3.27)

Thus, the s-channel pole term of the average square
amplitude (3.23) can be rewritten as

[M(gg — 99)°
4 (N2 =4+ (12/N2)\ M3+ 7 + o
A TUYNDNM £+ g
M N1 (s — M?)

Note that the contributions of single poles to the cross section
are antisymmetric about the position of the resonance and
vanish in any integration over the resonance.'’

Before proceeding, we pause to present our notation. The
first Regge excitations of the gluon g, the color singlet C, and
quarks g will be denoted by GV, C(V), and Q)| respectively.
Recall that C,, has an anomalous mass in general lower than
the string scale by an order of magnitude. If that s the case, and
if the mass of the C(!) is composed (approximately) of the
anomalous mass of the C,, and M added in quadrature, we
would expect only a minor error in our results by taking the
C") to be degenerate with the other resonances. The singu-
larity at s = M? needs softening to a Breit-Wigner form,
reflecting the finite decay widths of resonances propagating in
the s channel. Because of averaging over initial polarizations,
Eq. (3.28) contains additive contributions from both
spin-J = 0 and spin-J = 2 U(3) bosonic Regge excitations
(GM) and C(V), created by the incident gluons in the helicity
configurations (=) and (+7F), respectively. The M? term in
Eq. (3.28) originates from J = 0, and the #* + u* piece
reflects J = 2 activity. Since the resonance widths depend
on the spin and on the identity of the intermediate state (G"),
Cc), the pole term (3.28) should be smeared as [8]

M3 +ut

% J w99
)< e i

+ =
(s = M3)* + (DL5IM,)?

+ ng—»gg |: —
(s = M3+ (TLIM,)?

N 4+ ut } }
(s = M3)* + (TLM,)* L )

(3.29)

As an illustration, consider the amplitude a + b/D in the vicinity of the pole, where a and b are real, D = x + ie, x = s — M3,
and ¢ = 'M,. Then, since Re(1/D) = x/|D|?, the cross section becomes o o a*> + b?/|D|* + 2abx/|D|* = a* + bzﬂégx)/e—k
2abzxd(x)/e. Integrating over the width of the resonance, one obtains a’¢ + b>z/e = br, because b x €, a x ¢, and €  g°.
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where 5 = 75(M/TeV) GeV, s =
150(M,/TeV) GeV, F’Gﬁ)z =45(M,/TeV) GeV, and
/5 = 75(M,/TeV) GeV are the total decay widths for
intermediate states G") and C"), with angular momentum
J [7]. The associated weights of these intermediate states
are given in terms of the probabilities for the various
entrance and exit channels

N? —4 + 12/N?
N? -1
16 ) N2 —4\?2 NZ—1\2
= -1
V1) [(N >< 4N ) T\
16
& (NZ _ 1) [(N2 - 1)(FG( )—>gg)2 + (FC(I)—{(]g) ]’
(3.30)
yielding
- 8(Cg1_yy)°
W = o ° " S =044, (3.31)
8( G(l)—>y_q) + ( C(l)—>gg)
and
2
W99 Te—yy) —0.56.  (3.32)

8(FG(])—>gg)2 + (FC<])—>gg)2

A similar calculation transforms Eq. (3.24) near the pole
into

(M99 = qq)?
_g_g‘N < N?-2 )[ 99—44 (* + 1)
MITIANNE=1)) [T (s—M2P + (TL5M,)?
. ut(u® + 1)
+ W . ] (3.33)
) =M + (TS0,
where
qu-wq qu—>qy _ 860 o g9l 60—gg
] Q) —>ggFG<l)—>qt_] +FC<1>ﬁggFCm_,qq
=071 (3.34)
and
qu—wiq qu—w _ Tetgglcwogg
8L Gu )—WFG(‘ Jogg T L *ggrc“)—wq
~0.29. (3.35)

Near the s pole, Eq. (3.25) becomes
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" [qu_)gg ut(u® + 1%)
o G (T

|IM(qq = g9)|

1 Waa—99 ut(u® +1°) }
c (S _ M%)Z + (I‘\éﬁ)sz)2
(3.36)
whereas Eq. (3.26) can be rewritten as
2
, _g_3 N-—1
(M(qg = q9)|” = M < N )
M4
x [ 2)2 4 r’= 1/2
(s = M2)2 + (Ch M )
u’ }
+ 3.37
(s = M3 + (T M,)? 537
The total decay widths for the Q1) excitation are T JQTJ/ =

37(M,/TeV) GeV and FJQTS/ 2 = 19(M,/TeV) GeV [7]."
Superscripts J = 2 are understood to be inserted on all the
s in Egs. (3.31), (3.32), (3.34), and (3.35); we have taken
N =3 and Ny = 6. Equation (3.29) reflects the fact that
weights for / = 0 and J = 2 are the same [7].

The s-channel poles near the second Regge resonance
can be approximated by expanding the Veneziano form
factor V, around s = 2M?2,

u(u+ M?)

V(s,t,u)~ ME(s oM7)

(3.38)

The associated scattering amplitudes and decay widths
of the n = 2 string resonances are discussed in Secs. IV
and V. Roughly speaking, the width of the Regge excita-
tions will grow at least linearly with energy, whereas the
spacing between levels will decrease with energy. This
implies an upper limit on the domain of validity for our
phenomenological approach [15]. In particular, for a
resonance R of mass M, the total width is given by

P M
Ca (3.39)

1—‘tOt
where C > 1 because of the growing multiplicity of decay
modes [7,22]. On the other hand, since A(M?) = M? the
level spacing at mass M is AM ~ M?/(2M); thus,

""We added a factor of 1/2 for the spin-3/2 exited string states
as noted in Ref. [23].
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Dot 92 M2 92
For excitation of the resonance R via a + b — R, the
assumption 'y (R) ~T(R — ab) (which underestimates
the real width) yields a perturbative regime for n < 40.
This is to be compared with the n ~ 10* levels of the string
needed for black hole production.12

Before discussing the decay widths of the second
massive level string states, we note that the Breit—
Wigner form for gluon fusion into y + jet follows from
(3.20) and is given by

M(gg — =
M 3T |5~ DBV + (000

1, (3.41)

gr)* = e l =

" 4+ ut
(s = M3)* + (DL M)?

and the dominant s-channel pole term of the average square
amplitude contributing to pp — y + jet reads

s Miu

(M(ag = aqr)]* = ; l =
SMS (s = M2 + (T3 M, 2

w3

J=3
(s — M) + (T3 M,)?

+ (3.42)

IV. DECAY WIDTHS OF THE SECOND
MASSIVE LEVEL STRING STATES

A. Amplitudes and factorization

The main goal of this section is to obtain the decay
widths of the second massive level string states which will
appear as resonances in scattering processes gg — gg,
gq — gq and gg — qq in hadron colliders. In intersecting
brane models, gluons g are the zeroth level massless strings
attaching to the U(3), stack of D-branes; left-handed
quarks ¢; which participate in the weak interactions are
massless strings stretching between the U(3),, stack and the
SU(2) stack [U(2) or Sp(1)]; right-handed quarks gg
could arise as either massless strings stretching between the
U(3), stack and another U(1) stack, or massless strings
attaching only to the U(3), stack and appearing as the
antisymmetric representation of U(3).

Let us first clarify our notation on various string states in
different massive levels. We follow the notations in
Refs. [9-13], and we will focus on the string states which

The mass scale Mgy ~ M, /g2, which corresponds to the
onset of black hole production, follows from the string < black
hole correspondence principle [99]. For g, = 0.1, we obtain
M BH ™~ 100M e

PHYSICAL REVIEW D 90, 066013 (2014)

contribute to gg — gg and gq — gq processes. The bosonic
sector of the first massive level consists of two universal
string states: a spin-2 field a and a complex scalar ®. In
addition, there is a spin-1 field d for which the vertex
operator involves the internal current 7. This vector d can
decay into gg, which is a universal property of all N = 1
compactifications [11]. As the U(3) generators decompose
to the SU(3) color generators plus the U(1) generator
(color singlet), we have two copies of the string excitations.
We will denote the color octets by G and the color
singlets by C*), where n indicates the nth massive level.
For the fermionic sector, the excited quark triplets Q)
consists of one spin-3 field y and one spin-} field a (and also
their opposite chirality fields j, ). For the bosonic sector of
the second massive level (G2, C(?)), four universal states
has been determined [12]: a spin-3 field o, a spin-2 field z,
and two complex vector fields E ,.

The total decay width of a second massive level bosonic
string state G(>) consists of four contributions: G>) decays
into two massless string states (G?) — ggand G? — ¢7),
G decays into one first massive level string state plus one
massless string state (G? — Gg and G® — Q0Wyg),
G? decays into a color singlet [anomalous U(1)’s] plus
a massless gluon or an excited gluon (G® — gA, and
G? = GWA,), and G decays into the excitation of the
color singlet C(!) plus one massless gluon. For a second
massive level color singlet string state C%), its decay width
also involves four contributions: C® decays into two
massless string states (C®) - gg and C? — ¢g), C?
decays into one first massive level string state plus one
massless string state (C?) - G(Mgand C? - QWg), C?
decays into two anomalous U(1)’s, and C®) decays into the
excitation of the color singlet C(!) plus one anomalous
U(1). For a second massive level excited quark Q%) its
total decay width could consist of five contributions: Q(?)
decays into one massless gluon plus one massless quark
(0% - gg), 0 decays into one first massive level string
state and one massless string state (Q® — G(g and
0% = 0Wg), 0 decays into anomalous U(1)’s plus
a massless quark or an excited quark (Q® — gA, and
0% = 0WA ), 0@ decays into the excitation of the color
singlet C(!) plus one quark, and finally, for Q®’ which
participates in weak interactions, it could also decay into
SU(2) gauge bosons plus one quark. All above decay
channels of the second massive level string states are
summarized in Table III. Most of these decay channels
are universal to all compactifications, while there are also
several model-dependent channels. We will comment on
them in Secs. IVG, IVH, and IV 1.

The partial decay widths of G(*) and Q(?) decaying into
two massless string states were already obtained in
Refs. [22,23] by using factorization. However, we realize
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TABLE III. Possible decay channels for the second massive level string states G2, c®, Q<2>. Excited massive
quarks which participate in weak interactions can also decay into SU(2) gauge bosons plus another quark.

2 massless
string states

1 first level string state
plus 1 massless string state

Involve 1 first level
color singlet excitation

Involve 1 or 2
color singlet(s)

G? 99-94 Gg,0Wg,0Wq 9A,.GVA, clyg

0 99 GWq,0Wyg qA,. QA clq
that there are some mistakes in those results. The widths of Tr(T* [T, T%]) = L Jhdas N even;
G? decaying into gg in Ref. [22] should be reduced 2
by one-half. Moreover, there are in fact two distinct Tr(T9{T", T%}) = 2d"®%, N odd.

Q@) (J = 3/2) states. They can decay into gq of helicities
(+1,+1/2) and (-1, +1/2), respectively, and do not mix
with each other. So we need to consider their widths
separately (instead of adding them up as in Ref. [23]). In
this section, we will obtain the partial decay widths of
G, €@, and Q1 decaying into one first massive level
string state (GV, C(V, or Q(V) plus one massless string
state (g or ¢) using four-point amplitudes with one leg
being the first massive level string state obtained in
Ref. [11]. We will comment on other decay channels at
the end of this section.

We have seen in Sec. Il that four-point amplitudes
A(g,9.9.9) and A(g,9,q,q) carry the form factor
V(s, t,u) which can be expanded in terms of s-channel
resonances. Recasting the expansion we can reexpress the
amplitudes as sums of Wigner d matrices, and one could
then obtain two three-point amplitudes of massive string
states decaying into different final states with specific spin
combinations [7]. Using this method, one could identify the
contributions of various string states with different spins
appearing as resonances in the s-channel pole at a certain
massive level. Previous works only deal with the four-
point amplitude with four massless string states, whereas in
this work we consider the factorization of four-point
amplitudes, one of which has massive external legs.
More specifically, we consider four-point amplitudes
A(GY, g,9.9), A(GY, g,4,3), and A(Q'V, g, g, §) which
were computed in Ref. [11]. By factorizing these ampli-
tudes and using the known results (amplitudes that
G, 0® decaying into two massless string states), we
could obtain the partial decay widths of one second massive
level string state decaying into a first massive level string
state plus a massless one.

For the four bosonic string states scattering, there is one
subtlety which is the decomposition of the group factors.
The structure constant of the gauge group f“%% or the
total symmetric trace d“12% would arise when we combine
the three-point amplitudes of two different orderings (1,2,3)
and (1,3,2) on the world sheet. This depends on the overall
world sheet parity (—1)V*! where N is the sum of the
overall massive level number of the three scattering string
states. More specifically, the combined amplitudes have the
following group factors:

When factorizing a four-point amplitude with one first
massive level leg, on one side one gets a second massive
level string state decaying into a first massive string state
plus a zeroth level mode, and on the other side one gets the
same second massive level string state decaying into two
zeroth level massless string states. Thus, one would get a
group factor of d“12¢ on the left and f“3%“ on the right; see
Fig. 3. Factorizing amplitudes involving two fermions is
simpler since there are only two Chan—Paton factors
involved. Our notation on these group factors is summa-
rized in Appendix A.

In this section all the four-point amplitudes with one first
massive level string state are taken from Ref. [11]. In
Ref. [11], the massive string state was placed at position 4,
and the three massless ones took the positions 1, 2, and 3.
For our convenience, in this work we prefer to place the
massive string state at position 1, while the three massless
string states were placed at 2, 3, and 4. The corresponding
amplitudes can be easily obtained by performing permu-
tations of the original amplitudes.

The helicity wave function of a massive higher spin
particle is specified by a pair of lightlike vectors p*, ¢*,
which is a decomposition of the momentum of the particle

|
T | Tas

|

|

felt) ()Ir c®

"a3040
layaza
A" /

Ta2

|

|

|

|

|
Taa

|

|

|

FIG. 3. Factorization of the amplitude A(G), g, g.g) gives
different group factors on two sides. The doubled wavy line
presents the first massive level bosonic string state, whereas the
single lines present massless bosonic string states. G or C?) are
the second massive level intermediate string states obtained from
factorization.
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TABLE IV. The decay widths of n = 2 string resonances. All of them are to be multiplied by the factor g—gM ;. For the widths of G,

4

we have N = 3, N = 6. On the other hand, 0 can decay into bosons on different stacks. For example, the decay product G(!) of a left-
handed Q) in (4.139) can be either an SU(3) or an SU(2) boson, but for each channel the width is of the same form (with different
coupling constant and N). So the widths I in the table should be understood as only for a particular channel, and we need to sum over

all possible channels to get the total widths.

