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We consider extensions of the standard model based on open strings ending on D-branes, with gauge
bosons due to strings attached to stacks of D-branes and chiral matter due to strings stretching between
intersecting D-branes. Assuming that the fundamental string mass scaleMs is in the TeV range and that the
theory is weakly coupled, we discuss possible signals of string physics at the upcoming HL-LHC run
(integrated luminosity ¼ 3000 fb−1) with a center-of-mass energy of

ffiffiffi
s

p ¼ 14 TeV and at potential future
pp colliders, HE-LHC and VLHC, operating at

ffiffiffi
s

p ¼ 33 and 100 TeV, respectively (with the same
integrated luminosity). In such D-brane constructions, the dominant contributions to full-fledged string
amplitudes for all the common QCD parton subprocesses leading to dijets and γ þ jet are completely
independent of the details of compactification and can be evaluated in a parameter-free manner. We make
use of these amplitudes evaluated near the first ðn ¼ 1Þ and second ðn ¼ 2Þ resonant poles to determine the
discovery potential for Regge excitations of the quark, the gluon, and the color singlet living on the QCD
stack. We show that for string scales as large as 7.1 TeV (6.1 TeV) lowest massive Regge excitations are
open to discovery at the ≥ 5σ in dijet (γ þ jet) HL-LHC data. We also show that for n ¼ 1 the dijet
discovery potential at HE-LHC and VLHC exceedingly improves: up to 15 TeV and 41 TeV, respectively.
To compute the signal-to-noise ratio for n ¼ 2 resonances, we first carry out a complete calculation of all
relevant decay widths of the second massive level string states (including decays into massless particles and
a massive n ¼ 1 and a massless particle), where we rely on factorization and conformal field theory
techniques. Helicity wave functions of arbitrary higher spin massive bosons are also constructed. We
demonstrate that for string scalesMs ≲ 10.5 TeV (Ms ≲ 28 TeV) detection of n ¼ 2 Regge recurrences at
HE-LHC (VLHC) would become the smoking gun for D-brane string compactifications. Our calculations
have been performed using a semianalytic parton model approach which is cross checked against an
original software package. The string event generator interfaces with HERWIG and Pythia through
BlackMax. The source code is publicly available in the hepforge repository.
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I. INTRODUCTION

One of the most challenging problems in high-energy
physics today is to find out what is the underlying theory
that completes the standard model (SM). Despite its

remarkable success, the SM is incomplete with many
unsolved puzzles—the most striking one being the huge
disparity between the strength of gravity and of the other
three known fundamental interactions corresponding to the
electromagnetic, weak, and strong nuclear forces. Indeed,
gravitational interactions are suppressed by a very high-
energy scale, the Planck mass MPl ¼ G−1=2

N ∼ 1019 GeV,
associated to a length lPl ∼ 10−35 m, where they are
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expected to become important. This hierarchy problem
suggests that new physics could be at play above about the
electroweak scale MEW ∼ G−1=2

F ∼ 300 GeV and has been
arguably the driving force behind high-energy physics for
several decades.
In a quantum theory, the hierarchy implies a severe fine-

tuning of the fundamental parameters in more than 30
decimal places in order to keep the masses of elementary
particles at their observed values. The reason is that
quantum radiative corrections to all masses generated
by the Higgs vacuum expectation value (VEV) are
proportional to the ultraviolet cutoff which in the presence
of gravity is fixed by the Planck mass. As a result, all
masses are “attracted” to about 1016 times heavier than
their observed values. A fine-tuned cancellation of the
radiative corrections seems unnatural, even though it is in
principle self-consistent. Naturalness implies that either
the fundamental scale of gravity must be much smaller
than the Planck mass or else there should exist a
mechanism which ensures this cancellation, perhaps
arising from a new symmetry principle beyond the SM.
Low-energy supersymmetry (SUSY) with all superpar-
ticle masses in the TeV region is a textbook example.
Indeed, in the limit of exact SUSY, quadratically divergent
corrections to the Higgs self-energy are exactly cancelled,
while in the softly broken case, they are cutoff by the
SUSY breaking mass splittings. On the other hand, for
low-mass-scale strings, quadratic divergences are cutoff
by the string scale Ms, and low-energy SUSY is not
needed [1]. These two diametrically opposite viewpoints
are experimentally testable at high-energy particle col-
liders, in particular at the CERN LHC.
The recent discovery of a particle with a mass around

126 GeV [2,3], which seems to be the SM Higgs, has
possibly plugged the final remaining experimental hole in
the SM, cementing the theory further. The LHC data are so
far compatible with the SM within 2σ and its precision
tests. It is also compatible with low-energy SUSY, although
with some degree of fine-tuning in its minimal version.
Indeed, in the minimal supersymmetric standard model
(MSSM), the lightest Higgs scalar mass mh satisfies the
inequality

m2
h ≲m2

Zcos
22β þ 3

ð4πÞ2
m4

t

v2

�
ln
m2

~t

m2
t
þ A2

t

m2
~t

�
1 −

A2
t

12m2
~t

��

≲ ð130 GeVÞ2; ð1:1Þ

where the first term in the rhs corresponds to the tree-level
prediction and the second term includes the one-loop
corrections due to the top and stop loops. Here, mZ, mt,
m~t are the Z boson and the top and stop quark masses,
respectively; v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2i þ v22

p
with vi is the VEVs of the two

Higgses; tan β ¼ v2=v1; and At is the trilinear stop scalar
coupling. Thus, a Higgs mass around 126 GeV requires a

heavy stop mt ≃ 3 TeV for vanishing At, or At ≃ 3m~t ≃
1.5 TeV in the “best”-case scenario. These values are
obviously consistent with the present LHC bounds on
SUSY searches, but they are expected to be probed in the
next run at double energy. Theoretically, they imply a fine-
tuning of the electroweak scale at the percent to per mille
level. This fine-tuning can be alleviated in supersymmetric
models beyond the MSSM.
Low-mass-scale superstring theory provides a brane-

world description of the SM, which is localized on
membranes extending in pþ 3 spatial dimensions, the
so-called D-branes. Gauge interactions emerge as exci-
tations of open strings with endpoints attached on the
D-branes, whereas gravitational interactions are
described by closed strings that can propagate in all
nine spatial dimensions of string theory [these comprise
parallel dimensions extended along the ðpþ 3Þ-branes
and transverse dimensions]. For an illustration, consider
type II string theory compactified on a six-dimensional
torus T6, which includes a Dp-brane wrapped around
p − 3 dimensions of T6 with the remaining dimensions
along our familiar (uncompactified) three spatial dimen-
sions. We denote the radii of the internal longitudinal
directions (of the Dp-brane) by R∥

i , i ¼ 1;…p − 3 and
the radii of the transverse directions by R⊥

j ,
j ¼ 1;…9 − p; see Fig. 1.
The Planck mass, which is related to the string mass

scale by

M2
Pl ¼

8

g2s
M8

s
V6

ð2πÞ6 ; ð1:2Þ

determines the strength of the gravitational interactions.
Here,
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FIG. 1 (color online). D-brane setup with d∥ parallel and d⊥
transverse internal directions.
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V6 ¼ ð2πÞ6
Yp−3
i¼1

R∥
i

Y9−p
j¼1

R⊥
j ð1:3Þ

is the volume of T6, and gs is the string coupling. It follows
that the string scale can be chosen hierarchically smaller
than the Planck mass at the expense of introducing 9 − p
large transverse dimensions felt only by gravity, while
keeping the string coupling small. For example, for a string
mass scale Ms ≈Oð1 TeVÞ, the volume of the internal
space needs to be as large as V6M6

s ≈Oð1032Þ. On the other
hand, the strength of coupling of the gauge theory living
on the D-brane world volume is not enhanced as long as
R∥
i ∼M−1

s remain small,

1

g2
¼ 1

2πgs
Ms

p−3
Yp−3
i¼1

R∥
i : ð1:4Þ

The weakness of the effective four-dimensional gravity
compared to gauge interactions (ratio of v=MPl) is then
attributed to the largeness of the transverse space radii
R⊥
i ∼ 1032ls compared to the string length ls ¼ M−1

s .
Should nature be so cooperative, a whole tower of infinite
string excitations will open up at this low-mass threshold,
and new particles of spin J follow the well-known Regge
trajectories of vibrating strings: J ¼ J0 þ α0M2, where α0 is
the Regge slope parameter that determines the fundamental
string mass scale

Ms ¼
1ffiffiffiffi
α0

p : ð1:5Þ

Only one assumption will be necessary in order to set up a
solid framework: the string coupling must be small for the
validity of the above D-brane framework and of perturba-
tion theory in the computation of scattering amplitudes. In
this case, black hole production and other strong gravity
effects occur at energies above the string scale; therefore, at
least the lowest few Regge recurrences are available for
examination, free from interference with some complex
quantum gravitational phenomena.
In a series of publications, we have computed open string

scattering amplitudes in D-brane models and have dis-
cussed the associated phenomenological aspects of low-
mass string Regge recurrences related to experimental
searches for physics beyond the SM [4–16].1 We have
shown that certain amplitudes to leading order in string
coupling (but including all string α0 corrections) are
universal [9,10]. These amplitudes, which include 2 → 2
scattering processes involving four gluons or two gluons

and two quarks, are independent of the details of the
compactification, such as the configuration of branes, the
geometry of the extra dimensions, and whether SUSY is
broken or not.2 This model independence makes it possible
to compute the string corrections to γ þ jet and dijet signals
at the LHC, which, if traced to low-mass-scale string
theory, could with 100 fb−1 of integrated luminosity (atffiffiffi
s

p ¼ 14 TeV) probe deviations from SM physics at a 5σ
significance for Ms as large as 6.8 TeV [5,8]. Indeed, the
signal for string excitations is spectacularly dazzling: after
operating for only a few months, with merely 2.9 inverse pb
of integrated luminosity, the LHC7 CMS experiment ruled
out Ms < 2.5 TeV by searching for narrow resonances in
the dijet mass spectrum [30]. In fact, the LHC has the
capacity to discover strongly interacting narrow resonances
in practically all ranges up to

ffiffiffi
s

p
LHC=2, and therefore, since

no significance excess above background has been
observed thus far, the ATLAS [31] and CMS [32,33]
experiments have already excluded Ms ≲ 4.5 TeV.
In this work we extend our previous studies in various

directions. In all our previous analyses, the discovery reach
was laid out processing the string amplitudes using a
semianalytic parton model approach. To confront technical
detector challenges, however, the standard approach to data
analysis is typically reliant on the existence of Monte Carlo
event simulation tools that allow complete simulation of the
signal. In this paper we are filling this gap by bringing the
excitations of open strings into the ATLAS/CMS analysis
software environment. A complete simulation with full
Pythia treatment is quite a difficult task, because this event
generator is set up in the same way perturbation theory
works and consequently handles color flow lines of
ordinary Feynman diagrams. Note that in string theory
there are processes (like gg → gγ) that in ordinary field
theory work only at loop level, and their color lines do not
follow the normal lines of tree level Feynman diagrams.
The proposed strategy here is to incorporate the string
amplitudes into BlackMax [34,35], a comprehensive black
hole event generator for LHC analysis that interfaces (via
the Les Houches accord [36]) to HERWIG and Pythia. The
parton evolution and hadronization will then be performed
with the correct format for direct implementation in the
official Monte Carlo packages for simulating an actual
experiment at the LHC. The two-step approach advanced
herein can circumvent the color line technicalities and,
at the same time, facilitate the comparison with high-
multiplicity events from gravitational collapse.

1String Regge resonances in models with low-mass string scale
are also discussed in Refs. [17–24], while Kaluza–Klein graviton
exchange into the bulk, which appears at the next order in
perturbation theory, is discussed in Refs. [25,26].

2The only remnant of the compactification is the relation
between the Yang–Mills coupling and the string coupling. We
take this relation to reduce to field theoretical results in the case
where they exist, e.g., gg → gg. Then, because of the required
correspondence with field theory, the phenomenological results
are independent of the compactification of the transverse space.
However, a different phenomenology would result as a conse-
quence of warping one or more parallel dimensions [27–29].
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Recently, the idea of building a 33 TeV and/or 100 TeV
circular proton-proton collider has gained momentum,
starting with an endorsement in the Snowmass Energy
Frontier report [37], and importantly followed by the
creation of two parallel initiatives: one at CERN [38]
and one in China [39]. In this paper we study the discovery
reach and exclusion limits of lowest massive Regge
excitations for the collider specifications,

Machine
ffiffiffi
s

p
(TeV)

Final integrated
luminosity

LHC phase I 14 300 fb−1
HL-LHC or LHC phase II 14 3000 fb−1
HE-LHC 33 3000 fb−1
VLHC 100 3000 fb−1

that are extensively discussed in the Snowmass Energy
Frontier report [37]. For the HE-LHC and VLHC, the
second excited string states may also be within reach. The
decay widths of n ¼ 2 resonances into massless particles
have been previously obtained in Refs. [22,23]. For a full
treatment, however, one still needs to compute the decay
widths into one massive n ¼ 1 particle and a massless
particle. Herein, we obtain all these widths by factorizing
four-point amplitudes with one massive (n ¼ 1) and three
massless particles.
The layout of the paper is as follows. We begin in Sec. II

with an outline of the basic setting of intersecting D-brane
models, and we discuss general aspects of the effective low-
energy theory inherited from properties of the overarching
string theory. After that, we particularize the discussion to
three- and four-stack intersecting D-brane configurations
that realize the SM by open strings. For completness, in
Sec. III we provide a summary of previous results. In
particular, we give an overview of all formulas relevant for
the s-channel string amplitudes of lowest massive Regge
excitations leading to γ þ jet and dijets. Readers already
familiar with these topics may skip this section. In Secs. IV
and V, we present a complete calculation of all relevant
decay widths of the second massive level string states. The
computation is performed in a model-independent and
universal way, and so our results hold for all compactifi-
cations. Armed with the full-fledged string amplitudes of
all partonic subprocesses, in Sec. VI we quantify signal and
background rates of n ¼ 1 and n ¼ 2 Regge recurrences in
the early LHC phase I, HL-LHC, HE-LHC, and VLHC. In
Sec. VII we describe the input and output of the string event
generator interface (SEGI) with HERWIG and Pythia
through BlackMax and present some illustrative results.
Finally, in Sec. VIII we make a few observations on the
consequences of the overall picture discussed herein.
A point worth noting at this juncture is that the tensor-to-

scalar ratio (r ¼ 0.20þ0.07
−0.05 ) inferred from the excess B-mode

power observed by the Background Imaging of Cosmic
Extragalactic Polarization (BICEP2) experiment suggests in
simple slow-roll models an era of inflation with energy

densities of order ð1016 GeVÞ4, not far below the Planck
density [40]. This presumably suggests that low-mass-scale
string compactifications in connection with large extra
dimension are quite hard to realize. However, one should
keep in mind that there is an ongoing controversy concerning
the effect of background on the BICEP2 result [41,42].