=3 —2 —1 J=5/2 =3/2 J=3/2 J=1/2
Channel chm r{;m r{;m FQ<2> / 1-}/2(2) / o0 / rQe) /
_N_ V2N N_
99 2112 15 6v2
ag 17N _3N_ _N_
56012 402 96+/2
.g s s e
1680v/2 2402 9612
= \/ENf Nf 0
q9 105 120v2
o 5N, 1IN, N,
29+ x4q 224+/2 32072 96v/2
747 Ny Ny Ny
aq + aq 72V 5603 5673
_N_ 3N_ _N_ _N_
99 : 30v2 40v2 12V2 12v2
aq 27N 1IN 25N N
10242 153612 3072v/2 76812
o) q N N _N_ _N_
= 192012 32012 9612 242
dg 13N 3IN N N
5120v2 7680v2 10241/2 25612
1IN 23N N N
a 1280v/2 640+/2 768v/2 192v2
a N N 21N 3N
g T "' T 3840v2 6402 2562 642
total 3(6N+Ny) e LIN+Ny 115N 49N 143N 35N
70v2 80v2 482 7682 38412 7682 19212

k* = p* + ¢*."> The spin quantization axis is along the
direction of g in the rest frame; here, it is most convenient
to set g# = k%, so that the spin axis of the first massive level
string state (at position 1) is along the same direction as the
spin axis of the massless string state at position 2, and we
denote this direction to be +z. Because of angular
momentum conservation, the spin axis of the intermediate
second massive level string state (see Fig. 3) should also
align to +z, and the corresponding helicity amplitudes of
these three states with only specific j, combinations can
survive. The reference momenta of particle 1 are chosen
to be

= <§,0,0,—§>,
qﬂ_kg_@ljg,o,o,%). (4.1)
The spinor products become
(p2)2pl =s/2.  (p3)[Bp]=2t.  (p4)[4p] =2u.
(4.2)

BWe will give a brief review of the massive helicity formalism
in the next section. Helicity formalism for massless fields as well
as massive fermion fields is briefly reviewed in Appendixes B
and C.

where s, t, u are Mandelstam variables. With this choice,
we could extract the helicity amplitudes of the second
massive level strings decaying into a first massive level
string plus a massless one with their spin axes all along +Z
(the direction of the momentum of the massless string
state), from the four-point amplitudes in Ref. [11]. In the
next section, we will focus on the spin-3 and spin-2
universal string states from the second massive level,
computing their scattering amplitudes and their partial
decay widths, where we will also align the spins of the
three interacting states in the direction of the momentum of
the massless particle. Thus, we are expecting the helicity
amplitudes we obtained from factorization in this section to
match exactly with the string amplitudes from conformal
field theory computations in the next section.

We will discuss the factorization of the four-point ampli-
tudes in the following order. We start from the amplitudes
which involve the first massive level spin-2 field a and
obtain the decay widths of second massive level string states
decaying into a plus another massless string state. Then we
discuss the decays which involve the final states d, @, y, a in
order, which are obtained from the four-point amplitudes
with d, ®, y, a plus three other massless string states. The
full results of decay widths for n =2 resonances are
summarized in Table IV at the end of this section.

B.a(J =2)

The highest spin field from the first massive level is the
spin-2 boson a with its vertex operator given in Eq. (5.4).
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We will need to use the amplitudes (all particles are
incoming) [11]

Alay, €3, €3, €4] = 8g3(V, 141020304 4 Y/ a3

+ V, 159200\ 20! Alay, €,, €3, €4,

(4.3)
Alay, uy, itz €3] = 2g5[V (TT)e + V(T T*)3]
XV 2a,A[a1 ,» Up, Ijl3, 64]9 (44)

where € denotes the polarization vector of a gluon g, and

Ala(+2), +,+,-] = 2% <23><<”31>>4< )
Ala(+1),+,+,-] = \%%,
Aa(0). +.+,-] = 2 S0
Ala(=1),+,+,-] = \%%,
R 1=
and
A[a(+2),+%,—%,+} —%%
Alete)33+) = 3
X (@2)(p3) + 3(p2)(a3))
A[a(O),—i—%,—%,-i-_ —%%
x ((q2)(p3) + (p2){q3)).
At 3-34] = s
x (3(q2){p3) + (P2){(43)).
A}:(-z),%,—%,{ :%% (4.6)

The other nonvanishing amplitudes can be obtained by
taking the complex conjugate and permutation.

DJ=32)-a+g
We now factorize the four-point amplitudes
Ala, +,+,—] to get the matrix elements of G<2)(J =
2,3) decaying into a+ ¢g". Amplitudes Ala, —, —, +]
can be obtained via the complex conjugate, and they give

PHYSICAL REVIEW D 90, 066013 (2014)
'(J=3.2)~

—] gives

the matrix elements of the decays G
a+ g~ The factorization of Aa(+2),+, +,

2002
ng 16 a,a,a Jaszasa
3 d33’2(9)f12d34’

Ala(+2), 4+, = 25—

(4.7)

where @ is the angle between —Z and the spatial momen-
tum of particle 3. It is related to the Mandelstam variables
u,t by

Lt:—%(l-i-COSQ), t:—%(1—0089>. (4.8)

From (4.7) we can read off the matrix elements as

Fa.l 3

—2—aa,

Fa./ 3

— aya,a
+24aya; — 893Msd 1727,

(4.9)
where we use F4/ i a, (0 denote the amplitude of a spin-J
particle with angular momentum j, = 4; + 4, (and gauge
index a) decaying into particles 1 and 2 with momenta
along the 7 axis. 4;,4, are helicities of the two particles,
while ay, a, are gauge indices. Thus, the result of Eq. (4.9)
presents the decay of a second massive level spin-3 string
state with j, = —3 decaying into a;(j, = —2) and €5,
which is exactly what we get in Eq. (5.48) in the next
section. In Eq. (5.48), all particles are incoming, and the
corresponding outgoing particles are one a(—2) and one
€~. We would like to remind the reader that the definition
of F ;szalaz is in some sense different from what is used in
the literature [7,22,23]. Previously the helicity 4; (of a
massless particle) was usually defined with its spin axis
along k;. In our convention the spin axis of every particle
is along +z. Particle 1 is moving along —Z, and its spin
axis is opposite to k.

Similarly, we can do the factorization for amplitudes
with other spin configurations:

Ala(+1), 4,4+, -]
- g3M2 16 16 a|d»ra Jaszasa
_S—ZM? <3 d_2 2(9) —?dgz,_z(e) f 1024 fJazay ,
(4.10)
FaJ 3 _FuJZS = 8 M .d4@2a
+l+aja, = 7 —l-aja, — 7593 K ’
2
Fi{Jfézlluz Flii] uz]az = 4\/;g3Msda1a2a_ (411)

Al (0),+,+,-]

2
— 3
e 2M2(8 5% =1

dgl’_2(9)>faluzada3a4a7
(4.12)
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_ _ 2
Fgllalzzlz = Fgfalzz = 4\/;93Msdala2a’

Fili, = Filat, = 2V/2g M aves, 4.13)
Ala(=1), 4. +.-]
27012
g3M5 2 5 2 5
= 4y | —d 0) —44/=d 0 alazada3a4a’
S—2M%< 15 0,—2( ) 3 0,—2( ) f
(4.14)
Fll../:3 . F(l../:3 . 2 2 M dglazg
—l4aja, = © +l=aja, — 593 K s
PR, = P g, @15
Ala(=2).+.+. -]
IM? 4 4+/2
=P 2 —dil () _idil -(0)
s=2M?*\3y5 " 3 :
Xfalazada3a4a’ (416)
Fa.J:3 _ Fa.1:3 _ 2 M .d%@2a
—2+aja, — T +2-aja, T \/Bg:; s ’
_ _ 2
a,J=2 _ palJ=2 _ a,a,a
F—2+a1a2 = }7_5_2_‘11‘12 = %Q3Msd . (417)

The decay width can be computed using (an extra factor of
1/2 is needed if outgoing particles are a pair of gluons)14

1
32(2J + 1)V2zM,

al _
Mdy.ayay

(4.18)

J 2
|FZI/12,a1a2| .
We need to take into account both the channels into a + g™

and into o + ¢g~, and the results are

_ 117G, i 3g3M,

S =—="2N, T = :
GP=ag 2240V 2% G?—ag 160v27
(4.19)

2G6Y%(J=1)—>a+g
The spin-1 resonances arise from factorization of the
amplitude Ala, —, +, +],

“Since the decay product includes a massive particle, the
decay width is suppressed by M?/s compared to the width of
decaying into two massless particles. The suppression is due to
the difference in |k, |/+/s, which appears in phase space integra-
tion of the final states. In the case of two outgoing massless

2
particles, this ratio is %, while in the current case, it is [2‘4—; [see, e.g.,
Eq. (4.1)].
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43M?
Ala(+2), =+, +] = =B gl ((6) freagesaa,

s —2ME T
(4.20)
and we obtain
Fiéfélaz = Fa—’élfallm = 2g3Msdalaza’ (421)

which corresponds to the complex vectors found in
Ref. [12]. Unlike G®(J = 3,2), G®(J = 1) is not parity
invariant; the matrix elements in (4.21) are for two different
particles and should not be added together. Thus, the
corresponding partial decay width reads

rslo= M, :
GP—=ag — 384,/27

(4.22)

3.09(J=5/23/2)>a+q

We could obtain the second massive level spin—%
3

and spin-5 resonances from factorizing amplitude
Ala, +3, -3, +]:
Alar2). 1L L
a ) A A
27 2
2172
GM; 4 sp
=- _32]:42 NG A5 3 O)T8aTa,  (423)
a,J=5/2 _ paJ=5/2 a
F+2+%alaz o F—Z—%u]az o \/§g3MsTa;a- (424)

11 M2 (32
Aa(+1),+§,—§,+] = B (f iy

= 423.32(6)

s —2M?2
3V2 5
=S5 A 320) | TidaTlh,
(4.25)
F{l,]:S/Z _ paJ=5/2 3 M.T%
+lHaya, — 7 —1-laja _2\/'5’93 st mas
a,J=3/2 aJ=3/2 3 a
F+1+%a1a2 S E N \/ Eg:;MSTa;U" (426)

I 1
A[a(O),—l—— - +} BRIV

2\/5 3/2 a a
_Td—/l/2,+3/2(9) TayaT oty

(4.27)

gM? (_\/§ 5/2

5 —1/2,+3/2(9)
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_ 1 /3
_ paJ=5/2 a
= Folhe =3\ 1o MsT e
ad=3/2 _ pad=32 _ |2
F0+%a1a2 - FO—%alaz - 15 ’;M T"”a
Ala(-1) +1 : +
a 9 27 27

2002
o g3M.\‘ ] 5/2 ] 3 3/2
s —2M? <E d+1/2-+3/2(6) 5 §d+1/2,+3/2(9)

a,J=5/2
0+%a1a2

(4.28)

X TapaTats; (4.29)
_ _ 1
a,J=5/2 aJ=5/2 a
F—1+%alaz - +1—%a1a2 - 4mg3M5Ta;a’
_ _ 1
aJ=3/2 _ paJ=3/2 a
F—1+%a1a2 - +1—%a1a2 - zm.QSMsTa;w (430)

Left-handed and right-handed fermions are stretching
between different branes. As a result, left-handed excited

quarks cannot decay into right-handed quarks plus gluons.
a,J=5/2 a,J=5/2
+2+laja, T T —2-tajay’
decay amplitudes for left- and right-handed excited quarks
and should not be combined. The corresponding decay
widths are

For example, we have F but they are

=52 _ 273M =32 _ 116iM
0%~aq " 409627 0%=ag 6144\ 21
(4.31)
4. 09(1=3/21/2) 5 a+q

The second massive level sp1n—§ and spln—— resonances

2
can be obtained from amplitude A[ 2 s+ + ]

1 1 g M 2 3/2
A|:a(+2)7_§7+7+§:| _s 32M2\/§ _é/z,_l/z(g)Tg;aTaaz‘,
(4.32)
_ _ 1
aJ=3/2 _ paJ=3/2
F+2—%a1a2 T 2Haje T \/§g3M Taza (4'33)
Ala(+1), -2+ 41
a —— p—
9 27 9 2
2142
g5M; L 5p 1 42
5 _321;/[2 <3ﬂd—/1/2,_1/2(9> 3\/— _/1/2 1/2(9)>
s
X TaraTab, (4.34)
aJ=3/2 al=3/2
F+1—%alaz - —1+%tl10tz 4\/_93M T”Z“’
_ _ 1
aJ=1/2 ald=1/2
F+l_%ala2 T e, T 2\/_93M Taza (435)
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The spin—% fermion Q<2)

here is different from the
spin-§ fermion Q® we obtained from the amplitude
Ala,+1, -1, +], as this one can decay into (+,+%)
[instead of ( ,+%)]. Since the amplitude A[+,+,+%,

—%] = (), these two states do not mix, and we obtain
2
g3Ms

3072V 2%
(4.36)

J=3/2

255M -
o = Toasaan” ol

1228827 0@—ag —

C.dJ=1)

The spin-1 field d is different from the universal bosonic
fields a, ® in that it is tied to spacetime SUSY. Although its
vertex operator contains the world sheet current 7, the
vector d does give rise to universal amplitudes into a quark-
antiquark pair [11]. The existence of this vector resonance is
a universal property of all N' = 1 SUSY compactifications.
We will need the amplitude A[d,, u,, it3, €4], which reads

Aldy, uy, i3, e4] = \/gg%[vz(Ta“Ta')gi + V(T“T%)e]

x Aldy, uy, i3, €4), (4.37)
where
L1 ] (p3)7
A[d(—l—l),-l—i,—i,-i—_ —W’
L1 ] 5(p3){g3)
A[d(O),+2,—2,+_ _\/EW,
A[d(—l),+;,—;,+_ :—<2<f>3<2)®. (4.38)

These amplitudes will give rise to two channels of the second
massive level string resonances.