II. INTERSECTING D-BRANE STRING
COMPACTIFICATIONS

D-brane low-mass-scale string compactifications provide
a collection of building block rules that can be used to build
up the SM or something very close to it [43–57]. The details
of the D-brane construct depend a lot on whether we use
oriented string or unoriented string models. The basic unit of
gauge invariance for oriented string models is a Uð1Þ field,
so that a stack ofN identical D-branes eventually generates a
UðNÞ theory with the associated UðNÞ gauge group. In the
presence of many D-brane types, the gauge group becomes a
product form

Q
UðNiÞ, where Ni reflects the number of

D-branes in each stack. Gauge bosons (and associated
gauginos in a SUSY model) arise from strings terminating
on one stack of D-branes, whereas chiral matter fields are
obtained from strings stretching between two stacks. Each of
the two strings end points carries a fundamental charge with
respect to the stack of branes on which it terminates. Matter
fields thus posses quantum numbers associated with a
bifundamental representation. In orientifold brane configu-
rations, which are necessary for tadpole cancellation, and
thus consistency of the theory, open strings become in
general nonoriented. For unoriented strings the above rules
still apply, but we are allowed many more choices because
the branes come in two different types. There are branes for
which the images under the orientifold are different from
themselves and also branes that are their own images under
the orientifold procedure. Stacks of the first type combine
with their mirrors and give rise toUðNÞ gauge groups, while
stacks of the second type give rise to only SOðNÞ or SpðNÞ
gauge groups.

A. Mass mixing effect

In three-stack intersecting brane models, one could have
one or two massive Uð1Þ’s, depending on using Spð1Þ or
Uð2Þ to realize SUð2Þ; while in four-stack models, one
could have two or three massiveUð1Þ’s. In general, one can
have many Uð1Þ’s in the intersecting brane model con-
structions including hidden sectors, and in these cases,
there will be many massive Uð1Þ’s, which have been
studied in Refs. [58–60]. Assuming no kinetic mixing,
effectively the Lagrangian for all the Uð1Þ’s from an
n-stack model can be written as

L ¼ −
1

4

X
a

F2
a −

1

2
AaM2

abAb þ
X
a

ψ̄aði∂ þ g0aQaAaÞψa;

ð2:1Þ
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where ψa denotes the matter fields charged under Uð1Þa
(a; b;… label the stack of D-branes), g0a are the gauge
couplings, andQa are the charges. Note that the relation for
UðNÞ unification, g0a ¼ ga=

ffiffiffiffiffiffiffi
2N

p
, holds only atMs because

the Uð1Þ couplings (g01; g02; g03;…) run differently from the
non-Abelian SUð3Þ (g3) and SUð2Þ (g2) [61]. The Uð1Þ
mass-squared matrix is of the form [59,62]

M2
ab ¼ g0ag0bKaiGijKT

jb; ð2:2Þ

where the integer-entry matrix K contains all the informa-
tion of local model constructions—wrapping numbers
which give rise to correct family multiplicity and the
(MS)SM spectrum—and Gij is the metric of the complex
structure moduli space.3 In general, the entries of the Uð1Þ
mass-squared matrix are all of order of M2

s . This Uð1Þ
mass-squared matrix is positive semidefinite and has one
zero eigenvalue that corresponds to the hypercharge. One
could diagonalize M2

ab using an orthogonal matrix O such
that

OTM2O ¼

0
BBBBBBBB@

λ21
λ22 0

. .
.

0 . .
.

λ2n

1
CCCCCCCCA

≡D2; ð2:3Þ

where the eigenvalues are sorted from small to large, i.e.,
λi < λj for i < j. λ1 ¼ 0 corresponds to the mass of the

hypercharge gauge boson Yμ ≡ AðmÞ
1;μ . We can define the

gauge boson corresponding to the lightest massive Uð1Þ to
be Z0. Here, we only discuss the case that there is only one
massless Uð1Þ, and thus D2 contains only one zero
eigenvalue (hypercharge) and all otherUð1Þ’s are massive.4

This transformation also takes the gauge fields from their
original basis into the physical mass eigenbasis as (with an
upper index ðmÞ)

AðmÞ
i ¼

X
a

OT
iaAa: ð2:4Þ

The column vectors of the orthogonal matrix O are the
eigenvectors of M2. Since the eigenvalues are already
sorted, the first column vector gives rise to the hypercharge
combination

Yμ ¼ AðmÞ
1;μ ¼

X
a

OT
1aAa; ð2:5Þ

and the second column vector gives rise to

Z0
μ ¼ AðmÞ

2;μ ¼
X
a

OT
2aAa; ð2:6Þ

and so on. Conversely, one could also write the gauge
bosons in the original basis in terms of the mass eigenstates

Aa ¼
X
i

OaiA
ðmÞ
i : ð2:7Þ

After the mass mixing, the Lagrangian in theUð1Þ gauge
boson mass eigenbasis reads

L ¼ −
1

4

X
i

FðmÞ2
i −

1

2
D2

iiðAðmÞ
i Þ2

þ
X
a

ψ̄aði∂ þ ḡðmÞ
i QðmÞ

i AðmÞ
i Þψa: ð2:8Þ

Since the elements in the orthogonal matrix O are in
general irrational numbers (except for the first column, for
which the entrees are all fractional numbers which give rise
to to the hypercharge), the gauge charges in the Uð1Þ mass
eigenbasis are not quantized. A matter field carrying Qa
under Uð1Þa, with the gauge coupling g0a, after the mass

mixing couples to the gauge field AðmÞ
i in the mass

eigenbasis, with strength ḡðmÞ
i QðmÞ

i ≡P
ag

0
aQaOai. Thus,

all the matter fields raised from the D-brane can couple to
all the anomalous Uð1Þ’s. Since the elements of the Uð1Þ
mass-squared matrix are around the same order, the entries
of the orthogonal matrix O are in general of order Oð1Þ.
Thus, the anomalous Uð1Þ’s could couple to all the SM
particles with sizable strength [59].

B. Higgs mechanism and Z − Z0 mixing

The Higgs field(s) is (are) also realized as (an) open
string(s) stretching between two stacks of D-branes and
hence is (are) charged under the two Uð1Þ’s. After the mass
mixing, the Higgs field(s) would be also charged under all
the Uð1Þ’s in the mass eigenbasis and couple to all these
massive Uð1Þ gauge bosons. Thus, after the electroweak
symmetry breaking, all the gauge boson masses would be
corrected. The covariant derivative reads

Dμ ¼ ∂μ − ig2Aa
μTa − i

1

2
gYYμ − i

Xn
i¼2

ḡðmÞ
i QðmÞ

i AðmÞ
i ;

ð2:9Þ
where Ta ¼ σa=2 is the SUð2Þ generator and Yμ the
hypercharge gauge boson. Effectively, the mass terms of
all the Uð1Þ’s take the form

3For toroidal models, the explicit form of Gij can be
derived; see, for example, Ref. [59].

4The hidden sector could have massless Uð1Þ, which leads to
the hidden photon scenario. Some models (e.g., SMþþ [63,64])
may have a massless Uð1ÞB−L, but it must develop a mass to
avoid long-range force. We omit this discussion here.
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−Lm ¼ DμϕDμϕþ 1

2
D2

iiðAðmÞ
i Þ2

¼ 1

2

v2

4

�
g22ðA1

μÞ2 þ g22ðA1
μÞ2

þ
�
−g2A3

μ þ gYYμ þ 2
Xn
i¼2

ḡðmÞ
i QðmÞ

i AðmÞ
i

�
2
�

þ 1

2
D2

iiðAðmÞ
i Þ2; ð2:10Þ

where v is the VEVof the Higgs. A1
μ and A2

μ give rise toW�,

and the mass mixing only occurs within A3
μ; A

ðmÞ
i . One

needs to perform another diagonalization to determine the
mass eigenstates of all the massiveUð1Þ gauge bosons. The
special form of Eq. (2.10) ensures there is only one
massless eigenstates Aγ

μ ¼ 1ffiffiffiffiffiffiffiffiffi
g2
2
þg2Y

p ðgYA3
μ þ g2YμÞ which

will be identified to be the photon. And the electric charge
remains unchanged, i.e., e ¼ g2gYffiffiffiffiffiffiffiffiffi

g2
2
þg2Y

p . However, the Z boson

would be a mixture of ZSM and all the AðmÞ
i . The mass of the

Z boson is corrected by

MZ ¼ v
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g22 þ g2Y

q
þO

�
v2

M2
Z0

�
: ð2:11Þ

Hence, the mass of the Z0 gauge boson cannot be very
light; otherwise, it would violate the constraints on
Z − Z0 mixing from the electroweak precision test [65].
In addition, as mentioned earlier, all the anomalous
Uð1Þ’s could couple to all the SM particles with sizable
strength. LEP II and the LHC both set stringent bounds
on them. In particular, the bound from LEP II on Z0 reads
MZ0=gZ0lþl− > 6 TeV [66,67]. Because of the QCD back-
ground, the LHC could set bounds on the Z0 by either
examining the leptonic Drell–Yan processes pp → Z0 →
lþl− [68,69] or examining the dijet resonances from a
heavy Z0 [33]. These bounds are quite strong. Though it
is difficult for the LHC to distinguish low-energy
hadronic final states due to the QCD background, the
LHC bound on a leptophobic Z0 [for example, Z0 for
Uð1ÞB] is not that strong [70]. However, it is very likely
that the Z0 from D-brane models would couple to all the
SM particles with sizable strength. Thus, in general,
unless there is some fine-tuning, this type of Z0 has to be
quite massive (≳2 TeV) to pass all the current exper-
imental constraints from colliders. We also would like to
point out here that, although in general Z0 [the lightest
anomalous Uð1Þ] can be much lighter than the string
scale, this is a model-dependent question. For many
cases, especially for intersecting brane models with fewer
extra Uð1Þ’s [e.g., the minimal D-brane model Uð3Þ ×
Spð1Þ × Uð1Þ with only one additional (massive) Uð1Þ],
the mass of Z0 can also be closed to the string scale.

C. SM from D-brane constructs

While the existence of Regge excitations is a completely
universal feature of string theory, there are many ways of
realizing the SM in such a framework. Individual models
use various D-brane configurations and compactification
spaces. Consequently, these may lead to very different SM
extensions, but as far as the collider signatures of Regge
excitations are concerned, their differences boil down to a
few parameters. The most relevant characteristics is how
the Uð1ÞY hypercharge is embedded in the Uð1Þ associated
to D-branes. One Uð1Þ (baryon number) comes from the
“QCD” stack of three branes, as a subgroup of the Uð3Þ
group that contains SUð3Þ color, but obviously one needs at
least one extra Uð1Þ. As noted in Sec II A, in D-brane
compactifications the hypercharge always appears as a
linear, nonanomalous combination of the baryon number
with one, two, or more Uð1Þs. The precise form of this
combination bears down on the photon couplings; however,
the differences between individual models amount to
numerical values of a few parameters.
The minimal embedding of the SM particle spectrum

requires at least three brane stacks [71] leading to three
distinct models of the type Uð3Þ × Uð2Þ ×Uð1Þ that were
classified in Refs. [71,72]. In such minimal models, the
color stack a of three D-branes is intersected by the
(weak doublet) stack b and by one (weak singlet) D-brane
c [71]. For the two-brane stack b, there is a freedom of
choosing physical state projections leading either to Uð2Þ
or to the symplectic Spð1Þ representation of Weinberg–
Salam SUð2ÞL.
In the bosonic sector, the open strings terminating on

QCD stack a contain the standard SUð3Þ octet of gluons gaμ
and an additional Uð1Þa gauge boson Cμ, most simply the
manifestation of a gauged baryon number symmetry:
Uð3Þa ∼ SUð3Þ ×Uð1Þa. On the Uð2Þb stack, the open
strings correspond to the electroweak gauge bosons Aa

μ and
again an additionalUð1Þb gauge field Xμ. So the associated
gauge groups for these stacks are SUð3Þ ×Uð1Þa,
SUð2ÞL ×Uð1Þb, and Uð1Þc, respectively. We can further
simplify the model by eliminating Xμ; to this end instead
we can choose the projections leading to Spð1Þ instead of
Uð2Þ [73]. The Uð1ÞY boson Yμ, which gauges the usual
electroweak hypercharge symmetry, is a linear combination
of Cμ, the Uð1Þc boson Bμ, and perhaps a third additional
Uð1Þ gauge field Xμ.

5 The fermionic matter consists of
open strings located at the intersection points of the three
stacks. Concretely, the left-handed quarks are sitting at the
intersection of the a and the b stacks, whereas the right-
handed u quarks come from the intersection of the a and c
stacks, and the right-handed d quarks are situated at the
intersection of the a stack with the c0 (orientifold mirror)

5In the notation of (2.1), C, X, and B correspond to Aa, Ab, and
Ac. We will freely switch between these two notations depending
on which is more convenient for the discussion.
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stack. All the scattering amplitudes between these SM
particles essentially only depend on the local intersection
properties of these D-brane stacks.
The chiral fermion spectrum of the Uð3Þ × Spð1Þ ×

Uð1Þ D-brane model is given in Table I. In such a minimal
D-brane construction, the coupling strength of Cμ is down
by root 6 when compared to the SUð3ÞC coupling g3, and
the hypercharge

QY ¼ 1

6
Qa −

1

2
Qc ð2:12Þ

is free of anomalies. However, the Qa (gauged baryon
number) is anomalous. This anomaly is canceled by the f-D
version of the Green–Schwarz (GS) mechanism [74–79].
The vector boson Y 0

μ, orthogonal to the hypercharge, must
grow a mass in order to avoid long-range forces between
baryons other than gravity and Coulomb forces. The
anomalous mass growth allows the survival of global
baryon number conservation, preventing fast proton
decay [62].
In the Uð3Þ × Spð1Þ ×Uð1Þ D-brane model, the Uð1Þa

assignments are fixed (they give the baryon number), and
the hypercharge assignments are fixed by the SM.
Therefore, the mixing angle θP between the hypercharge
and theUð1Þa is obtained in a similar manner to the way the
Weinberg angle is fixed by the SUð2ÞL and the Uð1ÞY
couplings (g2 and gY , respectively) in the SM. The
Lagrangian containing the Uð1Þa and Uð1Þc gauge fields
is given by

L ¼ g01B̂μJ
μ
B þ g03ĈμJ

μ
C; ð2:13Þ

where B̂μ ¼ cos θPYμ þ sin θPY 0
μ and Ĉμ ¼ − sin θPYμ þ

cos θPY 0
μ are canonically normalized. Substitution of these

expressions into (2.13) leads to

L ¼ Yμðg01 cos θPJμB − g03 sin θPJ
μ
CÞ

þ Y 0
μðg01 sin θPJμB þ g03 cos θPJ

μ
CÞ; ð2:14Þ

with g01 cos θPJ
μ
B − g03 sin θPJ

μ
C ¼ gYJ

μ
Y . We have seen

that the hypercharge is anomaly free if JY ¼ 1
6
JμC − 1

2
JμB,

yielding

g01 cos θP ¼ 1

2
gY and g03 sin θP ¼ 1

6
gY: ð2:15Þ

From (2.15) we obtain the following relations:

tan θP ¼ g01
3g03

;�
gY
2g01

�
2

þ
�
gY
6g03

�
2

¼ 1; and

1

4g01
2
þ 1

36g03
2
¼ 1

g2Y
: ð2:16Þ

We use the evolution of gauge couplings from the weak
scale MZ as determined by the one-loop beta functions of
the SM with three families of quarks and leptons and one
Higgs doublet,

1

αiðMÞ ¼
1

αiðMZÞ
−

bi
2π

ln
M
MZ

; i ¼ 2; 3; Y; ð2:17Þ

where αi ¼ g2i =4π and b3 ¼ −7, b2 ¼ −19=6, bY ¼ 41=6.
We also use the measured values of the couplings at
the Z pole α3ðMZÞ ¼ 0.118� 0.003, α2ðMZÞ ¼ 0.0338,
αYðMZÞ ¼ 0.01014 (with the errors in α2;Y less than 1%)
[80]. Running couplings up to 5 TeV, which is where the
phenomenology will be, we get κ ≡ sin θP ∼ 0.14. When
the theory undergoes electroweak symmetry breaking,
because Y 0 couples to the Higgs, one gets additional
mixing. Hence, Y 0 is not exactly a mass eigenstate. The
explicit form of the low-energy eigenstates Aμ, Zμ, and Z0

μ

is given in Ref. [81].
We pause to summarize the degree of model dependency

stemming from the multiple Uð1Þ content of the minimal
model containing three stacks of D-branes. First, there is an
initial choice to be made for the gauge group living on the b
stack. This can be either Spð1Þ or Uð2Þ. In the case of
Spð1Þ, the requirement that the hypercharge remains
anomaly free is sufficient to fix its Uð1Þa and Uð1Þc
content, as explicitly presented in Eqs. (2.15) and (2.16).
Consequently, the fermion couplings, as well as the mixing
angle θP between hypercharge and the baryon number
gauge field are wholly determined by the usual SM
couplings. The alternative selection—that of Uð2Þ as the
gauge group tied to the b stack—branches into some further
choices. This is because the Qa;Qb;Qc content of the
hypercharge operator

QY ¼ caQa þ cbQb þ ccQc ð2:18Þ

is not uniquely determined by the anomaly cancelation
requirement. In fact, as seen in Ref. [71], there are three
possible embeddings with one more possibility for the
hypercharge combination besides (2.12). This final choice
does not depend on further symmetry considerations.

TABLE I. Chiral fermion spectrum of the Uð3Þ×Spð1Þ×Uð1Þ
D-brane model.

Name Representation Qa Qc QY

Ui ð3̄; 1Þ −1 1 − 2
3

Di ð3̄; 1Þ −1 −1 1
3

Li (1, 2) 0 1 − 1
2

Ei (1, 1) 0 −2 1
Qi (3, 2) 1 0 1

6
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The SM embedding in four D-brane stacks leads to many
more models that have been classified in Refs. [82,83]. To
make a phenomenologically interesting choice, we focus
on models where Uð2Þ can be reduced to Spð1Þ. Besides
the fact that this reduces the number of extra Uð1Þ’s, one
avoids the presence of a problematic Peccei–Quinn sym-
metry, associated in general with the Uð1Þ of Uð2Þ under
which Higgs doublets are charged [71]. We then impose
baryon and lepton number symmetries that determine
completely the model Uð3ÞC × Spð1ÞL ×Uð1ÞL ×Uð1ÞR,
as described in Refs. [47,83]. A schematic representation
of the D-brane structure is shown in Fig. 2. The
corresponding fermion quantum numbers are given in
Table II. The two extra Uð1Þ’s are the baryon and lepton
numbers, B and L, respectively; they are given by the
following combinations:

B ¼ Q3=3; L ¼ Q1L;

QY ¼ c1Q1R þ c3Q3 þ c4Q1L; ð2:19Þ

with c1 ¼ 1=2, c3 ¼ 1=6, and c4 ¼ −1=2, or equivalently
by the inverse relations

Q3 ¼ 3B; Q1L ¼ L;

Q1R ¼ 2QY − ðB − LÞ: ð2:20Þ

As usual, the Uð1Þ gauge interactions arise through the
covariant derivative

Dμ ¼ ∂μ − ig03CμQ3 − ig04 ~BμQ1L − ig01BμQ1R; ð2:21Þ

where g01, g
0
3, and g04 are the gauge coupling constants. We

can define Yμ and two other fields Y 0
μ; Y 00

μ that are related
to Cμ; Bμ; ~Bμ by the orthogonal transformation [84]

O ¼

0
B@

CθCψ −CϕSψ þ SϕSθCψ SϕSψ þ CϕSθCψ

CθSψ CϕCψ þ SϕSθSψ −SϕCψ þ CϕSθSψ
−Sθ SϕCθ CϕCθ

1
CA;

ð2:22Þ

with Euler angles θ, ψ , and ϕ. Equation (2.21) can be
rewritten in terms of Yμ, Y 0

μ, and Y 00
μ as follows:

Dμ ¼ ∂μ − iYμð−Sθg01Q1R þ CθSψg04Q1L þ CθCψg03Q3Þ
− iY 0

μ½CθSϕg01Q1R þ ðCϕCψ þ SθSϕSψÞg04Q1L

þ ðCψSθSϕ − CϕSψÞg03Q3�
− iY″

μ½CθCϕg01Q1R þ ð−CψSϕ þ CϕSθSψÞg04Q1L

þ ðCϕCψSθ þ SϕSψÞg03Q3�: ð2:23Þ

Now, by demanding that Yμ has the hypercharge QY
given in Eq. (2.19), we fix the first column of the
rotation matrix O,

0
B@

Cμ

~Bμ

Bμ

1
CA ¼

0
B@

Yμc3gY=g03 …

Yμc4gY=g04 …

Yμc1gY=g01 …

1
CA; ð2:24Þ

and we determine the value of the two associated Euler
angles

θ ¼ − arcsin½c1gY=g01� ð2:25Þ

and

ψ ¼ arcsin½c4gY=ðg04CθÞ�: ð2:26Þ

The couplings g01 and g04 are related through the
orthogonality condition,

�
c4
g04

�
2

¼ 1

g2Y
−
�
c3
g03

�
2

−
�
c1
g01

�
2

; ð2:27Þ

with g03 fixed by the relation g3ðMsÞ ¼
ffiffiffi
6

p
g03ðMsÞ [61].

The field Yμ then appears in the covariant derivative
with the desired QY . The ratio of the coefficients in
Eq. (2.24) is determined by the form of Eqs. (2.19) and
(2.21). The value of gY is determined so that the
coefficients in Eq. (2.24) are components of a normal-
ized vector so that they can be a row vector of O. The
rest of the transformation (the ellipsis part) involving

 

R

L

L
L

R
E

L
Q

U  , D 
RR

W

gluon

Sp(1) U(1)

U(1)

U(3)

4-Leptonic

3-Baryonic

2-Left 1-Right

FIG. 2 (color online). Pictorial representation of the Uð1ÞC ×
Spð1ÞL ×Uð1ÞL ×Uð1ÞR D-brane model.

TABLE II. Chiral fermion spectrum of the Uð3ÞC × Spð1ÞL ×
Uð1ÞL × Uð1ÞR D-brane model.

Name Representation Q3 Q1L Q1R QY

Ui ð3̄; 1Þ −1 0 −1 − 2
3

Di ð3̄; 1Þ −1 0 1 1
3

Li (1, 2) 0 1 0 − 1
2

Ei (1, 1) 0 −1 1 1
Qi (3, 2) 1 0 0 1

6
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Y 0; Y 00 is not necessary for our calculation. The point is
that we now know the first row of the matrix O, and
hence we can get the first column of OT , which gives
the expression of Yμ in terms of Cμ; Bμ; ~Bμ,

Yμ ¼
c3gY
g03

Cμ þ
c1gY
g01

Bμ þ
c4gY
g04

~Bμ: ð2:28Þ

This is all we need when we calculate the interaction
involving Yμ; the rest of O, which tells us the expres-
sion of Y 0; Y 00 in terms of C;X; B, is not necessary. For
later convenience, we define κ; η; ξ as

Yμ ¼ κCμ þ ηBμ þ ξ ~Bμ; ð2:29Þ

therefore,

κ ¼ c3gY
g03

; η ¼ c1gY
g01

; ξ ¼ c4gY
g04

: ð2:30Þ

The expression for the C − Y mixing parameter κ is the
same as that of the Uð3Þ × Spð1Þ ×Uð1Þ minimal
D-brane model.
Note that with the “canonical” charges of the right-

handed neutrino Q1L ¼ Q1R ¼ −1 the combination B − L
is anomaly free, while for Q1L ¼ Q1R ¼ þ1, both B and
B − L are anomalous.6 As mentioned already, anomalous
Uð1Þ’s become massive necessarily due to the GS
anomaly cancellation, but nonanomalous Uð1Þ’s can also
acquire masses due to effective six-dimensional anoma-
lies associated, for instance, to sectors preserving N ¼ 2
SUSY [86,87].7 These two-dimensional “bulk” masses
become therefore larger than the localized masses asso-
ciated to four-dimensional anomalies, in the large volume
limit of the two extra dimensions. Specifically for
Dp-branes with ðp − 3Þ-longitudinal compact dimen-
sions, the masses of the anomalous and, respectively,
the nonanomalous Uð1Þ gauge bosons have the following
generic scale behavior:

anomalousUð1Þa∶ MZ0 ¼ g0aMs;

nonanomalousUð1Þa∶ MZ00 ¼ g0aM3
sV2: ð2:31Þ

Here, g0a is the gauge coupling constant associated to the
group Uð1Þa, given by g0a ∝ gs=

ffiffiffiffiffiffi
V∥

p
, where gs is the

string coupling and V∥ is the internal D-brane world
volume along the ðp − 3Þ compact extra dimensions, up
to an order 1 proportionality constant. Moreover, V2 is
the internal two-dimensional volume associated to the

effective six-dimensional anomalies giving mass to the
nonanomalous Uð1Þa.8 For example, for the case of
D5-branes, for which the common intersection locus is
just four-dimensional Minkowski space, V∥ ¼ V2 denotes
the volume of the longitudinal, two-dimensional space
along the two internal D5-brane directions. Since internal
volumes are bigger than one in string units to have
effective field theory description, the masses of non-
anomalous Uð1Þ gauge bosons are generically larger than
the masses of the anomalous gauge bosons.
In principle, in addition to the orthogonal field mixing

induced by identifying anomalous and nonanomalousUð1Þ
sectors, there may be kinetic mixing between these sectors.
In all the D-brane models discussed in this section,
however, since there is only one Uð1Þ per stack of
D-branes, the relevant kinetic mixing is between Uð1Þ’s
on different stacks and hence involves loops with fermions
at brane intersection. Such loop terms are typically down by
g2i =16π

2 ∼ 0.01 [88].9 Generally, the major effect of the
kinetic mixing is in communicating SUSY breaking from a
hidden Uð1Þ sector to the visible sector, generally in
modification of soft scalar masses. Stability of the weak
scale in various models of SUSY breaking requires the
mixing to be orders of magnitude below these values [88].
For a comprehensive review of experimental limits on the
mixing, see Ref. [91]. Moreover, none of the D-brane
constructions discussed above have a hidden sector—all the
Uð1Þ’s (including the anomalous ones) couple to the visible
sector. In summary, kinetic mixing between the nonanom-
alous and the anomalous Uð1Þ’s in every basic model
discussed in this paper will be small because the fermions
in the loop are all in the visible sector. In the absence of
electroweak symmetry breaking, the mixing vanishes.