1.Q?(J =5/23/2) >d +q
We could obtain the second massive level spm-—
and spm—f resonances from factorizing amplitude

BIndeed, by factorizing A[d, +, — 1.-4] amplitudes, one can
get the second massive level J = 2, 1 resonances where the states
can decay into d+ g. These states are not the same as the
G (J =2.,1) we have discussed above. For A" = 1 compacti-
fication, the vertex operator of this vector d involves internal
current 7 [11]. It only couples to quark-antiquark pairs, while the
G (J =2,1) states, for which vertex operators, cf. Ref. [12],
cannot decay into d + g. Thus, the vertex operators of J = 2,1
resonances which arise from this channel must also contain
internal components. These J = 2, 1 states do not couple to a pair
of gluons and thus play no role in processes gg — gg or gg — qq.
Even though these states do couple to quark-antiquark pairs and
may contribute to four-fermion amplitudes, we will not consider
such processes as they are suppressed [8]. Thus, we will not
discuss these states in this work.
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Ald.+3. -5 +]:

1 1
.A|:d(+1),+§,—§,+:|

_ M (Vo o+ YO )
Ts—oM2 \ 5 G 5 4324302
X Tg;aT(la:; ’ (4-39)

aJ=5/2 _ paJ=5/2 1 /3 a
F+l+%a1llz B F—l——alaz - E \/;g»%MST";‘l’
_ - 1
aJ=3/2 _ paJ=3/2 a
F+1+%a1az B \/—1_093MST0‘;“' (4'40)
A|d(0) +] : +
b 2’ 2’
EZM2 (VB sp 0 2\/§d3/z 0
T2 \5 Sl )+—5 Z12432(0)
X TasaT s (4.41)
aJ=5/2  paJ=5/2 1 3 a
0+ajay FO——ala» ) E‘%MST“ém
al=3/2 _ pa=32 _ |2
0+%a|az O—falaz 1593M Taza (442)

A[d(—1),+1,—%,+}

gzMz V3 5/2 3 a3p
T s_2M? <ﬁ A2 432(0) + _5\/§d+1/2’+3/2(6)

S (4.43)

aJ=5/2 _ paJ=5/2 1 3 a
—l-taja, F+1—%a1a2 o Z \/ Eg?’MSTa;a’
_ - 1 /3
aJ=3/2 _ paJ=3/2
—1+laye, F+1—%a1a2 ) 1093M T“za (4'44)

The corresponding partial decay widths read

J=5/2 _ 13g3M,
0%=da  20480\/27
_ 372M
J=3/2 _ 93 4.45
0%=dq — 30720/27 (4.45)
2.09(J=3/21/2) »d+q

The second massive level sp1n—§ and spln—— resonances

2
arise from amplitude A[d, -1, +,+1],
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1 1
d 1 s T~ 5 A
A[ (+1) 3 + +2]
2102
BM |y 1L
=3 _2;,[% <\/5d_1/2 12(0) = %d_uz,—uz(a)
X TaraT s (4.46)
_ _ 1
aJ=3/2 _ paJ=3/2
F+1—%alaz - —1+%alaz - 4‘g3M Taza’
alJ=1/2 _ palJ=1/2
F+l—%a|az = —lHaja T 2\/—g3M Taza’ (4.47)
and the corresponding partial decay widths read
=32 _ GM N =12 _ BEM,
0%=dq — 4096\/27 Q%~dg 102427
(4.48)

Similar to previous case, we identify the spln—— fermion in
this channel as Q) (J = 3/2).

D. ®.(J =0)

® is a complex scalar field, which couples to only (anti)
self-dual gauge field configurations, i.e., to gluons in (++)
or (——) helicity configurations. The vertex operator of @ is
given in Eq. (5.5). We will use the following amplitudes:

Al®,,+,+, -]
= 4g§(Vtt“1“2“3“4 + Vst02“3ala4 + Vutasalaz%)\/(?
[23)*
—_— 4.49
" 23)B4]42] (4.49)
A®,, +,+, 4]
= 4g§(Vtt“1“2“3“4 + Vst02“3ala4 + Vuta301¢1204)
(a/)—3/2
. 4.50
" (23 (34 (42) (4.50)
11 , .
Ay 435 | =2V,
2412
+ VS(T“IT”**)%]\/J[ } (4.51)

23

DI =32 -, +g
The second massive level spin-3 and spin-2 excitations
arise from factorization of A[®, +, +, —]:

A[@,, +,+, -]
__GM} (4 4 2,
- 5§ — 2M% <3\/§ —1,—2(6) + 3 d—l,—Z(e)

X fattgaaa, (4.52)
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— 2
J=3 J=3
F“ ¢ +ayay = %_—alaz - \/—T§g3Msdalaza,
— 2
J=2 J=2
Fa++alflz = F%_—aluz - %‘QSMsdalaza- (453)

G?(J = 3,2) can decay both into ®, + g* and ®_ + g~
(from A[®_, —, —, +]). However, ®, + g~ is not possible
since A[®,,+,—,—] =0, and neither is ®_+ g as
A[®_, —, +,+] = 0. These will also be confirmed in the
next section. The corresponding decay widths read

_ 93M =2 — 93M
=% 672027 GP=%9 96021
(4.54)

J=3
Fg(Z)

2G69(J=1)->d, +g
G (J = 1) can arise from the following two channels:

i) GAUI=1)- o, +g":
4 2M§
A[CI)+, +, +, ‘H 2M2 dll 0( )falazadazaw’
(4.55)
Folsl = Rl = 2gMdae. (4.56
D, +aa, _—aa,
(i) GPJ=1)>d, +g:
16g2M?
.A[(I)Jr, -+, +} = _ 32M2 d}kl,()(e)falazada}u4a,
(4.57)
F§' 0 = Fo' 0 0, = 893M,d . (4.58)

The G?)(J = 1) that goes into ®, + g* is not parity
invariant. Instead, its partner decays into ®_ + g~. On the
other hand, both channels of ®, + ¢ and ¢, + ¢~ are
possible, and we need to add them up,

_ 17g2M

1 3

GO g = 38427 (4.59)
3.09(J=5/23/2)> %, +gq

The second massive level spin—% and spin—% resonances
arise from

1
A|:¢+a+_7__7+:|

272
__GME (V2 sp 0 2\/§d3/2 p
Ts—2M2\'5 _1/2”/2( ) - 3 —1/2,+3/2( )
X TayaT iy (4.60)
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_ _ 1
aJ=5/2 _ paJ=5/2
F(I>++%a1a2 B CI)_—%alaz o 2\/—g3M Taza,
_ _ 1
a,J=3/2 a,J=3/2
F(I,++%(ll()(2 =Fy gy = \/§g3M sTaa- (4.61)
The corresponding partial decay widths read
=52 _ BM, N =32 _ gGM,
0¥=% " 768027 0¥=%4 " 12801/27
(4.62)
4. 09(1=3/21/2) > &, +q

The second massive level spin—% and spin—% resonances
arise from

1 1
’__,+7+_

Afob]

BME (4 ap 4 1 .
T s-2m? (3 diip-1200) + §d+/1/2,—1 12(0) | TajaTa,.

(4.63)
a,J=3/2 aJ=3/2 g M.T%
O Haja T P_—taja, T 393 s5ma
- - 2
alJ=1/2 _ paJ=1/2 _
F‘I’++%ala2 o F‘I’——%‘llm \/§ 9:M Ta2a (464)
The corresponding partial decay widths read
=32 _ GM, J=1/2 _ BEM, N
0%—2g  384\/27 0¥=% "~ 96\/21
(4.65)

Slmllar to previous cases, we identify the spm—f fermion to

be 0¥(J =3/2).

E.x(J=3/2)
The vertex operator of the spin—% fermion y is given in
Eq. (5.8). We will need to use the following amplitudes:

Awlv€2’€37u4} - 292[

X Ab(lveb €3, I,t4],

(1T )i = V(T

(4.66)

where
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A(-3) -+ ~ i
A=) == =it
Ap(2) =] = sty
A Dmml] - e
and
A}((—%),—h—,—i—%: =\/c7<2<§>—3<>234>,
Ale(-3)+ -+ sl
A%<—§>,+,—,+£ :—ﬁ%. (4.68)

@I =32)>x+4
The second massive level spin-3 and spin-2 excitations
arise from factorization of Ay, —l—%, —, +]:

3 1
.A|:){<+§>,+§,—,+:|

@aM? (2 2
= s —32M2 <§ d3—2,+2(9) +§d32,+2( ) TG, a0, /%,
s
(4.69)

FaJ 3 _ raJ=3 _ L M. T¢

e T Soma \/593 ST amay

1

ad=2 _ paJ=2

F+2+2a10‘2 T e \/693M TalaZ (470)
Al(+5) 41—y
X 2 b 2’ b
202
gsM; 2 2
= s—321\;12 (\/?dil,ﬂ(g) + \/;d31,+2( )) TG o, f ",
s
4.71)
a,J=3 _ raJ=3 _ i M.T¢
HHma il T \/593 st
_ 1
a,J=2 _ paJ=2  _
+%+%a]az o F—%—lalaz - §g3M T"laZ (472)
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A=) 2]

2A02
gaM; 1 1 aasa,
= I (@) + 5 (0 ) T
(4.73)

_ 1 /3
a,J=3 _
+H-taja, T 2 1093M Ta

a,J=2
+%—%a| [2%3

Ae(3) 2]

2172
GM; 1 V2
~ —32M2 <ﬁdil,+2(9) +?di1.+2(9))

x T4

a3a.a
alan ’

a,J=3
1oy ajay?
a,J=2
—%Jr%al a

1
= V3 M, TS o . (4.74)

(4.75)

a,J=3
+%—%a1 a

J=3
F =
—§+§a1 a

1
= MYT3(17
> ngs stajay

J=2 a,J=2
Fe @, = F* =
—i-‘rial a -4%—%0:1 a

1
—— gy M TS .. 4.76
2\/593 K 12 ( )

The corresponding decay widths read

_ SgMN;
=22)+(GP~79) ~ 896y/27
s _ HgMNy

(6D=a)+(GP~z0) — 1280v/27

g
(4.77)

2G9(J=1)->x+3

The second massive level spin-1 excitations arise from
factorization of

3 1 g3M2 azasa
A|:Z<+2>,+2,—,—:| = 2M2d_1'_10( ) alazf}‘t
(4.78)
Fa J=1 a,J=1 1 M.T¢ (4 79)
+2+2a]az - —é—l(l 1\ 293 ST a1, '

We also need to take into account the channel of
G (J =1) = 7 + q. The sum of the decay widths reads

- g%Mst

38427

J=1
Iﬁ( @ =xg)+(GP-pq)

(4.80)
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3.09(J=5/23/2) > x+g
2)(J =5/2,3/2) = y + g~ can be obtained from

()]

_ gME 1d5/z 0 \/5d3/2 0
T —2M2 3 —1/2,+3/2( )_? —1/2,+3/2( )
X TaaTab,, (4.81)
_ _ 1
aJ=5/2 _ paJ=5/2 _ a
+%—0tltl2 - —%+a1a2 - 2mg3MSTa?a’
aJ=3/2 _ pad=3/2 _ 1
-aay F—%+ala2 \/E 93M; Ta‘a (4'82)
1 1
A AT ~
f(r3)~+]
_ GBM; \ﬁ 5/2 (6’)—ﬂd3/2 )
T s—2M2\ 5 (F2432 594172432
X TooTa, (4.83)
aJ=5/2 _ pad=s2 1 [3
F+%—a,a2 - F—%+ala2 ) \/;93M Tala’
aJ=3/2 __ paJ=3/2 __ 2 a
+%—111a2 - —%eraz o ng3MsTaTa- (484)

1 1
A|:Z<_2>a_7 ) +2:|
2102
g Ms 2\/6 5/2 2\/7 3/2
: (Td+/3/2,+3/2(6) 5 d+/3/2 +3/2(‘9)

T s 2M?
X TaaTab,, (4.85)
Fa,J:5/2 _ paJ=5/2 é M.T%
—t—aay T Haa, 593 s aas
aJ=3/2 __ paJ=3/2 __ 2 a
_%—alaz +%+a|az - \/;giiMST“?a' (486)
3 1
A Y EEE ) ~
#(-3) -4
2702
GM; 4 s
= < _321:42£ +/5/2,+3/2(9)T"1aTg314’ (487)
s
J=5 2 J=5/2
= F = V2 M T (488)

0®)(J =5/2,3/2) = y +g" can be obtained from

PHYSICAL REVIEW D 90, 066013 (2014)

3 1

M3 2 5
= 2M%4\/;d_/5 o3 OT @l (4.89)
aJ=5/2 _ paJ=5/2 a
+i+aa, T T S—aay 2g3M5Ta%a' (490)
1 1
.A|:)(<+§>,+,—,+§:|
 @BM: 4\/§d5/2 ) + 4\/_d3/2 )
Ty—aM2\ 5 e 5 4324302
X T2, T%,., (4.91)
aJ=5/2 _ paJ=5/2 6 M T%
Htaa, T —h—aay T 593 aa
_ _ 2
aJ=3/2 _ paJ=3/2 a
Htaa —  A-aja, T %QSMSTG?G' (4.92)

1 1
A|:)(<_§>7+y—,+§:|
2102
EM? (2V3 5 4V2 5
3 < 5 d_/]/2,+3/2(9) + 3 d—/l/2,+3/2(9)

T s —2M?
X T2, T%, . (4.93)
Fa,J=5/2 o Fa,.l=5/2 _ 3 M T
—%+a102 - +%_a1“2 - 1093 ajas
aJ=3/2 _ paJ=3/2 2
e = P =2 M T, (4.94)

o]

_ @BM; \/§d5/2 0 2\/§d3/2 0
BEEYANCE IYEREYA )4‘45 Yi243/2(0)

X TaaT by (4.95)
aJ=5/2 _ palJ=5/2 _
—%—Hllaz - F+%—a1az 2\/_93M Ta]a,
aJ=3/2 _ pad=3/2 _ |
_%-‘ralaz o +§—a1a2 \/§g3M Tala (496)
The corresponding decay widths read
=52 _ 111g3M
Q%=1 " 51202
J=3/2 _ 23G3M, (4.97)
0%=19 " 25601/ 27 '
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4. 0% =3/21/2) >y +g°

The second massive level spin—% and spin—% resonances
arise from

3 1
.A|:){<+§>,—,+§,+:|

L EME (V2 5 0 \/Edl/Z 0
= _oa2\ 3 Ry IRPL )+T Zi24172(0)
X T Ty (4.98)
aJ=3/2 _ paJ=3/2
H-aa, T e 2\/“93M Talfl’
_ _ 1
a,J=1/2 a,J=1/2
+%—a]/uz - F—%Jral/uz = 76g3MsTg?a' (499)

Channels to Q®)(J =3/2,1/2) - yg~ are not possible
since Aly, +,+3,+] =0,

J=32 GBM, J=1/2 _ GBM,
0%=rs™  3072v/2x 0¥=xs " 768+/21
(4.100)
F.a(J =1/2)
The vertex operator of the spin-% fermion a is given in

Eq. (5.9). We will use the following amplitudes:

Alay, 3, €3, uy] = 265(a)HV (T2TS) gt — V(TBT%)g!]

x Alay, €, €3, uy], (4.101)
where
Afa(+3) 4443 = ey
Aa(=3) w40
and
A{a(—%),%—,—ﬂ—%] za’3/2%. (4.103)

BJ=32)—a+g

The second massive level spin-3 and spin-2 resonances
arise from

1 1
A[a(+§>,+§,—,+:|

M3 1
B <3\/§d3_1’+2(9) -

a a3d,a
XTa1a2f34 ’

i, a0)

(4.104)
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1
a,J=3 _ rpaJ=3 _ a
F+ +2a1a2 - —%—%alaz - 2\/Bg3MsTala27
1
a,J=2 _ rpaJ=2 _ a
F"" Fhhoay F—%—%a]az - 2\/§g3MsTala2- (4.105)
1 1
e
2112
g3MY 1 1 asda. a
K 2M%< 30d8’+2(6)_%d(2),+2( ) TG a0,/
(4.106)
FaJ3 _ paJ=3  _ 1 MT
1o ay +i—toy 2@93 st ajay
1
a,J=2 a,J=2
F o T T H-daa 4g3M Talaz (4107)
The corresponding decay widths read
/=3 _ GMNy
(G =ag)+(G¥=aq) 2688\/§n’
TGAM N
/=2 _TgMNy
F(G(2>—>at?)+(G(2)—>qu) - 3840\/§ﬂ' ' (4108)
2.69(J=1)—a+g

The second massive level spin-1 resonances arise from

1 1 BM?
Ala(r3) 3] = @

(4.109)
1
Fij‘*‘zillaz - i%j—lﬂltlao 593M5T2102' (4'110)
The corresponding decay width reads
2
J=1 _ GMNy
F(G(2>—>aq)+(G<2>—>aq) = 38425 (4.111)

3.09(J=5/23/2) >a+gt
We could obtain the second massive level spm-— and
spm-— resonances from

1 1
Ala(-3)+=+3]
2002
GaMs (1 5, V6 3
= < :2M2 (g d—/1/2,+3/2(‘9> - ?d_/l/z,%/z(e)

(4.112)

ay
X TalaTaa4,
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aJ=5/2 _ palJ=5/2 __ 1 a,

“Hoa, T Hmaa, 2mg3MSTala’

aJ=3/2 _ paJ=3/2 __ 1 a,

“Haa, T T Hmaa, \/EQSMSTO‘IO" (4'113)
Again, decaying into a+ ¢~ is not possible since
Ala(+14).—.—, +4] = 0. The decay widths read

M M
J=5/2 _ g3 M J=3/2 _ g3V
0%=as 1536027 0¥=as 256027
(4.114)

4. 0%(J=3/2,1/2)>a+g
Q@ (J =3/2,1/2) = a + g* can be obtained from

1 1
A[a(—f—i),—&-,ﬁ-i,-l-}

g%M? 2 3/2

- § — 2M27§ —3/2.+1/2(9)Tg?aTZ?13, (4115)
A
= - 1
aJ=3/2 _ paJ=3/2 a
+iaa, L aa, E93MsTa?a- (4.116)
1 1
A S R ) a0
o(2) 3]
— g%M% \/§d3/2 0 \/§d1/2 0
T oM\ 3 —1/2~+1/2( )+ 3 —1/2,+1/2( )
s
X TaiaT ai (4.117)
aJ=3/2 _ pat=3/2 | u
o, T T H-ajay T mg3MsT{l?av
ad=1/2 _ pad=12 1 @
—Haa, F+%—a|az - %93MST(11(1~ (4118)

Q@ (J =3/2,1/2) = a+ g~ can be obtained from

1 1
Ala(+3)=5.4]
@My (4 ap 4 1
T s —2M2 §d+1/2,+1/2(9) + §d+1/2,+1/2(9)

X TaaT ot (4.119)
Fal=3/2 _ pad=3/2 _ 2 MT®
H—aay — C aja, T 393 sLajas
al=1/2 _ pal=1/2 _ 2 “
H-ajay F—%—}—alaz = %93M5Ta?a‘ (4120)
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A[a<—§>,—,+§,+] :s—2M24 §d+3/2‘+1/2(9)

X T aT s (4.121)
aJ=3/2 _ paJ=3/2 __ a
F_%_ala2 = F%M]a2 =203sMTolq.  (4.122)
The corresponding decay widths read
=32 _ 213M, N -2 _ 3G3M N
0%=ag "~ 1024v27 0%=a3 " 2562
(4.123)

G. Excited quarks decay to SU(2) gauge bosons

For exited quarks which arise from the intersection of the
U(3) stack and U(2) [or Sp(1)] stack, it is easy to see that
the massive quarks could decay into a SU(2) gauge boson
plus a massless quark. One could obtain the total decay
width of the massive quark decaying into SU(2) gauge
bosons A“ by performing a factorization of the amplitude
A(g,A?, g, g) which was obtained in Ref. [9], while in the
broken electroweak symmetry, W and Z bosons are
produced. Hence, we need to translate the decay widths
of the massive quarks to A into the decay width of W and
Z bosons.

For illustration, let us focus on the higher level excited
quark u"). Effectively, its couplings can be written as

1 _m . I @
Lin = EQZM(L )}’”dL (A, — iA7) + EQZM(L )V”MLAZ

|
+ ggyu(L )y"uLYﬂ

L w 9 (1 _2,\-m
_ i + Jo [ _ =2 m 7
_)\/EQZML A +CW 5 T3 Sw JUL Y ULLy

2 n
+ (g e) 12<L >y”uLA,’;,

where ¢y = cos Oy, sy =sinfy, e = g9v/\/ G + g
and

(4.124)

Wt = L(A1 —iA?),

V2

AT = sy A3 + o Y.

Z = CwA3 - SWY,
(4.125)

Since 1™ is very massive (~v/nMy), we can simply treat
all the gauge bosons after the electroweak symmetry
breaking as massless. A simple calculation shows

" > W+ +d,) =2rw" - A + d,)
=2r(u" - A% +dy)

=2r(ul" - A® + uy), (4.126)
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and

; 2 /1 2 .\2_
T (u” —’Z+ML):C—2<§—§ 2) T(u" - W+ +d,).
w

(4.127)

At 10-100 TeV, we have = ( —3s3,)? ~ 0.28. Thus, we
conclude the decay widths” of the massive quark u(L> that

decay into W' and Z are approximately

T - W +d) + T - Z+uy)

~086x > T(uf — A% +-).
a=12,3

(4.128)

Since g3 is not much greater than g, at 10-100 TeV, we
should also include these contributions to the total decay
widths of the massive quark excitations.

For the second massive level excited quarks, the decay
channels 0@ — A% + Q) also exist. A similar analysis
gives the same front factor

> (0! —I—W/Z) 0.86
x Z 2= A1t o). (4.129)
a=1273

For the massive string states decaying into photon plus
other string states, see the discussion of the next subsection
on massive string states decaying to anomalous U(1)’s.

H. Massive string states decaying to anomalous U(1)’s

We have seen that for intersecting D-brane brane models
the SM gauge group must be extended with new U(1)
symmetries. These U(1)’s are in general anomalous. They
couple to RR axions and would obtain a string scale mass
[86]. These U(1)’s would mix with each other through the
U(1) mass-squared matrix. The mass mixing effects have
been discussed in Sec. I A. Massive string excitations carry
the SM gauge charges, and thus they could decay into
anomalous U(1)’s if kinetically allowed. In this subsection,
we will briefly study the possible decay channels of
massive string excitations.

Let us first focus on the amplitude A(g, g, g,A,), where
A, denotes the U(1) from the U(3), stack. Factorization
gives rise to the resonances of excited massive gluons, and
we have

G = g+A,. (4.130)
Similarly, the factorization of amplitude A(g,g,A,,A,)
gives rise to a massive color singlet that

C" — A, + A, (4.131)
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and we also need to write this decay in terms of
mass eigenfields. We can also consider amplitudes
A(GWY, g,9.A,) and A(CW, g, g.A,), for which factori-
zation could give the following decay channels:

G" -G 4, G

c4g,  (4.132)

cm - c 4+ A (4.133)
Additionally, the factorization of the amplitude
A(g,q,q,A") gives rise to higher level excited massive
quarks decaying into anomalous U(1)’s,
o = g+A,, (4.134)

if kinetically allowed Also, factorization of the amplitudes
A(g.9.3.C") and A(Q",g,3,A,) gives
0" — ¢ 4 ¢, o - o (4.135)
Since A, is not in the physical eigenbasis, we need to

write it in terms of physical fields (fields in the mass
eigenbasis). Using Eq. (2.7), we rewrite Eq. (4.130) as

G = g+ A,
=g+ 0,4 + 0,4 +

=g+ 0uB,+ 0,7 + (4.136)
and similarly for other decay channels. As long as kineti-
cally allowed, the massive string excitations can decay also
into heavier massive anomalous U(1)’s. This is a model-
dependent issue, since the transformation matrix O depends
on the details of the model building. Unless we know an
explicit model construction, we cannot perform further
studies for these decay channels.

In this work, we follow the treatment of Ref. [7] that
we consider A, [the anomalous U(1) from the U(3),
stack] as massless and do not consider the mass mixing
effect of this U(1) with others (this field was referred as
CY in Ref. [7]). The cases involving the excitation of the
color singlet fields C(!) (as a decay product) is simpler. It
has a mass M, and we expect they do not couple to RR
axions.

I. Comments on how to realize right-handed
quarks in intersecting brane models

In intersecting brane models, right-handed quarks can
be realized as either open string stretching between the
U(3), stack and another U(1) stack (let us label this
stack as ¢ stack) or open string stretching between the
U(3), stack and its orientifold image. In the former case,
right-handed quarks are bifundamental representations
under U(3), and U(1),; whereas in the latter case,

a c?
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right-handed quarks are the antisymmetric representation
of U(3).

For the former case, U(1), is a symmetry remaining
unbroken at the perturbative level in the low-energy
effective theory [100], but it can be broken by nonpertur-
bative effects, which are in principle sufficient to suppress
proton decay. For the latter case that (one of the two)
right-handed quarks are realized as an antisymmetric
representation of U(3), U(1)g is not a symmetry. This is
problematic since the leftover global U(1) of U(3) allows
for baryon number violating couplings already at the lowest
order. However, this might be cured by the implementation
of discrete gauge symmetries [101-103] to forbid the
unwanted couplings.

The difference between these two realizations is that we
can have the scattering process A(g, gg, Gg,A.) for the
former case, but this process is absent for the latter
case. Thus, compared to the latter case, from factorization
we know that the second massive level right-handed
quark excitations have several more decay channels
0% s g+A, 0% = oW . and Q© —>A()+q
However, as we discussed in the previous subsection,
A, is not in the physical eigenbasis, and we need to
rewrite it in terms of physical mass eigenfields.'® These
are all model-dependent issues. Unless we focus on a
specific D-brane model, we cannot make any general
statements on them.

Similarly for the left-handed quarks, if one uses Sp(1)
type construction, there is no additional U(1) coming
from this stack. Thus, compared to the U (2) type con—
structions, decay channels 0¥ — ¢+ A,, 0¥ — Q)

A, and Q) — A( ) + g do not exist, since the amphtude
A(g,qr,qr,A,) is absent for Sp(1) cases.

J. Summary of the results

Using factorization, for the second massive level bosonic
string states, we have identified a spin-3 field, a spin-2
field, and complex vector fields, which contribute to
scattering processes gg — gg and gg — ¢qg. For the second
massive level ferm1omc states, we have identified a spm——
field, two spin-3 3 fields, and a spm—— field, which contnbute
to scattering process gqg — gq.

For a second massive level color octet, its total decay
width includes

Tgo =T (G<2) - gg) +T(G? - q4) +T(G® - Gg)
+I(G? - 0Wg,0Wq) +T(G? - Cyg)

+F(G( ) 5 GC)+T(GY = cWyg).  (4.137)

For the second massive level color singlets, we have

"*Note that in the four-stack SM D-brane construct of Sec. I C,
A, can either be B or B, the U(1), or U(l), gauge fields,
respectively.
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Teey =T(C? = gg) +T(C? - q) +T(C? - GWyg)

+T(Cc® - oWz, 0Wgq) +T(C? - CC)
(4.138)

+I(C® - ce).
For the second massive level excited quarks, we have

Fgo = T(Q® = gg) + (0 — Glg)
+T(0? - 0Wg) +T(Q? - Cq)

+T(Q% = cg) 4 -, (4.139)
where “- - -7 denotes model-dependent decay channels for
left- or right-handed excited quarks. In general left- and
right-handed excited quarks have different decay channels
and therefore different widths. We note that among the
amplitudes contributing to the dijet signal, Q L> only
appears as the intermediate state in the channel of gq; —
gq;, and similarly QR) only appears in ggp — gqg. In the
phenomenology analysis, we will take the average of
[M(g9q. = 9q.)|> and [M(gqr = gqg)|* since the incom-
ing quark is equally likely to be left or right handed.

The total decay widths of the second massive level string
states are summarized in Table I'V.

V. STRING COMPUTATION OF PARTIAL
DECAY WIDTHS

In this section, we will focus on two second massive
level universal string states: the spin-3 field 6,,, and
the spin-2 field 7z,,, computing their decays in various
channels.

N-point tree level string amplitudes are obtained by
calculating the N-point correlation functions'” of associate
vertex operators inserted on the boundary of the disk world
sheet, which read

N

A=Y Veko [ ([To) v v,

(5.1)

where the sum runs over all the cyclic ordering of the N
(N > 3) vertices on the boundary of the disk. The corre-
sponding string vertex operators are constructed from the
fields of the underlying superconformal field theory and
contain explicit Chan—Paton factors. To cancel the total
background ghost charge —2 on the disk, we should choose
the vertex operators in the correlator in appropriate ghost
“pictures” which makes the total ghost number to be —2. In
addition, the factor V kg is defined to be the volume of the
conformal Killing group of the disk after choosing the
conformal gauge, which would be canceled by fixing three

The relevant world sheet fields correlation functions can be
found in Refs. [9,10].
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vertices and introducing respective c-ghost fields into the
vertex operators. Then we integrate over other N — 3 points
and get the amplitude.