III. LOWEST MASSIVE REGGE EXCITATIONS
OF OPEN STRINGS

The most direct way to compute the amplitude for the
scattering of four gauge bosons is to consider the case of
polarized particles because all nonvanishing contributions
can be then generated from a single, maximally helicity
violating (MHV), amplitude—the so-called partial MHV

6We noted elsewhere [85] that such right-handed neutrinos
would have left their imprint on the photons of the cosmic
microwave background.

7In fact, also the hypercharge gauge boson ofUð1ÞY can acquire
a mass through this mechanism. To keep it massless, certain
topological constraints on the compact space have to be met.

8It should be noted that, in spite of the proportionality of the
Uð1Þa masses to the string scale, these are not string excitations
but zero modes. The proportionality to the string scale appears
because the mass is generated from anomalies, via an analog of
the GS anomaly cancellations: either four-dimensional anoma-
lies, in which case the GS term is equivalent to a Stückelberg
mechanism, or from effective six-dimensional anomalies, in
which case the mass term is extended in two more (internal)
dimensions. The nonanomalous Uð1Þa can also grow a mass
through a Higgs mechanism. The advantage of the anomaly
mechanism vs an explicit VEVof a scalar field is that the global
symmetry survives in perturbation theory, which is a desired
property for the baryon and lepton number, protecting proton
stability and small neutrino masses.

9See also Refs. [89,90].
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amplitude [92]. Assume that two vector bosons, with the
momenta k1 and k2, in the UðNÞ gauge group states
corresponding to the generators Ta1 and Ta2 (here in the
fundamental representation), carry negative helicities while
the other two, with the momenta k3 and k4 and gauge group
states Ta3 and Ta4 , respectively, carry positive helicities.
(All momenta are incoming.) Then the partial amplitude for
such an MHV configuration is given by [93,94]

AðA−
1 ;A

−
2 ;A

þ
3 ;A

þ
4 Þ¼ 4g2TrðTa1Ta2Ta3Ta4Þ

×
h12i4

h12ih23ih34ih41iVðk1;k2;k3;k4Þ;

ð3:1Þ

where g is theUðNÞ coupling constant, hiji are the standard
spinor products written in the notation of Refs. [95,96], and
the Veneziano form factor,

Vðk1; k2; k3; k4Þ ¼ Vðs; t; uÞ ¼ su
tM2

s
Bð−s=M2

s ;−u=M2
sÞ

¼ Γð1 − s=M2
sÞΓð1 − u=M2

sÞ
Γð1þ t=M2

sÞ
; ð3:2Þ

is the function of Mandelstam variables, s ¼ 2k1k2,
t ¼ 2k1k3, u ¼ 2k1k4; sþ tþ u ¼ 0. (For simplicity we
drop carets for the parton subprocess.) The physical content
of the form factor becomes clear after using the well-known
expansion in terms of s-channel resonances [97],

Bð−s=M2
s ;−u=M2

sÞ

¼ −
X∞
n¼0

M2−2n
s

n!
1

s − nM2
s

�Yn
J¼1

ðuþM2
sJÞ

�
; ð3:3Þ

which exhibits s-channel poles associated to the propaga-
tion of virtual Regge excitations with masses

ffiffiffi
n

p
Ms. Thus,

near the nth level pole ðs → nM2
sÞ,

Vðs; t; uÞ ≈ 1

s − nM2
s
×

M2−2n
s

ðn − 1Þ!
Yn−1
J¼0

ðuþM2
sJÞ: ð3:4Þ

In specific amplitudes, the residues combine with the
remaining kinematic factors, reflecting the spin content
of particles exchanged in the s channel, ranging from J ¼ 0
to J ¼ nþ 1. The low-energy expansion reads

Vðs; t; uÞ ≈ 1 −
π2

6

su
M4

s
− ζð3Þ stu

M6
s
þ � � � : ð3:5Þ

Interestingly, because of the proximity of the eight
gluons and the photon on the color stack of D-branes,
the gluon fusion into γ þ jet couples at tree level [5]. This
implies that there is an order g23 contribution in string
theory, whereas this process is not occurring until order g43

(loop level) in field theory. One can write down the total
amplitude for this process projecting the gamma ray onto
the hypercharge,

Mðgg → γgÞ ¼ cos θWMðgg → YgÞ
¼ κ cos θWMðgg → CgÞ; ð3:6Þ

where κ is the (model-dependent) C-Y mixing coefficient.
Consider the amplitude involving three SUðNÞ gluons

g1; g2; g3 and one Uð1Þ gauge boson γ4 associated to the
same UðNÞ stack,

Ta1 ¼ Ta; Ta2 ¼ Tb; Ta3 ¼ Tc; Ta4 ¼ QI;

ð3:7Þ
where I is the N × N identity matrix and Q is the Uð1Þ
charge of the fundamental representation. The color factor

TrðTa1Ta2Ta3Ta4Þ ¼ Q

�
dabc þ i

4
fabc

�
; ð3:8Þ

where the totally symmetric symbol dabc is the sym-
metrized trace while fabc is the totally antisymmetric
structure constant (see Appendix A).
The full MHV amplitude can be obtained [93,94] by

summing the partial amplitudes (3.1) with the indices
permuted as

Mðg−1 ; g−2 ; gþ3 ; γþ4 Þ

¼ 4g23h12i4
X
σ

TrðTa1σTa2σTa3σTa4ÞVðk1σ ; k2σ ; k3σ ; k4Þ
h1σ2σih2σ3σih3σ4ih41σi

;

ð3:9Þ

where the sum runs over all six permutations σ of f1; 2; 3g
and iσ ≡ σðiÞ, N ¼ 3. Note that in the effective field theory
of gauge bosons there are no Yang–Mills interactions that
could generate this scattering process at the tree level.
Indeed, V ¼ 1 at the leading order of Eq. (3.5), and the
amplitude vanishes due to the following identity:

1

h12ih23ih34ih41i þ
1

h23ih31ih14ih42i
þ 1

h31ih12ih24ih43i ¼ 0: ð3:10Þ

Similarly, the antisymmetric part of the color factor (3.8)
cancels out in the full amplitude (3.9). As a result, one obtains

Mðg−1 ; g−2 ; gþ3 ; γþ4 Þ
¼ 8Qdabcg23h12i4

×

�
μðs; t; uÞ

h12ih23ih34ih41i þ
μðs; u; tÞ

h12ih24ih13ih34i
�
; ð3:11Þ
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where

μðs; t; uÞ ¼ Γð1 − u=M2
sÞ
�
Γð1 − s=M2

sÞ
Γð1þ t=M2

sÞ
−

Γð1 − t=M2
sÞ

Γð1þ s=M2
sÞ
�
:

ð3:12Þ

All nonvanishing amplitudes can beobtained in a similarway.
In particular,

Mðg−1 ; gþ2 ; g−3 ; γþ4 Þ
¼ 8Qdabcg23h13i4

×

�
μðt; s; uÞ

h13ih24ih14ih23i þ
μðt; u; sÞ

h13ih24ih12ih34i
�
; ð3:13Þ

and the remaining ones can be obtained either by appropriate
permutations or by complex conjugation.
To obtain the cross section for the (unpolarized) partonic

subprocess gg → gγ, we take the squared moduli of
individual amplitudes, sum over final polarizations and
colors, and average over initial polarizations and colors. As
an example, the modulus square of the amplitude (3.9) is

jMðg−1 ; g−2 ; gþ3 ; γþ4 Þj2

¼ 64Q2dabcdabcg43

���� sμðs; t; uÞu
þ sμðs; u; tÞ

t

����2: ð3:14Þ

Taking into account all 4ðN2 − 1Þ2 possible initial polari-
zation/color configurations and the formula [98]

X
a;b;c

dabcdabc ¼ ðN2 − 1ÞðN2 − 4Þ
16N

; ð3:15Þ

we obtain the average squared amplitude [5]

jMðgg → gγÞj2 ¼ g43Q
2CðNÞ

����� sμðs; t; uÞu
þ sμðs; u; tÞ

t

����2

þ ðs ↔ tÞ þ ðs ↔ uÞ
	
; ð3:16Þ

where

CðNÞ ¼ 2ðN2 − 4Þ
NðN2 − 1Þ : ð3:17Þ

Before proceeding, we need to make precise the value ofQ.
If we were considering the process gg → Cg, then Q ¼ffiffiffiffiffiffiffiffi
1=6

p
due to the UðNÞ normalization condition [71].

However, for gg → γg there are two additional projections
given in (3.6): from Cμ to the hypercharge boson Yμ,
yielding a mixing factor κ, and from Yμ onto a photon,
providing an additional factor cos θW. This gives

Q ¼
ffiffiffi
1

6

r
κ cos θW: ð3:18Þ

The two most interesting energy regimes of gg → gγ
scattering are far below the string mass scale Ms and near
the threshold for the production of massive string excita-
tions. At low energies, Eq. (3.16) becomes

jMðgg → gγÞj2

≈ g43Q
2CðNÞ π4

4M8
s
ðs4 þ t4 þ u4Þ ðs; t; u ≪ M2

sÞ: ð3:19Þ

The absence of massless poles, at s ¼ 0, etc., translated into
the terms of effective field theory, confirms that there are no
exchanges of massless particles contributing to this proc-
ess. On the other hand, near the string threshold s ≈M2

s ,

jMðgg → gγÞj2 ≈ 4g43Q
2CðNÞM

8
s þ t4 þ u4

M4
sðs −M2

sÞ2
ðs ≈M2

sÞ:

ð3:20Þ

The general form of (3.9) for any given four external
gauge bosons reads

MðA−
1 ; A

−
2 ; A

þ
3 ; A

þ
4 Þ ¼ 4g2h12i4

�
Vt

h12ih23ih34ih41iTrðT
a1Ta2Ta3Ta4 þ Ta2Ta1Ta4Ta3Þ

þ Vu

h13ih34ih42ih21iTrðT
a2Ta1Ta3Ta4 þ Ta1Ta2Ta4Ta3Þ

þ Vs

h14ih42ih23ih31iTrðT
a1Ta3Ta2Ta4 þ Ta3Ta1Ta4Ta2Þ

�
; ð3:21Þ

where

Vt ¼ Vðs; t; uÞ; Vu ¼ Vðt; u; sÞ; Vs ¼ Vðu; s; tÞ: ð3:22Þ
The modulus square of the four-gluon amplitude, summed over final polarizations and colors and averaged over all
4ðN2 − 1Þ2 possible initial polarization/color configurations, follows from (3.21) and is given by [9]
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jMðgg → ggÞj2

¼ g43

�
1

s2
þ 1

t2
þ 1

u2

��
2N2

N2 − 1
ðs2V2

s þ t2V2
t þ u2V2

uÞ

þ 4ð3 − N2Þ
N2ðN2 − 1Þ ðsVs þ tVt þ uVuÞ2

�
: ð3:23Þ

The average square amplitudes for two gluons and two
quarks are given by

jMðgg → qq̄Þj2

¼ g43Nf
t2 þ u2

s2

�
1

2N
1

ut
ðtVt þ uVuÞ2 −

N
N2 − 1

VtVu

�
;

ð3:24Þ
jMðqq̄→ ggÞj2

¼ g43
t2 þ u2

s2

�ðN2 − 1Þ2
2N3

1

ut
ðtVt þ uVuÞ2 −

N2 − 1

N
VtVu

�
;

ð3:25Þ
and

jMðqg → qgÞj2

¼ g43
s2 þ u2

t2

�
VsVu −

N2 − 1

2N2

1

su
ðsVs þ uVuÞ2

�
:

ð3:26Þ

The amplitudes for the four-fermion processes like quark-
antiquark scattering are more complicated because the respec-
tive form factors describe not only the exchanges of Regge
states but also of heavyKaluza–Klein (KK) andwinding states
with amodel-dependent spectrumdeterminedby thegeometry
of extra dimensions. Fortunately, they are suppressed, for two
reasons: (i) the QCD SUð3Þ color group factors favor gluons
overquarks in the initial state, and (ii) theparton luminosities in
proton-proton collisions at the LHC, at the parton center-of-
mass energies above 1 TeV, are significantly lower for quark-
antiquark subprocesses than for gluon-gluon and gluon-quark
[14]. The collisions of valence quarks occur at higher lumi-
nosity; however, there are no Regge recurrences appearing in
the s channel of quark-quark scattering [9].

In the following we isolate the contribution from the first
resonant state in Eqs. (3.23)–(3.26). For partonic center-of-
mass energies

ffiffiffi
s

p
< Ms, contributions from the Veneziano

functions are strongly suppressed, as ∼ð ffiffiffi
s

p
=MsÞ8, over SM

processes; see Eq. (3.19). [Corrections to SM processes atffiffiffi
s

p
≪ Ms are of order ð ffiffiffi

s
p

=MsÞ4; see Eq. (3.5).] To
factorize amplitudes on the poles due to the lowest massive
string states, it is sufficient to consider s ¼ M2

s. In this limit,
Vs is regular, while

Vt →
u

s −M2
s
; Vu →

t
s −M2

s
: ð3:27Þ

Thus, the s-channel pole term of the average square
amplitude (3.23) can be rewritten as

jMðgg → ggÞj2

¼ 2
g43
M4

s

�
N2 − 4þ ð12=N2Þ

N2 − 1

�
M8

s þ t4 þ u4

ðs −M2
sÞ2

: ð3:28Þ

Note that the contributions of single poles to the cross section
are antisymmetric about the position of the resonance and
vanish in any integration over the resonance.10

Before proceeding, we pause to present our notation. The
first Regge excitations of the gluon g, the color singletC, and
quarks qwill be denoted byGð1Þ; Cð1Þ, andQð1Þ, respectively.
Recall that Cμ has an anomalous mass in general lower than
thestringscalebyanorderofmagnitude. If that is thecase, and
if the mass of the Cð1Þ is composed (approximately) of the
anomalous mass of the Cμ and Ms added in quadrature, we
would expect only a minor error in our results by taking the
Cð1Þ to be degenerate with the other resonances. The singu-
larity at s ¼ M2

s needs softening to a Breit–Wigner form,
reflecting the finite decaywidthsof resonances propagating in
the s channel. Because of averaging over initial polarizations,
Eq. (3.28) contains additive contributions from both
spin-J ¼ 0 and spin-J ¼ 2 Uð3Þ bosonic Regge excitations
(Gð1Þ and Cð1Þ), created by the incident gluons in the helicity
configurations (��) and (�∓), respectively. TheM8

s term in
Eq. (3.28) originates from J ¼ 0, and the t4 þ u4 piece
reflects J ¼ 2 activity. Since the resonance widths depend
on the spin and on the identity of the intermediate state (Gð1Þ,
Cð1Þ), the pole term (3.28) should be smeared as [8]

jMðgg → ggÞj2 ¼ 2
g43
M4

s

�
N2 − 4þ ð12=N2Þ

N2 − 1

�
×

�
Wgg→gg

Gð1Þ

�
M8

s

ðs −M2
sÞ2 þ ðΓJ¼0

Gð1ÞMsÞ2
þ t4 þ u4

ðs −M2
sÞ2 þ ðΓJ¼2

Gð1ÞMsÞ2
�

þWgg→gg
Cð1Þ

�
M8

s

ðs −M2
sÞ2 þ ðΓJ¼0

Cð1ÞMsÞ2
þ t4 þ u4

ðs −M2
sÞ2 þ ðΓJ¼2

Cð1ÞMsÞ2
�	

; ð3:29Þ

10As an illustration, consider the amplitude aþ b=D in the vicinity of the pole, where a and b are real, D ¼ xþ iϵ, x ¼ s −M2
s ,

and ϵ ¼ ΓMs. Then, since Reð1=DÞ ¼ x=jDj2, the cross section becomes σ ∝ a2 þ b2=jDj2 þ 2abx=jDj2 ≃ a2 þ b2πδðxÞ=ϵþ
2abπxδðxÞ=ϵ. Integrating over the width of the resonance, one obtains a2ϵþ b2π=ϵ≃ bπ, because b ∝ ϵ, a ∝ g2, and ϵ ∝ g2.
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where ΓJ¼0
Gð1Þ ¼ 75ðMs=TeVÞ GeV, ΓJ¼0

Cð1Þ ¼
150ðMs=TeVÞ GeV, ΓJ¼2

Gð1Þ ¼ 45ðMs=TeVÞ GeV, and
ΓJ¼2
Cð1Þ ¼ 75ðMs=TeVÞ GeV are the total decay widths for

intermediate states Gð1Þ and Cð1Þ, with angular momentum
J [7]. The associated weights of these intermediate states
are given in terms of the probabilities for the various
entrance and exit channels

N2 − 4þ 12=N2

N2 − 1

¼ 16

ðN2 − 1Þ2
�
ðN2 − 1Þ

�
N2 − 4

4N

�
2

þ
�
N2 − 1

2N

�
2
�

∝
16

ðN2 − 1Þ2 ½ðN
2 − 1ÞðΓGð1Þ→ggÞ2 þ ðΓCð1Þ→ggÞ2�;

ð3:30Þ

yielding

Wgg→gg
Gð1Þ ¼ 8ðΓGð1Þ→ggÞ2

8ðΓGð1Þ→ggÞ2 þ ðΓCð1Þ→ggÞ2
¼ 0.44; ð3:31Þ

and

Wgg→gg
Cð1Þ ¼ ðΓCð1Þ→ggÞ2

8ðΓGð1Þ→ggÞ2 þ ðΓCð1Þ→ggÞ2
¼ 0.56: ð3:32Þ

A similar calculation transforms Eq. (3.24) near the pole
into

jMðgg → qq̄Þj2

¼ g43
M4

s
Nf

�
N2 − 2

NðN2 − 1Þ
��

Wgg→qq̄
Gð1Þ

utðu2 þ t2Þ
ðs −M2

sÞ2 þ ðΓJ¼2
Gð1ÞMsÞ2

þWgg→qq̄
Cð1Þ

utðu2 þ t2Þ
ðs −M2

sÞ2 þ ðΓJ¼2
Cð1ÞMsÞ2

�
; ð3:33Þ

where

Wgg→qq̄
Gð1Þ ¼ Wqq̄→gg

Gð1Þ ¼ 8ΓGð1Þ→ggΓGð1Þ→qq̄

8ΓGð1Þ→ggΓGð1Þ→qq̄ þ ΓCð1Þ→ggΓCð1Þ→qq̄

¼ 0.71 ð3:34Þ

and

Wgg→qq̄
Cð1Þ ¼ Wqq̄→gg

Cð1Þ ¼ ΓCð1Þ→ggΓCð1Þ→qq̄

8ΓGð1Þ→ggΓGð1Þ→qq̄ þ ΓCð1Þ→ggΓCð1Þ→qq̄

¼ 0.29: ð3:35Þ

Near the s pole, Eq. (3.25) becomes

jMðqq̄ → ggÞj2 ¼ g43
M4

s

�ðN2 − 2ÞðN2 − 1Þ
N3

�

×

�
Wqq̄→gg

Gð1Þ
utðu2 þ t2Þ

ðs −M2
sÞ2 þ ðΓJ¼2

Gð1ÞMsÞ2

þWqq̄→gg
Cð1Þ

utðu2 þ t2Þ
ðs −M2

sÞ2 þ ðΓJ¼2
Cð1ÞMsÞ2

�
;

ð3:36Þ

whereas Eq. (3.26) can be rewritten as

jMðqg → qgÞj2 ¼ −
g43
M2

s

�
N2 − 1

2N2

�

×
�

M4
su

ðs −M2
sÞ2 þ ðΓJ¼1=2

Qð1Þ MsÞ2

þ u3

ðs −M2
sÞ2 þ ðΓJ¼3=2

Qð1Þ MsÞ2
�
: ð3:37Þ

The total decay widths for the Qð1Þ excitation are ΓJ¼1=2
Qð1Þ ¼

37ðMs=TeVÞ GeV and ΓJ¼3=2
Qð1Þ ¼ 19ðMs=TeVÞ GeV [7].11

Superscripts J ¼ 2 are understood to be inserted on all the
Γ’s in Eqs. (3.31), (3.32), (3.34), and (3.35); we have taken
N ¼ 3 and Nf ¼ 6. Equation (3.29) reflects the fact that
weights for J ¼ 0 and J ¼ 2 are the same [7].
The s-channel poles near the second Regge resonance

can be approximated by expanding the Veneziano form
factor Vt around s ¼ 2M2

s ,

Vðs; t; uÞ ≈ uðuþM2
sÞ

M2
sðs − 2M2

sÞ
: ð3:38Þ

The associated scattering amplitudes and decay widths
of the n ¼ 2 string resonances are discussed in Secs. IV
and V. Roughly speaking, the width of the Regge excita-
tions will grow at least linearly with energy, whereas the
spacing between levels will decrease with energy. This
implies an upper limit on the domain of validity for our
phenomenological approach [15]. In particular, for a
resonance R of mass M, the total width is given by

Γtot ∼
g2

4π
C
M
4
; ð3:39Þ

where C > 1 because of the growing multiplicity of decay
modes [7,22]. On the other hand, since ΔðM2Þ ¼ M2

s the
level spacing at mass M is ΔM ∼M2

s=ð2MÞ; thus,

11We added a factor of 1=2 for the spin-3=2 exited string states
as noted in Ref. [23].
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Γtot

ΔM
∼
g2

8π
C
�
M
Ms

�
2

¼ g2

8π
Cn < 1: ð3:40Þ

For excitation of the resonance R via aþ b → R, the
assumption ΓtotðRÞ ∼ ΓðR → abÞ (which underestimates
the real width) yields a perturbative regime for n≲ 40.
This is to be compared with the n ∼ 104 levels of the string
needed for black hole production.12

Before discussing the decay widths of the second
massive level string states, we note that the Breit–
Wigner form for gluon fusion into γ þ jet follows from
(3.20) and is given by

jMðgg → gγÞj2 ≃ 5g43Q
2

3M4
s

"
M8

s

ðs −M2
sÞ2 þ ðΓJ¼0

Gð1ÞMsÞ2

þ t4 þ u4

ðs −M2
sÞ2 þ ðΓJ¼2

Gð1ÞMsÞ2
#
; ð3:41Þ

and the dominant s-channel pole term of the average square
amplitude contributing to pp → γ þ jet reads

jMðqg → qγÞj2 ¼ −
g43Q

2

3M2
s

"
M4

su

ðs −M2
sÞ2 þ ðΓJ¼1

2

Qð1ÞMsÞ2

þ u3

ðs −M2
sÞ2 þ ðΓJ¼3

2

Qð1ÞMsÞ2

#
: ð3:42Þ

IV. DECAY WIDTHS OF THE SECOND
MASSIVE LEVEL STRING STATES

A. Amplitudes and factorization

The main goal of this section is to obtain the decay
widths of the second massive level string states which will
appear as resonances in scattering processes gg → gg,
gq → gq and gg → qq̄ in hadron colliders. In intersecting
brane models, gluons g are the zeroth level massless strings
attaching to the Uð3Þa stack of D-branes; left-handed
quarks qL which participate in the weak interactions are
massless strings stretching between theUð3Þa stack and the
SUð2Þ stack [Uð2Þ or Spð1Þ]; right-handed quarks qR
could arise as either massless strings stretching between the
Uð3Þa stack and another Uð1Þ stack, or massless strings
attaching only to the Uð3Þa stack and appearing as the
antisymmetric representation of Uð3Þ.
Let us first clarify our notation on various string states in

different massive levels. We follow the notations in
Refs. [9–13], and we will focus on the string states which

contribute to gg → gg and gq → gq processes. The bosonic
sector of the first massive level consists of two universal
string states: a spin-2 field α and a complex scalar Φ. In
addition, there is a spin-1 field d for which the vertex
operator involves the internal current J . This vector d can
decay into qq̄, which is a universal property of all N ¼ 1
compactifications [11]. As the Uð3Þ generators decompose
to the SUð3Þ color generators plus the Uð1Þ generator
(color singlet), we have two copies of the string excitations.
We will denote the color octets by GðnÞ and the color
singlets by CðnÞ, where n indicates the nth massive level.
For the fermionic sector, the excited quark triplets Qð1Þ

consists of one spin-3
2
field χ and one spin-1

2
field a (and also

their opposite chirality fields χ̄; ā). For the bosonic sector of
the second massive level (Gð2Þ; Cð2Þ), four universal states
has been determined [12]: a spin-3 field σ, a spin-2 field π,
and two complex vector fields Ξ1;2.
The total decay width of a second massive level bosonic

string state Gð2Þ consists of four contributions: Gð2Þ decays
into two massless string states (Gð2Þ → gg and Gð2Þ → qq̄),
Gð2Þ decays into one first massive level string state plus one
massless string state (Gð2Þ → Gð1Þg and Gð2Þ → Qð1Þq),
Gð2Þ decays into a color singlet [anomalous Uð1Þ’s] plus
a massless gluon or an excited gluon (Gð2Þ → gAa and
Gð2Þ → Gð1ÞAa), and Gð2Þ decays into the excitation of the
color singlet Cð1Þ plus one massless gluon. For a second
massive level color singlet string state Cð2Þ, its decay width
also involves four contributions: Cð2Þ decays into two
massless string states (Cð2Þ → gg and Cð2Þ → qq̄), Cð2Þ

decays into one first massive level string state plus one
massless string state (Cð2Þ → Gð1Þg and Cð2Þ → Qð1Þq), Cð2Þ

decays into two anomalousUð1Þ’s, andCð2Þ decays into the
excitation of the color singlet Cð1Þ plus one anomalous
Uð1Þ. For a second massive level excited quark Qð2Þ, its
total decay width could consist of five contributions: Qð2Þ

decays into one massless gluon plus one massless quark
(Qð2Þ → gq), Qð2Þ decays into one first massive level string
state and one massless string state (Qð2Þ → Gð1Þq and
Qð2Þ → Qð1Þg), Qð2Þ decays into anomalous Uð1Þ’s plus
a massless quark or an excited quark (Qð2Þ → qAa and
Qð2Þ → Qð1ÞAa),Qð2Þ decays into the excitation of the color
singlet Cð1Þ plus one quark, and finally, for Qð2Þ which
participates in weak interactions, it could also decay into
SUð2Þ gauge bosons plus one quark. All above decay
channels of the second massive level string states are
summarized in Table III. Most of these decay channels
are universal to all compactifications, while there are also
several model-dependent channels. We will comment on
them in Secs. IVG, IV H, and IV I.
The partial decay widths of Gð2Þ and Qð2Þ decaying into

two massless string states were already obtained in
Refs. [22,23] by using factorization. However, we realize