To obtain the decay widths of the second massive level
string states, we only need to compute the three-point
amplitudes, in which all the positions of the vertex
operators on the disk boundary are fixed.

A. Vertex operators of the second massive level
universal string states

Before we compute the amplitudes, we summarize all the
relevant vertex operators of the zeroth to the second
massive level string states. For the zeroth level string,
the vertex operator for massless gluon g (with the polari-
zation vector €,) in the —1 and 0 ghost picture read,
respectively,

Vil = [TV 2d gse e Pei*X, (5.2)

VO = (199 gye, (i0X* + 2ok - yy# )™, (5.3)

where €, - k* = k* = 0. The Chan—Paton factor 7* indi-
cates the vertex operator is inserted on the segment of disk
boundary on stack a, and [, a, represent the two string
ends. Massless quarks originated from brane intersections
are given by

_L .
Vig = [Ty 2atiehu/2yas, Zorve 2, (5.4)

-1 " -
VoY = [TheV2ali e 2, Si50be#2eX  (5.5)

Uy
where the u“ i, satisfy the Dirac equation u®k,;, =
i1,k = 0, and 27" is the boundary changing operator
[9]. These vertex operators connect two segments of disk
boundary, associate to two stacks of D-branes, with the
indices a; and f; representing the string ends on the
respective stacks.

The first massive level string states and their properties
were comprehensively studied in Refs. [11,13]. For the
bosonic sector, we only need the spin-2 field a,, and the
complex scalar .,

VEY = [T9% gsa, i0XMyredeiX (5.6)
Vi = [ 2 [0 + 20k, )iOXMyr + 20k, O]
i ‘
+ 82a'eﬂw,,l//”w”yﬂ’k"}e‘%’kx, (5.7)
where @, is symmetric, transverse, and traceless.

The fermionic sector contains spin—% and spin—% fields,
which read

PHYSICAL REVIEW D 90, 066013 (2014)

V(_%) = [Tg]gi (Z% e¢10/2)(Z(iaXﬂSa - \/Ea/kadsﬂa)

X5

X Eaﬂhe—(/)/ZeikX’ (58)
(_l) Y4 a/% 2 1 ..
Ve = [Tjla, Ee(/’m/ a’[(0,K)5i0X"S, — 40S,)
x ZaNbe=¢/2eikX (5.9)

which involve the excited spin field $* and the derivative of
the standard spin field, cf. Ref. [13] for their OPEs. The
spin-3 field satisfies y4k* = yioh, = 0.

Here, all the normalization factors for the vertex oper-
ators listed above were fixed by factorization as worked out
in Ref. [11] and have also been checked from supersym-
metry transformations in Ref. [13].

For the second massive level, we will focus on two
bosonic universal states o, 7, for which the vertex operators
were obtained in Ref. [12],

Ve = [T94C,0,,,i0X idX yPede | (5.10)
-1
VEY = [T98.Cak ey 7,
x (i0XHiOX yP — d4d Oytyy? e~ PelX  (5.11)
where in Vf;l) we symmetrize only u, v indices. 6,,,,,, 7, are

spin-3 and spin-2 bosonic fields, respectively, which are both
symmetric, transverse, and traceless. The normalization
C,, C, will be fixed later. Before we carry out the scattering
amplitudes and obtain the partial decay widths of various
channels, we pause and present the construction of helicity
wave functions for higher spin massive bosonic fields.

B. Helicity wave functions for higher spin
massive fields

In this subsection, we first review the helicity wave
functions for spin-1 and spin-2 bosonic fields. Then we
construct the helicity wave functions for higher spin
massive bosonic fields. Helicity formalism for massless
fields as well as massive fermions is briefly reviewed in
Appendixes B and C.

1. Review of helicity wave functions
Jor spin-1 and spin-2 bosonic fields

Massive spin-1 boson.—A spin-J particle contains
2J + 1 spin degrees of freedom associated to the eigen-
states of J.. The choice of the quantization axis Z can be
handled in an elegant way by decomposing the momentum
k* into two arbitrary lightlike reference momenta p and g:

kﬂ — p."{ _|_ qﬂ7
k> = —m* = 2pq,

pP=¢*=0. (5.12)
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Then the spin quantization axis is chosen as the direction of
g in the rest frame. The 2J + 1 spin wave functions depend
on p and ¢, while this dependence would drop out in the
squared amplitudes summing over all spin directions.

The massive spin-1 wave functions £, (transverse, i.e.,
&k = 0) are given by the following polarization vectors
(up to a phase factor) [104]:

1 .

4 (k) = —=— pratiag 5.13

& (k) o PiT 4 (5.13)
1.,

k) = — &4 (ptp — g 14
&o (k) 5.0 (PiPa = 434a), (5.14)
1
& (k) = ——=—q;6""p,. (5.15)

V2m

Massive spin-2 boson.—The wave function (polarization
tensor) of massive spin-2 boson o satisfies the following
relations (symmetric, transverse, traceless), which read

|

*

1 .
a"”(k, _|_2) = —2m2 ‘_7”0“5"/%[7&61(11726];;7
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' (k, ) = a¥ (k, 2), (5.16)
k,a (k, 2) =0, (5.17)
Gu@ (k, 2) =0, (5.18)

where A denotes the helicity of a/**.

An arbitrary four by four tensor has 16 degrees of
freedom. The first condition above reduces the degree of
freedom to 10, and the second and third conditions would
further reduce the degrees of freedom 4 and 1, respectively.
Thus, we are left with 5 physical degrees of freedom as
expected. Different helicity states of the spin-2 massive
boson satisfy the relation

o (k,+2) = [ (k,=2)]. (5.19)

The spin-2 boson helicity wave functions are constructed

in Ref. [105], up to a phase factor,

1 —uia =ub * * * * * *
@ (k,+1) = 3 5 ((pipa = 0390) Py + Pida(PiPy = 4;9)];

1

a*(k,0) =

—ia =vbb * * * * * * * *
2m2\/66ﬂa 6"’ l(Pipa — 4394)(Py Py = 43 q5) — P34ad;Pb — 45PaP} 5]

1 —nda =ub * * * * * *
(k. =1) = = =586 ((P;pa = 4;9a)4;Ps + diPa(PyPb = 4;4))

a

1 —jaa =vbb , % *
@ (k,=2) = 55 6""5" ¢ pud; Pi-

2. Building helicity wave functions for higher spin
massive bosons

This spin-n massive boson ®},'"?>"*" satisfies the follow-
ing physical state conditions:

PrkH l‘@l(lﬂlﬂz“'ﬂn)’ (5.21)
k, @, =0, (5.22)
nﬂiﬂjq)ﬁ‘”zm”" =0. (5.23)

In four dimensions, the first symmetric condition brings

down the degrees of freedom from 4" to (4+n_1 ) and the

n

. .. 4tn-2
transversality and tracelessness eliminate further ( "1 )
e

and (Z) conditions. Thus, the ®4"#2"#" has

(5.20)

44+n-1 44n-2 n
- - =2n+1
n n—1 2
degrees of freedom.
Thus, the helicity wave function of the highest helicity

Jj. = +n of a spin-n massive boson ®,'“2"#" can be written
as, up a phase factor,

i
(v2m)"

2
(P37,

@/;llﬂz"',”n (n’ n) _

(p;,6"149qq, ) (py 6% q,,)

and as always, p* 4+ ¢" = k*. Now to obtain all the helicity
wave functions of a spin-n boson ®}"*?"** we can make
use of angular momentum ladder operators J_. By acting
J_ on the highest J, state successively, one can obtain all
the helicity wave functions of @},'"*"*" using the formula
J_|jym)y=/(j+m)(j—m+1)|j,m—1). Based on
spin-1 gauge boson wave functions, we have
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J(p35"q,) = (P;""“ P = 4;5""“qa).  (5.24)

J_(p3e1p, - qyq,) = 23 p,.  (5.29)
More specifically, we have the following relations:

Jopi=-q3.  J_-p.=0. (5.26)

J_q; =0, J_q,=pa (5.27)

One could write these relations in a simpler form as

j o, 9 0
- Padg,  Tagpy

(5.28)

These formulas allow us to get all the wave functions of an
arbitrary spin massive boson. By applying the J_ operator
on @, (n, n) successively, one can obtain wave func-
tions of all the helicities.

Indeed, this J_ operator is extremely useful in the
computation of the helicity amplitudes involving massive
states. Since the wave function of the highest helicity state
@,#2 1 (0, n) has the simplest form, one could relatively
easily obtain the helicity amplitude A[®,(n,n),- -] that
@,'#2"# (n, n) interacts with other states, and it is usually in
a simple form. One could then apply J_ successively to the
amplitude A[®,(n, n), - -] to obtain all the helicity ampli-
tudes A[®,(n,m),---], which is much simpler than
|
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plugging in explicit forms of the @, helicity wave functions
of lower j,.

There is another way of constructing the helicity wave
functions of a spin-n massive boson, that we can treat the
spin-n boson as a spin-(n — 1) and a spin-1 boson coupling.
Thus, given the helicity wave function of a spin-(n — 1)
boson, one can write down an arbitrary J, = m state of the
spin-n boson as

@Zlﬂz"%;(n’m)

=(n—-1,m-1;1,+1

n,m) @ (n—1,m—1)&}y

+{n—=1,m+1;1,=1|n,m)®2 =1 (n =1, m+ 1)

(I’I,;lmmﬂ” (l’l, m) —

(n+m)(n+m+1) kb

2n+1)2n+2)

(n — m)(n —m+ 1) HiH fn
+\/ CES I

. (n—-m+1)(n+m+1)
(n+1)(2n+1)

+(n—1,m;1,0n,m)@L"2# =1 (n— 1,m)&;",
(5.29)
where the CG coefficients read
. o n+m)(n+m+1
(n=1,m—11,+1[n,m) = _((2n+)l()(2n+2))’
(n—1,m;1,0|n,m) = %, (5.30)
. o (n—m)(n—m+1)
<n—1,m—|—1,1,—1|n,m> - (2n+1)(2n+2) *
Thus, Eq. (5.29) can be written as
n—1 (n—l,m—l)f/jr”
e (n—=1,m+ 1)&"
PRt (n — 1, m)&y. (5.31)

BAs a simple example, we consider the amplitudes Eqs. (4.5) obtained in Ref. [11]. We have

J_Ala(2,42), +,+. -] = V(2 +2)2 =2 + 1) Ala(2, +1), 4+, +, -],

and thus

Ala(2,+1), +, +, ]

1

1
2J_A[a(2, +2),+,+, -]

4 (p4)(4q)

2703 (23)(34)(42)

which just reproduce the desired result. Using this method, one could then check all the results in Ref. [11], where all the helicity
amplitudes were computed using the explicit forms of the helicity wave functions in different j,, for example, Egs. (5.20).
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Indeed, the helicity wave function of an arbitrary j, state of ®, can be written in a general form,

on—m=2a ., , 1

W (1, ) = {Za,(m e e Ry (sz)]
XZZ:{H@*&(@QWWH ¢ p) [ (v p - qq)]n—m—Za}’ (5.32)

J k

where m > 0, the sum over « is over such values that the factorials are non-negative, and we symmetrize all the spacetime
indices u;, p;, pp. We have omitted all the spinor indices, e.g., p*6*q = p;6"“q,. These wave functions satisfy physical
state conditions (symmetric, transverse, and traceless) Egs. (5.21)—(5.23). The helicity wave functions of ®,"* """ (n, —m)
can be easily obtained by

(Pﬁlﬂz“'ﬂn (

n,—m) = & (0, m)". (5.33)

We now write down the helicity wave functions for the massive spin-3 boson, which we will need for further calculations:

Gyaagubbapcc

PE (k, +3) = PidaP P,
3 (\/_m> b

Uﬂaaavhhaf)u

57 (k, +2) = NGV T Piaar}an(Pipe = 4:ac) + Piaa(Py Py — 455 Pidc + (PiPa — 4344 P}abPE].

Guaaaubbdpcc

57 (k, +1) = V5] S Piaa(Pipy = a3as) (Pipe — 4iae) + (Pipa = 4394) Py a5 (PEPe = 454.)
+ (PiPa = 43494) (P} Py = 4395) Pide = P39aP}ab9:Pe = P54aq;PbP:de = 45PaP}dbPE4c):
wp 5;4[152 6ul}b 5‘0“ . .
O (k,0) = 23(om)? s (Pipa = 4594)(PyPo — 4546)(PEPe — 454c) = P39ad;Pb(PEPe — 424c)
= 4;PaP}ay(PEiPe — 4:4c) = Pi4a(PyPy — 4395)q:Pe — 45Pa(P}PY = 4345) P24
= (PiPa = 4394)P;4p9:Pc = (PiPa = 4344)9;PbPEG]:
O.paa vbbo.pcc
7 * * * * * * * * *
5 (k. ~1) = VB (PiPa = 4490) PPy = 4505) i Pe + (PiPa — 4440) 2, P6(PEPe — 434.)
+ 4;a(PyPo = 434)(PEPe — 454c) = P34} PydiPe — A5PaP b9 Pe — 43Pk} PoPEd )
5;Aiza5ubb5péc

57 (k,-2) = N [(PiPa = 4290) 45 Pba:Pe + 45Pa(PiPy = 4505) i Pe + 45 PadPo(PiPe = 434C)]s

Guaaat/bbapcc

1
P (k, =3) = — oG Py De 5.34
5" (k,=3) (Vam) qiPadPvd:P (5.34)

C. Decay of the second massive level string states

We need to first fix the normalization of vertex operators for ¢
decay into two massless gluons, and the result reads

0,y and 7. To this end, we compute the amplitude that

Ouvp> Ty

Aoy, €3, €3) = Tr(T4 [T, T%])C,g3Cp, (2 )ic /€g€'§k/z) + K55 K (€3 - €3) + ko k€l (e; - ks) — K kseh(e5 - &y) |

Opup
(5.35)
Applying the helicity formalism, we obtain

8 a [Ta, Ta
S5 T T T, (5.36)

Aloi(42),65, €3] =
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Extracting the second level pole information from the
Veneziano amplitude .A(g, g, g, g), we obtain (up to a phase
factor)

293
Thus, we obtain C, = g3/ 2v/d, where we have used C D, =

1/(g3a’?) and Eq. (A3).
For 7, decay to two massless gluons, we have

"4(0-1 ’ E;’ €3_) falaza; (537)

A(my, €y, €3) = Tr(T" [T*, T“3])Cﬂg%CD2( )2k’18/1 ”|p7|ﬂ.’

ekl + 2ekkse — kst
- 2a’k§k§’€§(€3 . kz) + 2a/k!24k56§(€2 . k3)
— 2d'Ky k55 (e - €3)]. (5.38)

Similarly, by applying the helicity formalism, we match the
helicity amplitude with the amplitude we extract from
Veneziano amplitude, and we obtain C, = g3/4/3.