12The mass scale MBH ∼Ms=g2s , which corresponds to the
onset of black hole production, follows from the string ⇋ black
hole correspondence principle [99]. For gs ¼ 0.1, we obtain
MBH ∼ 100Ms.
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that there are some mistakes in those results. The widths of
Gð2Þ decaying into gg in Ref. [22] should be reduced
by one-half. Moreover, there are in fact two distinct
Qð2ÞðJ ¼ 3=2Þ states. They can decay into gq of helicities
ðþ1;þ1=2Þ and ð−1;þ1=2Þ, respectively, and do not mix
with each other. So we need to consider their widths
separately (instead of adding them up as in Ref. [23]). In
this section, we will obtain the partial decay widths of
Gð2Þ, Cð2Þ, and Qð2Þ decaying into one first massive level
string state (Gð1Þ, Cð1Þ, or Qð1Þ) plus one massless string
state (g or q) using four-point amplitudes with one leg
being the first massive level string state obtained in
Ref. [11]. We will comment on other decay channels at
the end of this section.
We have seen in Sec. III that four-point amplitudes

Aðg; g; g; gÞ and Aðg; g; q; q̄Þ carry the form factor
Vðs; t; uÞ which can be expanded in terms of s-channel
resonances. Recasting the expansion we can reexpress the
amplitudes as sums of Wigner d matrices, and one could
then obtain two three-point amplitudes of massive string
states decaying into different final states with specific spin
combinations [7]. Using this method, one could identify the
contributions of various string states with different spins
appearing as resonances in the s-channel pole at a certain
massive level. Previous works only deal with the four-
point amplitude with four massless string states, whereas in
this work we consider the factorization of four-point
amplitudes, one of which has massive external legs.
More specifically, we consider four-point amplitudes
AðGð1Þ; g; g; gÞ,AðGð1Þ; g; q; q̄Þ, andAðQð1Þ; g; g; q̄Þ which
were computed in Ref. [11]. By factorizing these ampli-
tudes and using the known results (amplitudes that
Gð2Þ; Qð2Þ decaying into two massless string states), we
could obtain the partial decay widths of one second massive
level string state decaying into a first massive level string
state plus a massless one.
For the four bosonic string states scattering, there is one

subtlety which is the decomposition of the group factors.
The structure constant of the gauge group fa1a2a3 or the
total symmetric trace da1a2a3 would arise when we combine
the three-point amplitudes of two different orderings (1,2,3)
and (1,3,2) on the world sheet. This depends on the overall
world sheet parity ð−1ÞNþ1 where N is the sum of the
overall massive level number of the three scattering string
states. More specifically, the combined amplitudes have the
following group factors:

TrðTa1 ½Ta2 ; Ta3 �Þ ¼ i
2
fa1a2a3 ; N even;

TrðTa1fTa2 ; Ta3gÞ ¼ 2da1a2a3 ; N odd:

When factorizing a four-point amplitude with one first
massive level leg, on one side one gets a second massive
level string state decaying into a first massive string state
plus a zeroth level mode, and on the other side one gets the
same second massive level string state decaying into two
zeroth level massless string states. Thus, one would get a
group factor of da1a2a on the left and fa3a4a on the right; see
Fig. 3. Factorizing amplitudes involving two fermions is
simpler since there are only two Chan–Paton factors
involved. Our notation on these group factors is summa-
rized in Appendix A.
In this section all the four-point amplitudes with one first

massive level string state are taken from Ref. [11]. In
Ref. [11], the massive string state was placed at position 4,
and the three massless ones took the positions 1, 2, and 3.
For our convenience, in this work we prefer to place the
massive string state at position 1, while the three massless
string states were placed at 2, 3, and 4. The corresponding
amplitudes can be easily obtained by performing permu-
tations of the original amplitudes.
The helicity wave function of a massive higher spin

particle is specified by a pair of lightlike vectors pμ; qμ,
which is a decomposition of the momentum of the particle

TABLE III. Possible decay channels for the second massive level string states Gð2Þ; Cð2Þ; Qð2Þ. Excited massive
quarks which participate in weak interactions can also decay into SUð2Þ gauge bosons plus another quark.

2 massless
string states

1 first level string state
plus 1 massless string state

Involve 1 or 2
color singlet(s)

Involve 1 first level
color singlet excitation

Gð2Þ gg; qq̄ Gð1Þg;Qð1Þq̄; Q̄ð1Þq gAa;Gð1ÞAa Cð1Þg
Cð2Þ gg; qq̄ Gð1Þg;Qð1Þq̄; Q̄ð1Þq AaAa Cð1ÞAa

Qð2Þ gq Gð1Þq;Qð1Þg qAa; Qð1ÞAa Cð1Þq

FIG. 3. Factorization of the amplitude AðGð1Þ; g; g; gÞ gives
different group factors on two sides. The doubled wavy line
presents the first massive level bosonic string state, whereas the
single lines present massless bosonic string states.Gð2Þ or Cð2Þ are
the second massive level intermediate string states obtained from
factorization.
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kμ ¼ pμ þ qμ.13 The spin quantization axis is along the
direction of ~q in the rest frame; here, it is most convenient
to set qμ ¼ kμ2, so that the spin axis of the first massive level
string state (at position 1) is along the same direction as the
spin axis of the massless string state at position 2, and we
denote this direction to be þ~z. Because of angular
momentum conservation, the spin axis of the intermediate
second massive level string state (see Fig. 3) should also
align to þ~z, and the corresponding helicity amplitudes of
these three states with only specific jz combinations can
survive. The reference momenta of particle 1 are chosen
to be

pμ ¼
� ffiffiffi

s
p
2

; 0; 0;−
ffiffiffi
s

p
2

�
;

qμ ¼ kμ2 ¼
�
M2

s

2
ffiffiffi
s

p ; 0; 0;
M2

s

2
ffiffiffi
s

p
�
: ð4:1Þ

The spinor products become

hp2i½2p� ¼ s=2; hp3i½3p� ¼ 2t; hp4i½4p� ¼ 2u;

ð4:2Þ

where s; t; u are Mandelstam variables. With this choice,
we could extract the helicity amplitudes of the second
massive level strings decaying into a first massive level
string plus a massless one with their spin axes all along þ~z
(the direction of the momentum of the massless string
state), from the four-point amplitudes in Ref. [11]. In the
next section, we will focus on the spin-3 and spin-2
universal string states from the second massive level,
computing their scattering amplitudes and their partial
decay widths, where we will also align the spins of the
three interacting states in the direction of the momentum of
the massless particle. Thus, we are expecting the helicity
amplitudes we obtained from factorization in this section to
match exactly with the string amplitudes from conformal
field theory computations in the next section.
We will discuss the factorization of the four-point ampli-

tudes in the following order. We start from the amplitudes
which involve the first massive level spin-2 field α and
obtain the decay widths of second massive level string states
decaying into α plus another massless string state. Then we
discuss the decays which involve the final states d;Φ; χ; a in
order, which are obtained from the four-point amplitudes
with d;Φ; χ; a plus three other massless string states. The
full results of decay widths for n ¼ 2 resonances are
summarized in Table IV at the end of this section.

B. αðJ ¼ 2Þ
The highest spin field from the first massive level is the

spin-2 boson α with its vertex operator given in Eq. (5.4).

TABLE IV. The decay widths of n ¼ 2 string resonances. All of them are to be multiplied by the factor g2
3

4πMs. For the widths of Gð2Þ,
we haveN ¼ 3,Nf ¼ 6. On the other hand,Qð2Þ can decay into bosons on different stacks. For example, the decay productGð1Þ of a left-
handed Qð2Þ in (4.139) can be either an SUð3Þ or an SUð2Þ boson, but for each channel the width is of the same form (with different
coupling constant andN). So the widths ΓQð2Þ in the table should be understood as only for a particular channel, and we need to sum over
all possible channels to get the total widths.

Channel ΓJ¼3
Gð2Þ ΓJ¼2

Gð2Þ ΓJ¼1
Gð2Þ ΓJ¼5=2

Qð2Þ ΓJ¼3=2
Qð2Þ ΓJ¼3=2

~Qð2Þ ΓJ¼1=2
Qð2Þ

gg N
21

ffiffi
2

p
ffiffi
2

p
N

15
N

6
ffiffi
2

p … … … …

αg 117N
560

ffiffi
2

p 3N
40

ffiffi
2

p N
96

ffiffi
2

p … … … …

Φ�g N
1680

ffiffi
2

p N
240

ffiffi
2

p 17N
96

ffiffi
2

p … … … …

qq̄
ffiffi
2

p
Nf

105

Nf

120
ffiffi
2

p 0 … … … …

χq̄þ χ̄q 5Nf

224
ffiffi
2

p 11Nf

320
ffiffi
2

p Nf

96
ffiffi
2

p … … … …

aq̄þ āq Nf

672
ffiffi
2

p 7Nf

960
ffiffi
2

p Nf

96
ffiffi
2

p … … … …

gq … … … N
30

ffiffi
2

p 3N
40

ffiffi
2

p N
12

ffiffi
2

p N
12

ffiffi
2

p

αq … … … 27N
1024

ffiffi
2

p 11N
1536

ffiffi
2

p 25N
3072

ffiffi
2

p N
768

ffiffi
2

p

Φ�q … … … N
1920

ffiffi
2

p N
320

ffiffi
2

p N
96

ffiffi
2

p N
24

ffiffi
2

p

dq … … … 13N
5120

ffiffi
2

p 37N
7680

ffiffi
2

p N
1024

ffiffi
2

p N
256

ffiffi
2

p

gχ … … … 111N
1280

ffiffi
2

p 23N
640

ffiffi
2

p N
768

ffiffi
2

p N
192

ffiffi
2

p

ga … … … N
3840

ffiffi
2

p N
640

ffiffi
2

p 21N
256

ffiffi
2

p 3N
64

ffiffi
2

p

total 3ð6NþNfÞ
70

ffiffi
2

p 17Nþ4Nf

80
ffiffi
2

p 17NþNf

48
ffiffi
2

p 115N
768

ffiffi
2

p 49N
384

ffiffi
2

p 143N
768

ffiffi
2

p 35N
192

ffiffi
2

p

13We will give a brief review of the massive helicity formalism
in the next section. Helicity formalism for massless fields as well
as massive fermion fields is briefly reviewed in Appendixes B
and C.
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We will need to use the amplitudes (all particles are
incoming) [11]

A½α1; ϵ2; ϵ3; ϵ4� ¼ 8g23ðVtta1a2a3a4 þ Vsta2a3a1a4

þ Vuta3a1a2a4Þ
ffiffiffiffiffiffiffi
2α0

p
A½α1; ϵ2; ϵ3; ϵ4�;

ð4:3Þ

A½α1; u2; ū3; ϵ4� ¼ 2g23½VtðTa4Ta1Þα2α3 þ VsðTa1Ta4Þα2α3 �
×

ffiffiffiffiffiffiffi
2α0

p
A½α1; u2; ū3; ϵ4�; ð4:4Þ

where ϵ denotes the polarization vector of a gluon g, and

A½αðþ2Þ;þ;þ;−� ¼ 1

2
ffiffiffi
2

p hp4i4
h23ih34ih42i ;

A½αðþ1Þ;þ;þ;−� ¼ 1ffiffiffi
2

p hp4i3h4qi
h23ih34ih42i ;

A½αð0Þ;þ;þ;−� ¼
ffiffiffi
3

p

2

hp4i2h4qi2
h23ih34ih42i ;

A½αð−1Þ;þ;þ;−� ¼ 1ffiffiffi
2

p hq4i3h4pi
h23ih34ih42i ;

A½αð−2Þ;þ;þ;−� ¼ 1

2
ffiffiffi
2

p hq4i4
h23ih34ih42i ; ð4:5Þ

and

A
�
αðþ2Þ;þ 1

2
;−

1

2
;þ

�
¼ 1ffiffiffi

2
p hp2ihp3i3

h23ih34ih42i ;

A
�
αðþ1Þ;þ 1

2
;−

1

2
;þ

�
¼ 1

2
ffiffiffi
2

p hp3i2
h23ih34ih42i

× ðhq2ihp3i þ 3hp2ihq3iÞ;

A
�
αð0Þ;þ 1

2
;−

1

2
;þ

�
¼

ffiffiffi
3

p

2

hp3ihq3i
h23ih34ih42i

× ðhq2ihp3i þ hp2ihq3iÞ;

A
�
αð−1Þ;þ 1

2
;−

1

2
;þ

�
¼ 1

2
ffiffiffi
2

p hq3i2
h23ih34ih42i

× ð3hq2ihp3i þ hp2ihq3iÞ;

A
�
αð−2Þ;þ 1

2
;−

1

2
;þ

�
¼ 1ffiffiffi

2
p hq2ihq3i3

h23ih34ih42i : ð4:6Þ

The other nonvanishing amplitudes can be obtained by
taking the complex conjugate and permutation.