The partial decay widths of second massive level string
states to two massless string states were already obtained in
Refs. [22,23]. We are now the most interested in computing
the partial decay widths of a second massive level string
states decay into one first massive level string state plus a
massless one.

1. Partial decay widths of the spin-3 state c,,,

We now focus on the spin-3 bosonic string state 6,,,. It
has four possible decay channels for which the final states
consist of one first massive level string state and one
massless string state, which read ¢ - a4+ g,0 - &, +
g,0 > Y+ u,0 - a+u (the decay widths of ¢ — y +
i,0 - a-+un are the same as the last two channels).
Straightforward computation gives

Aoy, ar, €3) = Tr(T{T*, T“3})

\/_ Oher
x {(2a )2 [k ks e, KRS
— Ksk5a ks, (€3 - ky)]
+ (2d')[3K5K4 0 €5, — 4k €40 ks,

— KKK e, €h ks

Foat(ey k) + 20y, (539
Aoy, @y, €3) = Tr(TO{T, T*})2g3/a0,,,
X [-2a'K5K5KS (€3 - ko) — Kaksel
+ i2a/k§k’§£ﬂ7‘:’1€3yk3gkm]. (540)

We place the second massive level string state, the first
massive level string state, and the massless string at positions
1,2, and 3 with corresponding momentum k1, k,, and k5, and
thus we have

R=-= (5.41)
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To obtain the partial decay widths of the above channels, again
we apply the helicity formalism. In principle, by plugging in
directly the helicity wave functions of the fields participating in
the processes, e.g., Eqs. (5.20) and (5.34), we could obtain the
helicity amplitudes. Then by summing over their squares, we
can achieve the final results. However, special treatment is
needed here. For example, for the amplitude A(c}, @y, €3), 6
has 7 degrees of freedom, o has 5, and e has 2. Thus, we need to
compute total 7 x 5 x 2 = 70 helicity amplitudes, and the
computation would be very tedious. First of all, we observe that

(o) > a+ey)=

I = ay+€35), (542

since

Al (- = Al (n), ay(m), e5]".
This would reduce the total number of the amplitudes we need
to compute by half. In addition, as we mentioned, the helicity
wave functions of massive bosonic fields are built by
decomposing their momentum into two lightlike momenta
k* — p* + g*, and the spin axis of the field aligns to the g
direction. Hence, if we align the spin axes of all the scattering
fields to one same direction, we only need to compute very few
helicity amplitudes, and the others should vanish automati-
cally because of the angular momentum conservation.
The most clever choice of reference momenta read'”

n),ax(—m), 5| (5.43)

o Ho_
ph=rh qz—k§7

(5.45)

Mo
P __rﬂv

q) = -2k,

This choice can be easily generated to more general cases:
(1) Assuming the three particles are all incoming (k; + k,+

k3 = 0) with corresponding momentum k3 = —M3, k3 = —M3,
k% = 0, we can choose the reference momenta
-M? M3
" 2
pr="r di=575 5 k;, P2=7T 4y =755 zka,
M3 M7 - M5

where > =0 and r-ky = (M2 M?2)/2; (2) if all the three
incoming particles are massive with corresponding momentum

k2 = —M3, k3 = —M3, k3 = —M3, we can choose the reference

momenta

pr=ap,, @ =pPq. p3=(—a—1)pi. g3=(-F-1)q.
(5.44)

where p; - q; = —M% /2, and the coefficients

_ M3-M3 - M3t (M M3
2M3
2M3

— M3 £ /(M + M3 - M3)?

- M3)* - 4MIM3

s

a

p

M} - M3 —4AM?M3
With these choices, the spin axes of the three particles align to the
same direction, and thus the computation of helicity amplitude
will be dramatically simplified.
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where r is the reference momentum for the massless gluon
e3(ks) with 2 = 0. It can be easily verified that

ky+ky+kys=pi+q+pr+q+ks=0, (546)

(P1+4q1)* =2(p2 + q2)*. (5.47)
Then by using the mass shell condition Eq. (5.41), we fix
the reference momentum r as r-k3; = —1/(2a’). This
particular choice of reference momenta not only sim-
plifies the computation dramatically but also aligns the
spins of all the interacting particles in one same direction
(the direction of k3), and thus we are expecting the
results we obtained from this section to match exactly
with the results we obtained in the previous section using
factorization.

Using massive helicity wave functions and the above
choice of reference momenta, we compute the helicity
amplitudes of A(o|,ay,€7). Only five survive, which
read

Aloy(=3), ar(+2), €] = %ddlam, (5.48)
Alo(=2), ar(+1), €3+] = %dulam, (5.49)
Alor(-1).0)1 = 2224, (550)
Alor (0), ax(~1), ] = ffwd (5:51)
Aloy(+1), ax(2),ef] = —B_q (5.52)

\/@ ayaxas:

All other helicity amplitudes are checked to vanish.
These results match exactly with the results obtained
from factorization Egs. (4.9)-(4.17), as expected.

With the same choice of the reference momenta, for
A(oy, Py, €3), we obtain

2
A[O-l (_1)’ CI)2+’ €;r] = \/%dalazay (553)
Aloi(-1),P,_,e5] =0, (5.54)

which match Eq. (4.53) exactly.
For the decay channels that final states being fermions.
The scattering amplitudes read,

A(Gl’)_(% u3> = nga3g3\/gayvp[2a’k’§kg(ugaza)?/21dkll
— u§kyiJh") + 2k5ude” 5. (5.55)
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Aoy, ay, u3) = T4 4, \59305'0'”1,/,(—Za’kgkgkg’ug’kzbbaé
+ Kiksulo! ab). (5.56)

For scattering amplitudes involving two fermionic fields, a
factor of Cp, would appear, and we have used Cp, =
e P /(2a?) [11].

For the fermionic decay channels, again we align the
spin axes of the three interacting states into the direction of

-

ky. We will use exactly the same reference momenta
Eq. (5.45) as we did for the bosonic decay channels.
Here, we also need to introduce an additional reference
momentum r with r- k3 = —1/(2d’). Using the massive
fermion helicity wave functions summarized in
Appendix C, we obtain the following helicity amplitudes:

[ _ 3 1 k] a
A_01(+2),12<—2>,M3(—2>] = r——3a,Ta2a3a (5.57)
Aoy 1,7 ( -1 L | R (5.58)

_01 A2\ 75 ) 3| 5 = ea = :

[ ) 1 Nl V3¢ ..,
A_UI(O)JKZ (+§>1M3 <_§>:| _2 /—10a/ T(12a3v (559)

[ _ 3 1 - g3 a
A_Ul(_l)’)(2<+§>vu3 (—§>] —zmTazay (5-60)
and

_ 1 N e
A[01(+1)’612<—2>7”3 <—2)] —ZWT@W (5.61)
A[ (0).a <+1> ( 1)} J__7a (5.62)

o ) = .U - A - aay .

T2 2 27/10d

which match exactly with the results of Egs. (4.70)—(4.76)
and Egs. (4.105) and (4.107), respectively. In addition, we
also have the contributions

(o) = yo +it3) =T(0y = o +uz).  (5.63)

Thus, the partial decay widths of the spin-3 field & match
exactly the results we obtain from factorization.

2. Partial decay width of the spin-2 state n,,

We now turn to the decay of the spin-2 field z,,. For
the decay channels 7 - a+g,7 - P+ g, 7 = 7+ u,
T — a -+ u, we obtain
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A(my, a3, €3) = Te(TH{T?, T°}) %k?t?z(m,)y\ﬂ%{(Z(X’)z[kgkﬁegayckgkg — K55 ks (€3 - k)]

+ (2)[2K50"7 (€5 - k2)

- Zk’;e’gap‘:k3§ + k’;ké’aﬂgex -

Akl ks, + 25K es, + 2e5 k0t k]

+ 250}, (5.64)
A(my, @y, €3) = Tr(T{T?, T°}) 2\[16 L (ulpr| ) L (20 ) [A€5 5 KE — OKE KL €S + 2k5n™7 (5 - ky)]
+ 2657 £ i (20 KRy €,00a€5K5KE — 2K3,48,,0€5K5 + 2€3,,,mK5K0) ) (5.65)
A(ﬂla)_h’ u3) 22(13 \/— k 1€2 ;4|/1y\ﬂ )[ kM ( Olaa)(%dklﬁ - ugkla' _Zm)
P i
o750+ S ug (0" 07e) ). (5.66)
A(zy, as,u3) = fj,za3 \/_ k L€l ) (K5 K u30'p — Kyuso’ . 6"k, baz) (5.67)
|
Applying helicity techniques and using the reference 1 1 V3¢
momenta we have chosen above, we obtain A[”l(o)v)_h <+ 5) , U3 <— 5)} = 4\/&37 T5,ass (5.76)
Al (=2). ap(+1). 5] = i dayarar (5-68) A 1.7 3 L T 5.77
V6o ’ m (= )7)(2 +§ > Uz ) _2\/W aay» ( . )
2v/2g5 and
A[ﬂl(_l)’aZ(()) 6;_] \/J da1a2a3’ (569)
~ 1 1 93
A 1), -—, — || = TS ... (5.78
20 s (=3) (3| =5 T 679
A[”l(o)’ (12(—1),63] = \/;,dalaza3’ (570)
) A[ (0).a <+1> ( 1)] B_ra . (5.79)
T ,a —|luz|—= || = s .
. 293 1 2 D) 3 2 4\/(7 a3
Al (+1), ax(=2). 5] = \/‘_/dalam, (5.71)
3a which match the results of Egs. (4.70)-(4.76) and
d Egs. (4.105) and (4.107) precisely. Thus, we also confirm
an the partial decay widths of these channels obtained from
2 factorization in the previous section.
Alry(=1), @y, 1] = g3/da1a2a3v (5.72) In closing, it is impor‘tant to stress that the bosonic
V3a states we considered in Secs. IV and V are gluons, the
color singlet C,, and their excitations. As a result, we
Alri(-1),®,_,¢f] =0, (5.73)  have taken the QCD coupling g; in all the amplitudes.

which match exactly with Egs. (4.11)-(4.17) and
Egs. (4.53), respectively. For the fermionic decay channels,
we have

_ X e

Alne2.2(-3)n(-3)] = Lot 679
| 7 ! Y 93 a

Alm (+1), 7 5 ) U\ 75 :2\/JT“2“3’ (5.75)

The derivation of the amplitudes, however, is valid for
any vector boson. To obtain the amplitudes involving
(excited) bosons on other stacks, one can just simply
replace g; by the corresponding coupling constant in all
the formulas.

VI. DISCOVERY REACH AT HL-LHC,
HE-LHC, AND VLHC

A. Bump hunting

We have seen that particles created by vibrations of
relativistic strings populate Regge trajectories relating their
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spins and masses. Most apparently, one would expect
that lowest massive Regge excitations would be visible
in data binned according to the invariant mass M of

dijets, after setting cuts on the different jet rapidities,
|

dU 0 Ymax Y dﬁ
d_M:MTZ|:/_me dy fi(xa’M)fj(xh»M)/_ d

ijkl

Y max
+/0 dy fi<xa,M)fj<xb’M>/ g

where 7 = M?/s, x, = \/7e¥, x, = \/re”?, and

|IM(ij — kl)|> = 16;:32@

= (6.2)

ij—kl

In this section we reinstate the caret notation (5,7, i) to
specify partonic processes. The Y integration range in
Eq. (6.1), Yo = min{In(1/1/7), ymax }» comes from re-
quiring x,,x, < 1 together with the rapidity cuts
Ymin < V1], [¥2] < Ymax- The kinematics of the scattering
also provides the relation M = 2p; coshy, which when
combined with p; = M/2sin@* = M/2V1 — cos’0*
yields coshy = (1 —cos?@*)~/2, where 6" is the center-
of-mass scattering angle. Finally, the Mandelstam invari-
ants occurring in the cross section are given by § = M2,
i=—1M?¢>/coshy, and & =—1M*¢™/coshy. An
equivalent expression can be obtained for pp — y + jet
[6]. Following Ref. [106], we take ph, pr' > 125 GeV,
Via = 137, and yi, = 2.8.

The QCD background is calculated at the partonic level
making use of the CTEQG6I1 parton distribution functions
(PDFs) [107]. Standard bump-hunting methods, such as
obtaining cumulative cross sections,

(6.3)

from the data and searching for regions with significant
deviations from the QCD background, may reveal an
interval of M suspected of containing a bump. With the
establishment of such a region, one may calculate a signal-
to-noise ratio, with the signal rate estimated in the invariant
mass window [M; — 2I", M + 2I']. The noise is defined as
the square root of the number of background events in the
same dijet mass interval for the same integrated luminosity.
The HL-LHC dijet discovery reach of lowest massive
Regee excitations (at the parton level) is encapsulated in
Fig. 4. It is remarkable that string scales as large as 7.1 TeV
are open to discovery at the > 5o level. Next, we duplicate
the calculation for the HE-LHC and VLCH. The results are
shown in Fig. 5. The 5¢ discovery reach exceedingly

PHYSICAL REVIEW D 90, 066013 (2014)

V1], |v2] < Ymax = 2.5, and both transverse momenta p; >
30 GeV [33]. With the definitions ¥ =1 (y; + y,) and y=
1 (y1 = y2), the cross section per interval of M for pp —
dijet is given by

s

1
2
ij—kl COSh y

V—
(ymax + Y) dt

Ymax— Y dG

(6.1)

1
_(ymax_y) ij—>kl COShzy:| '

[

improves, reaching 15 TeV at the HE-LHC and 41 TeV at
the VLHC. Once more, we stress that all these results
contain no unknown parameters. They depend only on the
D-brane construct for the SM and are independent of
compactification details.

We now turn to the study of pp — y + jet. Armed with
(3.41) and (3.42), we first compute the signal for an
integrated luminosity of 20 fb~!' at /s = 8 TeV. Using
the 95% C.L. upper limits on the production cross section x
branching of excited quarks (into y + jet), as reported by
the ATLAS and CMS collaborations [106,108], we derived
an upper limit on the string scale forx = 0.14, M, = 4 TeV
at 95% C.L. This limit, however, does not include detailed
detector modeling. It is worth noting that this number is not
far from the dijet limit reported by ATLAS and CMS
collaboration using the dijet channel. The signal-to-noise
ratio for the HL-LHC is displayed in Fig. 4. For string
scales as high as 6.5 TeV, observations of resonant
structures in pp — y + jet can provide interesting corrobo-
ration for stringy physics.