1. Gð2ÞðJ ¼ 3;2Þ → αþ g

We now factorize the four-point amplitudes
A½α;þ;þ;−� to get the matrix elements of Gð2ÞðJ ¼
2; 3Þ decaying into αþ gþ. Amplitudes A½α;−;−;þ�
can be obtained via the complex conjugate, and they give

the matrix elements of the decays Gð2ÞðJ ¼ 3; 2Þ →
αþ g−. The factorization of A½αðþ2Þ;þ;þ;−� gives

A½αðþ2Þ;þ;þ;−� ¼ g23M
2
s

s − 2M2
s

16ffiffiffi
3

p d3−3;−2ðθÞfa1a2ada3a4a;

ð4:7Þ

where θ is the angle between −~z and the spatial momen-
tum of particle 3. It is related to the Mandelstam variables
u; t by

u ¼ −
s
2
ð1þ cos θÞ; t ¼ −

s
2
ð1 − cos θÞ: ð4:8Þ

From (4.7) we can read off the matrix elements as

Fa;J¼3
þ2þa1a2

¼ Fa;J¼3
−2−a1a2 ¼ 8g3Msda1a2a; ð4:9Þ

where we use Fa;J
λ1λ2a1a2

to denote the amplitude of a spin-J
particle with angular momentum jz ¼ λ1 þ λ2 (and gauge
index a) decaying into particles 1 and 2 with momenta
along the ~z axis. λ1; λ2 are helicities of the two particles,
while a1; a2 are gauge indices. Thus, the result of Eq. (4.9)
presents the decay of a second massive level spin-3 string
state with jz ¼ −3 decaying into α1ðjz ¼ −2Þ and ϵ−2 ,
which is exactly what we get in Eq. (5.48) in the next
section. In Eq. (5.48), all particles are incoming, and the
corresponding outgoing particles are one αð−2Þ and one
ϵ−. We would like to remind the reader that the definition
of Fa;J

λ1λ2a1a2
is in some sense different from what is used in

the literature [7,22,23]. Previously the helicity λ1 (of a
massless particle) was usually defined with its spin axis
along ~k1. In our convention the spin axis of every particle
is along þ~z. Particle 1 is moving along −~z, and its spin
axis is opposite to ~k1.
Similarly, we can do the factorization for amplitudes

with other spin configurations:

A½αðþ1Þ;þ;þ;−�

¼ g23M
2
s

s − 2M2
s

�
16

3
d3−2;−2ðθÞ −

16

3
d2−2;−2ðθÞ

�
fa1a2ada3a4a;

ð4:10Þ

Fa;J¼3
þ1þa1a2

¼ Fa;J¼3
−1−a1a2 ¼

8ffiffiffi
3

p g3Msda1a2a;

Fa;J¼2
þ1þa1a2

¼ Fa;J¼2
−1−a1a2 ¼ 4

ffiffiffi
2

3

r
g3Msda1a2a: ð4:11Þ

A½αð0Þ;þ;þ;−�

¼ g23M
2
s

s−2M2
s

�
8

ffiffiffiffiffi
2

15

r
d3−1;−2ðθÞ−

8ffiffiffi
3

p d2−1;−2ðθÞ
�
fa1a2ada3a4a;

ð4:12Þ
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Fa;J¼3
0þa1a2

¼ Fa;J¼3
0−a1a2 ¼ 4

ffiffiffi
2

5

r
g3Msda1a2a;

Fa;J¼2
0þa1a2

¼ Fa;J¼2
0−a1a2 ¼ 2

ffiffiffi
2

p
g3Msda1a2a: ð4:13Þ

A½αð−1Þ;þ;þ;−�

¼ g23M
2
s

s− 2M2
s

�
4

ffiffiffiffiffi
2

15

r
d30;−2ðθÞ− 4

ffiffiffi
2

3

r
d20;−2ðθÞ

�
fa1a2ada3a4a;

ð4:14Þ

Fa;J¼3
−1þa1a2

¼ Fa;J¼3
þ1−a1a2 ¼ 2

ffiffiffi
2

5

r
g3Msda1a2a;

Fa;J¼2
−1þa1a2

¼ Fa;J¼2
þ1−a1a2 ¼ 2g3Msda1a2a: ð4:15Þ

A½αð−2Þ;þ;þ;−�

¼ g23M
2
s

s − 2M2
s

�
4

3
ffiffiffi
5

p d3þ1;−2ðθÞ −
4

ffiffiffi
2

p

3
d2þ1;−2ðθÞ

�
× fa1a2ada3a4a; ð4:16Þ

Fa;J¼3
−2þa1a2

¼ Fa;J¼3
þ2−a1a2 ¼

2ffiffiffiffiffi
15

p g3Msda1a2a;

Fa;J¼2
−2þa1a2

¼ Fa;J¼2
þ2−a1a2 ¼

2ffiffiffi
3

p g3Msda1a2a: ð4:17Þ

The decay width can be computed using (an extra factor of
1=2 is needed if outgoing particles are a pair of gluons)14

ΓaJ
λ1λ2;a1a2

¼ 1

32ð2J þ 1Þ ffiffiffi
2

p
πMs

jFaJ
λ1λ2;a1a2

j2: ð4:18Þ

We need to take into account both the channels into αþ gþ
and into αþ g−, and the results are

ΓJ¼3
Gð2Þ→αg

¼ 117g23Ms

2240
ffiffiffi
2

p
π
N; ΓJ¼2

Gð2Þ→αg
¼ 3g23Ms

160
ffiffiffi
2

p
π
N:

ð4:19Þ

2. Gð2ÞðJ ¼ 1Þ → αþ g

The spin-1 resonances arise from factorization of the
amplitude A½α;−;þ;þ�,

A½αðþ2Þ;−;þ;þ� ¼ 4g23M
2
s

s − 2M2
s
d1−1;0ðθÞfa1a2ada3a4a;

ð4:20Þ
and we obtain

Fa;J¼1
þ2−a1a2 ¼ Fa;J¼1

−2þa1a2
¼ 2g3Msda1a2a; ð4:21Þ

which corresponds to the complex vectors found in
Ref. [12]. Unlike Gð2ÞðJ ¼ 3; 2Þ, Gð2ÞðJ ¼ 1Þ is not parity
invariant; the matrix elements in (4.21) are for two different
particles and should not be added together. Thus, the
corresponding partial decay width reads

ΓJ¼1
Gð2Þ→αg

¼ g23Ms

384
ffiffiffi
2

p
π
N: ð4:22Þ

3. Qð2ÞðJ ¼ 5=2; 3=2Þ → αþ q

We could obtain the second massive level spin-5
2

and spin-3
2

resonances from factorizing amplitude
A½α;þ 1

2
;− 1

2
;þ�:

A
�
αðþ2Þ;þ 1

2
;−

1

2
;þ

�

¼ g23M
2
s

s − 2M2
s

4ffiffiffi
5

p d5=2−5=2;þ3=2ðθÞTa1
α2αT

a4
αα3 ; ð4:23Þ

Fα;J¼5=2
þ2þ1

2
a1α2

¼ Fα;J¼5=2
−2−1

2
a1α2

¼
ffiffiffi
2

p
g3MsT

a1
α2α: ð4:24Þ

A
�
αðþ1Þ;þ 1

2
;−

1

2
;þ

�
¼ g23M

2
s

s − 2M2
s

�
3

ffiffiffi
2

p

5
d5=2−3=2;þ3=2ðθÞ

−
3

ffiffiffi
2

p

5
d3=2−3=2;þ3=2ðθÞ

�
Ta1
α2αT

a4
αα3 ;

ð4:25Þ

Fα;J¼5=2
þ1þ1

2
a1α2

¼ Fα;J¼5=2
−1−1

2
a1α2

¼ 3

2
ffiffiffi
5

p g3MsT
a1
α2α;

Fα;J¼3=2
þ1þ1

2
a1α2

¼ Fα;J¼3=2
−1−1

2
a1α2

¼
ffiffiffiffiffi
3

10

r
g3MsT

a1
α2α: ð4:26Þ

A
�
αð0Þ;þ 1

2
;−

1

2
;þ

�
¼ g23M

2
s

s − 2M2
s

�
−

ffiffiffi
3

p

5
d5=2−1=2;þ3=2ðθÞ

−
2

ffiffiffi
2

p

5
d3=2−1=2;þ3=2ðθÞ

�
Ta1
α2αT

a4
αα3 ;

ð4:27Þ

14Since the decay product includes a massive particle, the
decay width is suppressed by M2

s=s compared to the width of
decaying into two massless particles. The suppression is due to
the difference in j~k1j=

ffiffiffi
s

p
, which appears in phase space integra-

tion of the final states. In the case of two outgoing massless
particles, this ratio is 1

2
, while in the current case, it is M2

s
2s [see, e.g.,

Eq. (4.1)].
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Fα;J¼5=2
0þ1

2
a1α2

¼ Fα;J¼5=2
0−1

2
a1α2

¼ 1

2

ffiffiffiffiffi
3

10

r
g3MsT

a1
α2α;

Fα;J¼3=2
0þ1

2
a1α2

¼ Fα;J¼3=2
0−1

2
a1α2

¼
ffiffiffiffiffi
2

15

r
g3MsT

a1
α2α: ð4:28Þ

A
�
αð−1Þ;þ 1

2
;−

1

2
;þ

�

¼ g23M
2
s

s − 2M2
s

�
1

10
d5=2þ1=2;þ3=2ðθÞ −

1

5

ffiffiffi
3

2

r
d3=2þ1=2;þ3=2ðθÞ

�
× Ta1

α2αT
a4
αα3 ; ð4:29Þ

Fα;J¼5=2
−1þ1

2
a1α2

¼ Fα;J¼5=2
þ1−1

2
a1α2

¼ 1

4
ffiffiffiffiffi
10

p g3MsT
a1
α2α;

Fα;J¼3=2
−1þ1

2
a1α2

¼ Fα;J¼3=2
þ1−1

2
a1α2

¼ 1

2
ffiffiffiffiffi
10

p g3MsT
a1
α2α: ð4:30Þ

Left-handed and right-handed fermions are stretching
between different branes. As a result, left-handed excited
quarks cannot decay into right-handed quarks plus gluons.
For example, we have Fα;J¼5=2

þ2þ1
2
a1α2

¼ Fα;J¼5=2
−2−1

2
a1α2

, but they are

decay amplitudes for left- and right-handed excited quarks
and should not be combined. The corresponding decay
widths are

ΓJ¼5=2
Qð2Þ→αq

¼ 27g23Ms

4096
ffiffiffi
2

p
π
N; ΓJ¼3=2

Qð2Þ→αq
¼ 11g23Ms

6144
ffiffiffi
2

p
π
N:

ð4:31Þ

4. Qð2ÞðJ ¼ 3=2;1=2Þ → αþ q

The second massive level spin-3
2
and spin-1

2
resonances

can be obtained from amplitude A½α;− 1
2
;þ;þ 1

2
�:

A
�
αðþ2Þ;−1

2
;þ;þ1

2

�
¼ g23M

2
s

s−2M2
s

2ffiffiffi
3

p d3=2−3=2;−1=2ðθÞTa1
α2αT

a3
αα4 ;

ð4:32Þ

Fα;J¼3=2
þ2−1

2
a1α2

¼ Fα;J¼3=2
−2þ1

2
a1α2

¼ 1ffiffiffi
2

p g3MsT
a1
α2α: ð4:33Þ

A
�
αðþ1Þ;− 1

2
;þ;þ 1

2

�

¼ g23M
2
s

s − 2M2
s

�
1

3
ffiffiffi
2

p d3=2−1=2;−1=2ðθÞ −
1

3
ffiffiffi
2

p d1=2−1=2;−1=2ðθÞ
�

× Ta1
α2αT

a3
αα4 ; ð4:34Þ

Fα;J¼3=2
þ1−1

2
a1α2

¼ Fα;J¼3=2
−1þ1

2
a1α2

¼ 1

4
ffiffiffi
3

p g3MsT
a1
α2α;

Fα;J¼1=2
þ1−1

2
a1α2

¼ Fα;J¼1=2
−1þ1

2
a1α2

¼ 1

2
ffiffiffi
6

p g3MsT
a1
α2α: ð4:35Þ

The spin-3
2

fermion ~Qð2Þ here is different from the
spin-3

2
fermion Qð2Þ we obtained from the amplitude

A½α;þ 1
2
;− 1

2
;þ�, as this one can decay into ðþ;þ 1

2
Þ

[instead of ð−;þ 1
2
Þ]. Since the amplitude A½þ;þ;þ 1

2
;

− 1
2
� ¼ 0, these two states do not mix, and we obtain

ΓJ¼3=2
~Qð2Þ→αq

¼ 25g23Ms

12288
ffiffiffi
2

p
π
N; ΓJ¼1=2

Qð2Þ→αq
¼ g23Ms

3072
ffiffiffi
2

p
π
N:

ð4:36Þ

C. dðJ ¼ 1Þ
The spin-1 field d is different from the universal bosonic

fields α;Φ in that it is tied to spacetime SUSY. Although its
vertex operator contains the world sheet current J , the
vector d does give rise to universal amplitudes into a quark-
antiquark pair [11]. The existence of this vector resonance is
a universal property of all N ¼ 1 SUSY compactifications.
We will need the amplitude A½d1; u2; ū3; ϵ4�, which reads

A½d1; u2; ū3; ϵ4� ¼
ffiffiffi
3

p
g23½VtðTa4Ta1Þα2α3 þ VsðTa1Ta4Þα2α3 �

×A½d1; u2; ū3; ϵ4�; ð4:37Þ

where

A
�
dðþ1Þ;þ 1

2
;−

1

2
;þ

�
¼ hp3i2

h24ih34i ;

A
�
dð0Þ;þ 1

2
;−

1

2
;þ

�
¼

ffiffiffi
2

p hp3ihq3i
h24ih34i ;

A
�
dð−1Þ;þ 1

2
;−

1

2
;þ

�
¼ −

hq3i2
h24ih34i : ð4:38Þ

These amplitudes will give rise to two channels of the second
massive level string resonances.15

1. Qð2ÞðJ ¼ 5=2;3=2Þ → d þ q

We could obtain the second massive level spin-5
2

and spin-3
2

resonances from factorizing amplitude

15Indeed, by factorizing A½d;þ;− 1
2
;þ 1

2
� amplitudes, one can

get the second massive level J ¼ 2; 1 resonances where the states
can decay into dþ g. These states are not the same as the
Gð2ÞðJ ¼ 2; 1Þ we have discussed above. For N ¼ 1 compacti-
fication, the vertex operator of this vector d involves internal
current J [11]. It only couples to quark-antiquark pairs, while the
Gð2ÞðJ ¼ 2; 1Þ states, for which vertex operators, cf. Ref. [12],
cannot decay into dþ g. Thus, the vertex operators of J ¼ 2; 1
resonances which arise from this channel must also contain
internal components. These J ¼ 2; 1 states do not couple to a pair
of gluons and thus play no role in processes gg → gg or gg → qq̄.
Even though these states do couple to quark-antiquark pairs and
may contribute to four-fermion amplitudes, we will not consider
such processes as they are suppressed [8]. Thus, we will not
discuss these states in this work.
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A½d;þ 1
2
;− 1