Excitations of the second massive string state may
become visible at the HE-LHC and VLHC. The relevant
resonant amplitudes around s = 2M| are as follows:

o 8g5M? cos(6
M(g7.95. g;, gI) = ZTZWQ()TI-([TM T4 [T%, T%))
892M‘% aja,a fasasa
= —ﬁd&o(a)f 10 fasaaa,
(6.4)
oL o4 83M2 (1 + cosB\?
M(glvg27g3ﬂg4):_s_2M2 2
X COS gfalazafa3a4a
8g3M3
- s—2M?
1 2
x <3 d12,+2 (9) + 3d12,+2(9)>
X e o, (6.5)

066013-35



LUIS A. ANCHORDOQUI et al. PHYSICAL REVIEW D 90, 066013 (2014)

3
103 T T L L 10 T I
10 gy ¢ 104 .
xcluded Re VL luded Region e T T
10’}\1"0% = R %, E
o E o g NG 1
% T 107k RGN o 107 ¢, X N
E ~_3 4 N 3
8 % 105"~ ~ 8 %’o\’\ ]
(X9 "y E o/ ER — 9 LN 1 4
LI B 105~ = R 107 o ]
o S A * af '~ 7 o & ~_ 3
%) QRS 10% S &K% : k
‘5 102 s g ') SR U 8 102 s 8 L e A 2=
prd » ~ 4 10 sl pag ]
| TR wrey {2 s 2 wien
2 i g 1! i 3 -
I [t 18 % 2
° 5 8 | 2 8
S IS 1 o© g g
2 2 3 2 g
S 35 1.2 8 3
10 o8 1o 1° 9 B
3 2 ] o JOO00%
S © ] = ]
vs = 14 TeV » | Vs = 14 TeV i
JL dt = 3000 fb JL dt = 3000 fb™'
1 i i L XL ‘ 11 | ‘ 11 | ‘ 11 | 1 X 1 ) ‘ 1 1 | ‘ | | |
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7
Ms(TeV) Ms(TeV)

FIG. 4 (color online). Signal-to-noise ratio of the lowest massive Regge excitations for the HL-LHC in the dijet (left) and y 4 jet
(right) topologies. For comparison, we also show ATLAS and CMS upper limits on M from unsuccessful searches of new particles
decaying to pairs of partons (quarks, antiquarks, or gluons) [30-33]. For LHC phase I, the signal-to-noise ratio is suppressed by =0.32.

2A42 _ 2
Miar gt 55.00) = =2y (520 coso g

s —2M? 2
82M? (1 2
— IS ,d3 0 _7d2 0 1020 £a3asd 6.6
s—2M2\3 "2 2(0) 3 t2.2(0) | freef (6.6)
4@M? (1 2 1
M(47.33.95.95) = a5\ 23240 (0) + -2 41 () | [T, T%) (6.7)
1>92>93> 94 2 +2,+1 +2,+1 ’ ajay’ :
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FIG. 5 (color online). Dijet signal-to-noise ratio of the lowest massive Regge excitations for the HE-LHC (left) and VLHC (right).
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o __ AgM; (1 2 1 @ T
M(ql s q;, g3+a 94) = s _32M2 (g \/;di (9) _gdiZ,—l(e)> [T T 4]a|a2’ (68)
_ _AgME L 2 =3 asra
M(qt. 03,35 .97) = ;Mz Ld;l/é;l/z(e) 3812 (O) | (T4T®) . (6.9)
Lo o 493 3 =32 J=5/2 as T
M(qv.95 .35 . 95) = 2M2 SdiS/Z,i3/2(9) d:t3/2:l:3/2((9> (TT Jasan (6.10)

For phenomenological purposes, the poles need to be softened to a Breit—Wigner form. We can tell what the intermediate
states are from the Wigner d matrices and put in the corresponding total decay widths. After this is done, the contributions of
the various channels to the dijet production are as follows:

942 AM(t — u)? 4t* — 68%u + 612u* — 611 + u*
(M(gg — gg)? = —2 {( Unl) - s

= +3 ———
16M [ (s —2M3)2 +2(TV5IM ()2~ 9 (s —2M3)? 4+ 2T/ 5T/ M3
4 *+ ut 1 5= 10%u + 25¢*u? + 25¢2u* — 10tu® + u(’]

— +
9(s —2M3)* +2(T/5M,)*  36M; (s =2M3)* +2(TL5 M, )?

n (6.11)

_ 4t [ 1 tu(t* —48u + 82%u* — 41’ + u*
(M(qq = 99)* = =% 3 ( 2 T=3 77 2 )
oMt [6M} (s —2M2)2 +2(T5M,)
1 tu(r? + u?) 2 tu(t? = 3tu + u?) }

+= = +3 eyl (6.12)
6 (s —2M3)* + 2(T/ 3 M)> - 3 (s = 2M3)* + 20T/ M

GiAN; { 1 tu(t* — 48u + 8°7u® — 41’ + u?)

1oM [6M; (s —2M3)* +2(T/53 M)

N 1 tu( + u?) 2 tu(t? = 3tu + u?) }
6 (s —2M3)* +2(T/ 3 M)> - 3 (s = 2M3)* + 20 5T/ My |

M99 — q3)* =

(6.13)

IM(qrg = q.9))* = IM(Grg — qr9)
B 8g§ { {_ —Miu +1 —u(2t —u)? ]
OM 19 (s —2M2)? +2(17, l/zMs) 9 (s —2M?)? +2(%}§/2Ms)2

N 1 [9 —M?u3 +1 —u’ (4t — u)? }
AM 125 (s~ 2M3)2 + 2T M)° 25 (s = 2M3)7 + 2(T M)

[2 M3(=2tu + u?) L3 M2 (=413 + u*) ” 6.14
(s~ 2M2) + 20 JPTE SR 50 (s WP 20 3P S |

(M(qrg = qr9)* = IM(GL9 — G.9)]
843 { [1 —Mtu +1 —u(2t — u)? ]
OM? 9 (s — 2M?)? 4+ 2(I'', I/ZMS) 9 (s —2M?)? +2(I' 3/2MS)

R
1 [2 —M;‘u3 +i —u? (4t — u)? ]
MRS (5 - 2037 +2(CVPML)* 25 (s = 2M3) +2(0 )M’

[2 M2(=2tu + u?) R 3 M (—4tu’ +ut) } } (6.15)

+

- - +z5 - -
9 (s —2M3)? + 20 P00 SPME 50 (s —2m3)? 2 T
R R R R

066013-37



LUIS A. ANCHORDOQUI et al.

PHYSICAL REVIEW D 90, 066013 (2014)

The total decay widths for n = 2 string resonances can be computed using the formulas in Table I'V. We note that the widths
of 0®) are model dependent since they can decay into the U(1) gauge bosons. In the U(3) x Sp(1) x U(1) D-brane model,
we have (at M, ~ 15 TeV)

/5 = 58(M,/TeV) GeV,
/%) = 67(M,/TeV) GeV,

/=32

o = 26(M,/TeV) GeV,

FJQT;” = 37(M,/TeV) GeV,

L

rgj/ ? = 22(M,/TeV) GeV,

L

FJQT;/Z = 31(M,/TeV) GeV.
L

/50 = 53(M,/TeV) GeV,
F’QTj/ 2 =30(M,/TeV) GeV,

L
J=3/2 _
oY

38(M,/TeV) GeV

F’sz/ ? =26(M,/TeV) GeV

R

gj/ 2 =32(M,/TeV) GeV

L

(6.16)

At higher string scales, the decay widths slightly decrease because of the running of the couplings. For M ~ 40 TeV, we

obtain

I3 = 50(M,/TeV) GeV,
[/5) = 59(M,/TeV) GeV,

r’QTj/ = 23(M,/TeV) GeV,

R

erzg/z = 33(M,/TeV) GeV,

R

rgj/ > = 19(M,/TeV) GeV,

R

r’QT;/ > =27(M,/TeV) GeV.

R

/5 =46(M,/TeV) GeV,

FJQTRj/ 2 =27(M,/TeV) GeV,
r’gkg/ > = 34(M,/TeV) GeV
F’QTj/ ? = 23(M,/TeV) GeV

R

rgj/ ? = 28(M,/TeV) GeV
R

(6.17)

The dijet signal-to-noise ratio for n = 2 is shown in Fig. 6. For M < 10.5 TeV the second massive Regge excitations could
also be observed with a statistical significance > 5¢ at the HE-LHC and for M <28 TeV at the VLHC. Measurement of
both resonant peaks would constitute definitive evidence for string physics.

Signal—-to—Noise

FIG.
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B. Angular distributions

In what follows we briefly comment on the angular
distributions. QCD parton-parton cross sections are domi-
nated by #-channel exchanges that produce dijet angular
distributions which peak at small center-of-mass scattering
angles. In contrast, nonstandard contact interactions or
excitations of resonances result in a more isotropic dis-
tribution. In terms of a rapidity variable for standard
transverse momentum cuts, dijets resulting from QCD
processes will preferentially populate the large rapidity
region, while the new processes generate events more
uniformly distributed in the entire rapidity region. To
analyze the details of the rapidity space the DO
Collaboration introduced a new parameter [109],

r_ _do/dM]y <05 , (6.18)
do/dM|(o5<|y, | [y,<1.0)

the ratio of the number of events, in a given dijet mass bin,
for both rapidities |y,],|y»] <0.5 and both rapidities
0.5 < |y1], |y2] < 1.0. The ratio R is a genuine measure
of the most sensitive part of the angular distribution,
providing a single number that can be measured as a
function of the dijet invariant mass. An illustration of the
use of this parameter in a heuristic model where standard
model amplitudes are modified by a Veneziano form factor
has been presented in Ref. [110].

It is important to note that, although there are no
s-channel resonances in gq — gq and gq’ — qq’ scatter-
ing, Kaluza—Klein modes in the ¢ and u channels generate
calculable effective four-fermion contact terms. These in
turn are manifest in a small departure from the QCD value
of R outside the resonant region [14]. In an optimistic
scenario, measurements of this modification could shed
light on the D-brane structure of the compact space. It could
also serve to differentiate between a stringy origin for the
resonance as opposed to an isolated structure such as a Z/,
which would not modify R outside the resonant region.
While the signal of quark scattering is suggestive, the
analysis in Ref. [14] did not take into account all of the
potential detector effects, which is necessary to be con-
fident that the effect is real. In the next section, we describe
the first steps toward a more realistic description of the
string physics processes.

VII. SEGI

SEGI is a modification of the original BlackMax event
generator [34,35], which is extensively used by ATLAS
and CMS collaborations in search for exotic physics. At its
inception, BlackMax could simulate only black hole
production in particle collisions (including all the greybody
factors known to date) [111-118]. Then it gradually grew
into a very comprehensive generator that can accommodate
different signatures of quantum gravity, e.g., stringball
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evaporation in a two-body final state [119]. With the
current modification, BlackMax will be able to simulate
production and decay of lowest massive Regge excitations
yielding y + jet, Z + jet, and dijet events.

A necessary input for the event generator is the ampli-
tudes for perturbative string mediated processes. The
parton-parton subprocesses of lowest massive Regge exci-
tations decaying to dijets are given in Eqgs. (3.29), (3.33),
(3.36), and (3.37), whereas those decaying into y + jet are
giving in Egs. (3.41) and (3.42).20 The cross section can be
written as a convolution of (6.2) with PDFs e.g., for dijets,

Amin/s

Smax/$ 1 dx . .
0 pp—dijet — E / dT/ T a6ij—>klfi<xa7S)fj(T/xavs)’
l/ S T a

(7.1)

where §,,,, and §,,;, are the maximum and minimum square
center-of-mass energy of the colliding partons. The code
iterates 10° times to calculate the Monte Carlo integral.
As an illustration, in Fig. 7 we show a comparison of
the invariant mass distribution, setting M, =5 TeV, as
obtained by SEGI and with the semianalytic (parton model)
approach adopted in the preceding section.

The input parameters for the generator are read from
the file parameter.txt (see Appendix D for how to access the
file). In the following list, we provide an explanation for the
relevant input parameters:

(1) Number_of_simulations: This parameter is the num-

ber of events to be generated.

(2) Type_of_incoming_particles: This parameter deter-
mines the type of incoming particles:

(@) pp
(b) pp
(c) ete”

(3) Center_of_mass_energy_of_incoming_particles:
This is the center-of-mass energy of the two incom-
ing particles in units of GeV.

(4) Choose_a_case: This parameter determines which
type of events are simulated:

(a) nonrotating_black_hole_on_a_tensionless_brane

(b) nonrotating_black_hole_on_a_nonzero_tension_
brane

(c) rotating_black_hole_on_a_tensionless_brane

(d) nonrotating_black_hole_with_fermion_tension-
lees_brane_splitting

(e) stringballs_two_particle_final_states

(f) lowest_massive_Regge_excitations_decaying_
to_dijets

2OIgnoring the Z mass and assuming that cross sections X
branching into lepton pairs are large enough for complete
reconstruction of pp — Z + jet, the contribution to the signal
is suppressed relative to the photon signal by a factor of
tan’6y, = 0.29.
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FIG. 7 (color online).
(dots) and with SEGI (solid). We have taken M, =5 TeV.

(g) lowest_massive_Regge_excitations_decaying_
to_gamma-+jet
(h) lowest_massive_Regge_excitations_decaying_
to_Z+jet
Choose_a_pdf_file (200_to_240_CTEQ6_or_
>10000_for_LHAPDF): This parameter determines
which PDF is used in the simulation. The code
includes CTEQ6 PDFs by default. In that case this
parameter should be set from 200 to 240. For
different PDFs one must install LHAPDF. The
impact of the different PDFs and induced system-
atics in the production and decay of Regge recur-
rences is shown in Fig. 8.
Minimum_mass: This is the minimum mass that one
wants to include in the simulation in units of GeV.
Maximum_mass: This is the maximum mass that one
wants to include in the simulation in units of GeV.

&)

(6)
)

— cteq6l1

—— CT10nlo

—— NNPDF23-nlo-as-0114
—— MRST2004ged_proton

10°

do/dM (fb/GeV)

T
7000

T T
5000 6000

M (GeV)

T T
3000 4000

FIG. 8 (color online).

do/dM vs M of first resonance string signal as obtained through the semianalytic parton model calculation

(8) String_scale: This parameter is the string scale M in

units of GeV.

(9) string_coupling: This parameter is the string cou-

pling; the default is set to g, = 0.1.
(10) kappa: This is the C —Y mixing parameter; the
default is set to x = 0.14.
All the other BlackMax parameters are irrelavant for
simulation of Regge recurrences.

The generator gives the output.txt file. This file
contains the cross sections and the energy momentum
distributions of the incoming and outgoing particles (pseu-
dorapidity distributions are displayed in Fig. 9 for illus-
trative purposes only). The incoming particles are marked
as parent. The outgoing particles are marked as elast. The
meaning of each column is the same as in the original
BlackMax event generator [34,35]. The most up-to-date
source code and TarBall can be downloaded from

cteg6l1

——CT10nlo

—— NNPDF23-nlo-as-0114
—— MRST2004ged_proton

102

-
S
&

do /dM (fb/GeV)

T T T
5000 6000 7000

M(GeV)

T T
3000 4000

Systematic uncertainty of the dijet (left) and y + jet (right) string signal due to PDFs as obtained with SEGI.
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FIG. 9 (color online).

http://projects.hepforge.org/blackmax/. The details for
SEGI installation can be found in the BlackMax manual
[35]. For completness, a brief summary of the installation
process is provided in Appendix D.

Thus far we have included in SEGI string excitations
only up to n = 1. In future versions we plan to extend the
code to account for higher order excitations of the string, as
well as gg — qq and gq’ — gq’ interactions.

VIII. CONCLUSIONS

We have explored the discovery potential of existing and
proposed hadron colliders to unmask excitations of the
string. We have studied the direct production of Regge
recurrences, focusing on the first and second excited levels
of open strings localized on the world volume of D-branes.
In this framework, U(1); and SU(3) appear as subgroups
of U(3) associated with open strings ending on a stack of
three D-branes. In addition, the minimal models contain
two other stacks to accommodate the -electroweak
SU(2), c U(2) and the hypercharge U(1),. For such
D-brane models, the resonant parts of the relevant string
theory amplitudes are universal to leading order in the
gauge coupling. As a consequence, it is feasible to extract
genuine string effects which are independent of the
compactification scheme. In this paper we have made
use of the amplitudes evaluated near the first and second
resonant poles to report on the discovery potential for
Regge excitations of the quark, the gluon, and the color
singlet living on the QCD stack of D-branes.

To calculate the string signal for n = 1 resonances, we
used the partial decay widths obtained elsewhere [7]. To
compute the signal for n = 2 resonances, we have pre-
sented here a complete calculation of all relevant decay
widths of the second massive level string states, including
decays into massless particles and a massive n = 1 and a
massless particle. The latter were obtained from factorizing
four-point amplitudes with one first massive level string

PHYSICAL REVIEW D 90, 066013 (2014)

6.0x10° - M
- — M,=6TeV
—— M,="7TeV
pp — v +jet
2 | Energy range:
- 4.0x10 M, 4+ 0.5 TeV
2
£
=]
z
2.0x10° -
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-4 2 0 2 4
pseudorapidity

Dijet (left) and y + jet (right) pseudorapidity distributions.

state computed in Ref. [11]. The partial decay widths of the
spin-3 and spin-2 bosons from the second massive level
were also obtained from direct string amplitude computa-
tions and match exactly with the results obtained from
factorization. We also constructed the helicity wave func-
tions of arbitrary higher spin massive boson.

Our phenomenological study among the various proc-

esses indicates that:

(i) For M, <7.1 TeV, the HL-LHC will be able to
discover (with statistical significance > 5o) the
lowest massive Regge excitations in dijet events.
For string scales as high as 6.1 TeV, observations of
resonant structures in pp — y +jet can provide
interesting corroboration (with statistical signifi-
cance > 50) of low-mass-scale string physics.

(i) The dijet discovery potential exceedingly improves
at the HE-LHC and VLHC. For n = 1, the HE-LHC
will be able to discover string excitations up to
Mg ~ 15 TeV, whereas the VLHC will attain 50
discovery up to M, =~ 41 TeV. Moreover, for n = 2,
the HE-LHC will reach 5¢ discovery for
M, <10.5 TeV, while the VLHC will be able to
discover Regge excitations for M, < 28 TeV.

(iii) Keeping only transverse Z’s and assuming that cross
sections X branching into lepton pairs are large
enough for complete reconstruction of pp —Z+jet,
the D-brane contribution to the signal is suppressed
relative to pp —y-+jet by a factor of tan?dy, = 0.29.
This differs radically from stringball evaporation in
two-body final state. In such a case, emissions of
y + jet and Z + jet are comparable. The suppression
of Z + jet production, the origin of which lies in the
particular structure of the D-brane model, will hold
true for all the low-lying levels of the string.

Our calculations have been performed using a semianalytic
parton model approach which is cross checked against an
original software package. The string event generator
interfaces with HERWIG and Pythia through BlackMax.
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The source code is publicly available in the hepforge
repository.

In summary, in this paper we have provided a concrete
starting point for understanding the string physics potential
of proposed machines that would collide protons at
energies approaching the boundary of what (wo)mankind
can daydream to achieve. The results presented herein will
help to lay out opportunities, connections, and challenges
for future LHC upgrades.
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APPENDIX A: NOTATION OF GROUP FACTORS

We define the structure constant f*¢ and the total
symmetric group factor d°¢ as

[T9,T%) =iy fobeTe, (A1)

{19, T} =4 " abere. (A2)

With the notation Tr(7¢T?) = 15, we could obtain
Te([7, 7)) = 5 fo. (A3)

Tr({T¢, T”}T“) = 2dbe, (A4)
We could also obtain

Tr(TeTed) = 2ZTr(T“”Te)Tr(T"dTe), (A5)

where T or T? presents either [T%, T?] or {T% T"}.
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We thus arrive at

TH(7, T 7)) = =5 Y (a6)

e

Tr({T, TP}{T¢, T4}) =8 “de*¢de, (A7)

Te([T9, TP{T¢, T9}) = 2iY_febedede.  (A8)

APPENDIX B: SPINOR HELICITY FORMALISM
FOR MASSLESS FIELDS

1. Helicity wave functions for massless
spin-} fermions

For massless spin—% spinors, we use the notation follow-
ing Ref. [11],

)= )=tk = ok = (). (B)
=1l = utk) = st = (o). (B2
= [kl = k) = (k) = (£,0), (B)
(1= kil = 1 k) = 2, (6) = 0.Kp). (B4)

where the momenta with spinor indices are two-component
commutative spinors, which are defined by

P&a — pﬂgﬂéza — _p*&pa’ (BS)
Pail = pyal;a = _papz’ (B6)

where p*¢ = (p%)* and p; = (p,)*. Spinor indices could
be raised (lowered) by & (e,;,) or a, b with dots,

ab o x

p=e"p,,  p=ettp (B7)

The spinor products are defined by
(pa) = (plg) = a_(p)u,(q) = piq™.  (B8)
[pq] = [plgl = u,(p)u_(q) = p"qas.  (BY)

and we have the following relations:

[pq] = —lap], (pq) = —{ap), (pp) = [pp] =0,
(B10)
(pq)" = lapl, (pq) =-2(p-q). (Bl1)
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2. Helicity wave functions for massless
spin-1 gauge boson

The gauge transformation for a spin-1 gauge boson reads
e" — e + Ak*. The massless spin-1 gauge boson only has
2 degrees of freedom, which are helicity up (+) and down
(—). The helicity wave functions (polarization vectors) of a
massless spin-1 gauge boson can be written as

GRS
wkn) = Fon " Vak (B12)
- _ [r|}/”|k> _ raaﬂaizk*a
Gahn === v B

where k is the momentum of the gauge boson and r is the
reference momentum which can be chosen to be any
lightlike momentum except k. The final results of the
helicity amplitudes are independent of the choice of
reference momentum r.

APPENDIX C: HELICITY WAVE FUNCTIONS
FOR MASSIVE SPIN-% AND -% FERMIONS

The wave functions of massive spin—%

mions were constructed in Ref. [104].

in-3 fer-
and spin-5 fer

1. Helicity wave functions for massive spin-% fermions
Massive spin—% fermions wave functions satisfy the Dirac
equation

(K+ m)u(k) = 0, (C1)

(k—=m)v(k) =0, (C2)
where u(k) and v(k) are positive and negative energy
solutions with the momentum k*, which correspond to
fermion and antifermion wave functions, respectively. After
decomposing k into two lightlike momenta p, g, up to a
phase factor, the helicity wave function of the massive spin-
1 fermions can be written as

v =(F0) = () ©

p m
2= (s ) = (F) o

*a
p
2. Massive spin-% fermions wave functions

A massive spin-% fermion could be described by Rarita—

Schwinger spinor-vector U4+ which satisfies equations

(i — m) yTB+ = 0, (C5)
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(7M)AB\I,B’M =0, (C6)

By _
9,¥% =0, (C7)
where A and B are spinor indices which run from 1 to 4. We
can rewrite the first equation in terms of positive and
negative solutions of Dirac equation, i.e., U and V, which
read

(k+m)A,U(k)B+ =0, (C8)

(kK= m)A gV (k)B# = 0. (C9)

Using the same decomposition k = p + ¢, where p, g are
lightlike reference momenta, we have, up to a phase factor,

A 3 1 mq bb
vra(+2) = L (Cn e ) (peibg ) (C10
(+3) = ( ' )i#a. (o)

gubb [ la) an
= [( . )(p;ipb—q*;,qb)Jr( " )(PZ‘I!J)]’

6m

(C11)

()

" [ Pa
Vom K[q,f]q*

—4a
> (P;Po—d;q5) + (@p*a> (q;-‘,pb)} ,

m

(C12)

3 1 Pa ,
Al —=) = —— * =pbb
v ﬂ( 2) ~ \V2m <%qm>(4;ﬁ” py),  (C13)

and

" [ Pa
~ Vem K%q*"‘
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()

gubb [ (00 g,
= Jem [( " >(p;§pb—q’,§qb)+( " )(p’,-;qb)],
p

(C16)

A 3 1 (g bb
vau( 3 Z m a ) (praubbg,). (C1T
(3) = v (" J@iz™an e

APPENDIX D: SEGI INSTALLATION

The first step is to download the zipped tar file which has
to be unzipped to extract the files and make the program
executable:

gunzip BlackMax-2.00.tar.gz

tar -xvf BlackMax-2.00.tar

Before compilation one has to check the compiler
version of gcc by executing the command

gcc—version

which generates the output

gcc (GCC) 3.4.6 20060404 (Red Hat 3.4.6-10)

Copyright (C) 2006 Free Software Foundation, Inc.

This second step is required because the latest gcc
compiler version (4.1.2) has changed the names of some
system libraries needed to compile Fortran with C code.
The download is configured to use gcc version 4. If an older
gcc version (e.g. 3.4.6) is in operation, then one needs to
modify the BlackMax Makefile. This can be accomplished
by uncommenting the following lines in the Makefile:

F77LIB=g2c

F77COMP=g77

After that SEGI is ready for compilation. There are three
different ways to run SEGI: (i) standalone mode for which
no additional libraries are required, (ii) accessing PDFs
from LHAPDF, or (iii) accessing PDFs from LHAPDF and
simultaneous hadronization from Pythia. In each case a
different compilation/linking step is required to produce the
executable. For all three options, the default format of the
event output is the Les Houches Accord format [36]. This
text file can be used as input into HERWIG and Pythia to
hadronize the SEGI events.

1. Standalone mode

In this version the proton parton densities are taken from
CTEQ6m which are packaged with BlackMax. After
unpacking, the command

gmake BlackMaxOnly
has to be executed, and the file parameter.txt has to be
modified to select one of the 41 CTEQ6m PDF sets that has
been bundled with BlackMax, e.g.,

choose_a_pdf_file(200_to_240_cteq6)Or_>10000_for_
LHAPDF
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200
After that, the executable can be run:
BlackMax > &! out

2. LHAPDF

This version uses the proton parton densities from the
LHAPDF library, which must be downloaded from http://
projects.hepforge.org/lhapdf/.

Of course, one has to install the package in a directory
with write permission. One can do this by specifying an
installation directory (for additional information, the reader
is referred to the LHAPDF manual). Then the BlackMax
Makefile must be edited to insert the library locations. One
has to verify that the LD_LIBRARY_PATH environment
variable includes the location of the newly built LHAPDF
library:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/
data/rizvi/atlas/lhapdf-5.3.0/lhapdf/lib

export LHAPATH=/data/rizvi/atlas/lhapdf-5.3.0/lhapdf/
share/lhapdf/PDFsets

The next step is to select a valid PDF set in parameter.txt,
e.g., the LHAPDF partons from the H1 PDF2000 fit of
HERA data:

choose_a_pdf_file(200_to_240_cteq6_or_>10000_for_
LHAPDF)

70050

After unpacking the source files, one can compile the
program

gmake BlackMax

After that, the executable can be run:

BlackMax >&! out

3. LHAPDF with simultaneous
Pythia hadronization

To hadronize the events, BlackMax comes with an
interface to Pythia. To generate fully hadronized events,
one needs to download and install the latest versions of
LHAPDF and PYTHIA. They are available at http://www
.hepforge.org/downloads/pythia6 and http://www.hepforge
.org/downloads/lhapdf.

BlackMax has been tested wth Pythia 6.4.10 and
LHAPDF 5.3.0. After that, one has to create the Pythia
libraries and remove both the following four dummy
routines,

upinit.f

upevnt.f

pdfset.f

structm.f
and the pdfset.f routine from the Pythia Makefile. The four
routines above are all dummy routines which actually exist
in LHAPDF. Next, one must edit the BlackMax Makefile to
insert the library locations, while checking that the
LD _LIBRARY_PATH environment variable includes the
location of the newly built Pythia and LHAPDF libraries:
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export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:
data/rizvi/atlas/lhapdf-5.3.0/lhapdf/lib

exportLHAPATH=/data/rizvi/atlas/lhapdf-5.3.0/lhapdf/
share/lhapdf/PDFsets

Finally, one has to create the BlackMax executable using
the target “all,” which will link to the Pythia and LHAPD
Flibraries,

PHYSICAL REVIEW D 90, 066013 (2014)

gmake all

and select a valid PDFsetinparameter.txt, e.g.,

choose_a_pdf_file(200_to_240_cteq6)Or_>10000_for_
LHAPDF

10050

After that, the exectuable can be run:

BlackMax > &! out
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