2
;þ�:

A
�
dðþ1Þ;þ 1

2
;−

1

2
;þ

�

¼ g23M
2
s

s − 2M2
s

� ffiffiffi
6

p

5
d5=2−3=2;þ3=2ðθÞ þ

ffiffiffi
6

p

5
d3=2−3=2;þ3=2ðθÞ

�
× Ta1

α2αT
a4
αα3 ; ð4:39Þ

Fα;J¼5=2
þ1þ1

2
a1α2

¼ Fα;J¼5=2
−1−1

2
a1α2

¼ 1

2

ffiffiffi
3

5

r
g3MsT

a1
α2α;

Fα;J¼3=2
þ1þ1

2
a1α2

¼ Fα;J¼3=2
−1−1

2
a1α2

¼ 1ffiffiffiffiffi
10

p g3MsT
a1
α2α: ð4:40Þ

A
�
dð0Þ;þ 1

2
;−

1

2
;þ

�

¼ g23M
2
s

s − 2M2
s

� ffiffiffi
3

p

5
d5=2−1=2;þ3=2ðθÞ þ

2
ffiffiffi
2

p

5
d3=2−1=2;þ3=2ðθÞ

�
× Ta1

α2αT
a4
αα3 ; ð4:41Þ

Fα;J¼5=2
0þ1

2
a1α2

¼ Fα;J¼5=2
0−1

2
a1α2

¼ 1

2

ffiffiffiffiffi
3

10

r
g3MsT

a1
α2α;

Fα;J¼3=2
0þ1

2
a1α2

¼ Fα;J¼3=2
0−1

2
a1α2

¼
ffiffiffiffiffi
2

15

r
g3MsT

a1
α2α: ð4:42Þ

A
�
dð−1Þ;þ 1

2
;−

1

2
;þ

�

¼ g23M
2
s

s − 2M2
s

� ffiffiffi
3

p

10
d5=2þ1=2;þ3=2ðθÞ þ

3

5
ffiffiffi
2

p d3=2þ1=2;þ3=2ðθÞ
�

× Ta1
α2αT

a4
αα3 ; ð4:43Þ

Fα;J¼5=2
−1þ1

2
a1α2

¼ Fα;J¼5=2
þ1−1

2
a1α2

¼ 1

4

ffiffiffiffiffi
3

10

r
g3MsT

a1
α2α;

Fα;J¼3=2
−1þ1

2
a1α2

¼ Fα;J¼3=2
þ1−1

2
a1α2

¼ 1

2

ffiffiffiffiffi
3

10

r
g3MsT

a1
α2α: ð4:44Þ

The corresponding partial decay widths read

ΓJ¼5=2
Qð2Þ→dq

¼ 13g23Ms

20480
ffiffiffi
2

p
π
N;

ΓJ¼3=2
Qð2Þ→dq

¼ 37g23Ms

30720
ffiffiffi
2

p
π
N: ð4:45Þ

2. Qð2ÞðJ ¼ 3=2;1=2Þ → d þ q

The second massive level spin-3
2
and spin-1

2
resonances

arise from amplitude A½d;− 1
2
;þ;þ 1

2
�,

A
�
dðþ1Þ;− 1

2
;þ;þ 1

2

�

¼ g23M
2
s

s − 2M2
s

�
1ffiffiffi
6

p d3=2−1=2;−1=2ðθÞ −
1ffiffiffi
6

p d1=2−1=2;−1=2ðθÞ
�

× Ta1
α2αT

a3
αα4 ; ð4:46Þ

Fα;J¼3=2
þ1−1

2
a1α2

¼ Fα;J¼3=2
−1þ1

2
a1α2

¼ 1

4
g3MsT

a1
α2α;

Fα;J¼1=2
þ1−1

2
a1α2

¼ Fα;J¼1=2
−1þ1

2
a1α2

¼ 1

2
ffiffiffi
2

p g3MsT
a1
α2α; ð4:47Þ

and the corresponding partial decay widths read

ΓJ¼3=2
~Qð2Þ→dq

¼ g23Ms

4096
ffiffiffi
2

p
π
N; ΓJ¼1=2

Qð2Þ→dq
¼ g23Ms

1024
ffiffiffi
2

p
π
N:

ð4:48Þ
Similar to previous case, we identify the spin-3

2
fermion in

this channel as ~Qð2ÞðJ ¼ 3=2Þ.

D. Φ�ðJ ¼ 0Þ
Φ is a complex scalar field, which couples to only (anti)

self-dual gauge field configurations, i.e., to gluons in ðþþÞ
or ð−−Þ helicity configurations. The vertex operator of Φ is
given in Eq. (5.5). We will use the following amplitudes:

A½Φþ;þ;þ;−�
¼ 4g23ðVtta1a2a3a4 þ Vsta2a3a1a4 þ Vuta3a1a2a4Þ

ffiffiffiffi
α0

p

×
½23�4

½23�½34�½42� ; ð4:49Þ

A½Φþ;þ;þ;þ�
¼ 4g23ðVtta1a2a3a4 þ Vsta2a3a1a4 þ Vuta3a1a2a4Þ

×
ðα0Þ−3=2

h23ih34ih42i ; ð4:50Þ

A
�
Φþ;þ

1

2
;−

1

2
;þ

�
¼ 2g23½VtðTa4Ta1Þα2α3

þ VsðTa1Ta4Þα2α3 �
ffiffiffiffi
α0

p ½24�2
½23� : ð4:51Þ

1. Gð2ÞðJ ¼ 3; 2Þ → Φþ þ gþ

The second massive level spin-3 and spin-2 excitations
arise from factorization of A½Φþ;þ;þ;−�:

A½Φþ;þ;þ;−�

¼ g23M
2
s

s − 2M2
s

�
4

3
ffiffiffi
5

p d3−1;−2ðθÞ þ
4

ffiffiffi
2

p

3
d2−1;−2ðθÞ

�
× fa1a2ada3a4a; ð4:52Þ
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Fa;J¼3
Φþþa1a2

¼ Fa;J¼3
Φ−−a1a2 ¼

2ffiffiffiffiffi
15

p g3Msda1a2a;

Fa;J¼2
Φþþa1a2

¼ Fa;J¼2
Φ−−a1a2 ¼

2ffiffiffi
3

p g3Msda1a2a: ð4:53Þ

Gð2ÞðJ ¼ 3; 2Þ can decay both into Φþ þ gþ and Φ− þ g−

(from A½Φ−;−;−;þ�). However, Φþ þ g− is not possible
since A½Φþ;þ;−;−� ¼ 0, and neither is Φ− þ gþ as
A½Φ−;−;þ;þ� ¼ 0. These will also be confirmed in the
next section. The corresponding decay widths read

ΓJ¼3
Gð2Þ→Φg

¼ g23Ms

6720
ffiffiffi
2

p
π
N; ΓJ¼2

Gð2Þ→Φg
¼ g23Ms

960
ffiffiffi
2

p
π
N:

ð4:54Þ
2. Gð2ÞðJ ¼ 1Þ → Φþ þ g

Gð2ÞðJ ¼ 1Þ can arise from the following two channels:
(i) Gð2ÞðJ ¼ 1Þ → Φþ þ gþ:

A½Φþ;þ;þ;þ� ¼ 4g23M
2
s

s − 2M2
s
d1−1;0ðθÞfa1a2ada3a4a;

ð4:55Þ

Fa;J¼1
Φþþa1a2

¼ Fa;J¼1
Φ−−a1a2 ¼ 2g3Msda1a2a: ð4:56Þ

(ii) Gð2ÞðJ ¼ 1Þ → Φþ þ g−:

A½Φþ;−;þ;þ� ¼ 16g23M
2
s

s − 2M2
s
d1þ1;0ðθÞfa1a2ada3a4a;

ð4:57Þ

Fa;J¼1
Φþ−a1a2 ¼ Fa;J¼1

Φ−þa1a2
¼ 8g3Msda1a2a: ð4:58Þ

The Gð2ÞðJ ¼ 1Þ that goes into Φþ þ gþ is not parity
invariant. Instead, its partner decays into Φ− þ g−. On the
other hand, both channels of Φþ þ gþ and Φþ þ g− are
possible, and we need to add them up,

ΓJ¼1
Gð2Þ→Φg

¼ 17g23Ms

384
ffiffiffi
2

p
π
N: ð4:59Þ

3. Qð2ÞðJ ¼ 5=2; 3=2Þ → Φþ þ q

The second massive level spin-5
2
and spin-3

2
resonances

arise from

A
�
Φþ;þ

1

2
;−

1

2
;þ

�

¼ g23M
2
s

s − 2M2
s

� ffiffiffi
2

p

5
d5=2−1=2;þ3=2ðθÞ −

2
ffiffiffi
3

p

5
d3=2−1=2;þ3=2ðθÞ

�
× Ta1

α2αT
a4
αα3 ; ð4:60Þ

Fα;J¼5=2
Φþþ1

2
a1α2

¼ Fα;J¼5=2
Φ−−1

2
a1α2

¼ 1

2
ffiffiffi
5

p g3MsT
a1
α2α;

Fα;J¼3=2
Φþþ1

2
a1α2

¼ Fα;J¼3=2
Φ−−1

2
a1α2

¼ 1ffiffiffi
5

p g3MsT
a1
α2α: ð4:61Þ

The corresponding partial decay widths read

ΓJ¼5=2
Qð2Þ→Φq

¼ g23Ms

7680
ffiffiffi
2

p
π
N; ΓJ¼3=2

Qð2Þ→Φq
¼ g23Ms

1280
ffiffiffi
2

p
π
N:

ð4:62Þ

4. Qð2ÞðJ ¼ 3=2;1=2Þ → Φþ þ q

The second massive level spin-3
2
and spin-1

2
resonances

arise from

A
�
Φþ;−

1

2
;þ;þ 1

2

�

¼ g23M
2
s

s − 2M2
s

�
4

3
d3=2þ1=2;−1=2ðθÞ þ

4

3
d1=2þ1=2;−1=2ðθÞ

�
Ta1
α2αT

a3
αα4 ;

ð4:63Þ

Fα;J¼3=2
Φþþ1

2
a1α2

¼ Fα;J¼3=2
Φ−−1

2
a1α2

¼
ffiffiffi
2

3

r
g3MsT

a1
α2α;

Fα;J¼1=2
Φþþ1

2
a1α2

¼ Fα;J¼1=2
Φ−−1

2
a1α2

¼ 2ffiffiffi
3

p g3MsT
a1
α2α: ð4:64Þ

The corresponding partial decay widths read

ΓJ¼3=2
~Qð2Þ→Φq

¼ g23Ms

384
ffiffiffi
2

p
π
N; ΓJ¼1=2

Qð2Þ→Φq
¼ g23Ms

96
ffiffiffi
2

p
π
N:

ð4:65Þ

Similar to previous cases, we identify the spin-3
2
fermion to

be ~Qð2ÞðJ ¼ 3=2Þ.

E. χ ðJ ¼ 3=2Þ
The vertex operator of the spin-3

2
fermion χ is given in

Eq. (5.8). We will need to use the following amplitudes:

A½χ1; ϵ2; ϵ3; u4� ¼ 2g23½VtðTa2Ta3Þα4α1 − VsðTa3Ta2Þα4α1 �
×A½χ1; ϵ2; ϵ3; u4�; ð4:66Þ

where
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A
�
χ

�
−
3

2

�
;−;−;þ 1

2

�
¼ ½4q�3

½23�½34�½42� ;

A
�
χ

�
−
1

2

�
;−;−;þ 1

2

�
¼

ffiffiffi
3

p ½4q�2½p4�
½23�½34�½42� ;

A
�
χ

�
−
1

2

�
;−;−;þ 1

2

�
¼

ffiffiffi
3

p ½4p�2½q4�
½23�½34�½42� ;

A
�
χ

�
−
3

2

�
;−;−;þ 1

2

�
¼ ½4p�3

½23�½34�½42� ; ð4:67Þ

and

A
�
χ

�
−
3

2

�
;þ;−;þ 1

2

�
¼

ffiffiffiffi
α0

p hp3i3
h23ih24i ;

A
�
χ

�
−
1

2

�
;þ;−;þ 1

2

�
¼

ffiffiffiffiffiffiffi
3α0

p hp3i2hq3i
h23ih24i ;

A
�
χ

�
−
1

2

�
;þ;−;þ 1

2

�
¼ −

ffiffiffiffiffiffiffi
3α0

p hq3i2hp3i
h23ih24i ;

A
�
χ

�
−
3

2

�
;þ;−;þ 1

2

�
¼ −

ffiffiffiffi
α0

p hq3i3
h23ih24i : ð4:68Þ

1. Gð2ÞðJ ¼ 3;2Þ → χ þ q̄

The second massive level spin-3 and spin-2 excitations
arise from factorization of A½χ;þ 1

2
;−;þ�:

A
�
χ

�
þ 3

2

�
;þ 1

2
;−;þ

�

¼ g23M
2
s

s − 2M2
s

�
2

3
d3−2;þ2ðθÞ þ

2

3
d2−2;þ2ðθÞ

�
Ta
α1α2f

a3a4a;

ð4:69Þ

Fa;J¼3

þ3
2
þ1

2
α1α2

¼ Fa;J¼3

−3
2
−1
2
α1α2

¼ 1ffiffiffi
3

p g3MsTa
α1α2 ;

Fa;J¼2

þ3
2
þ1

2
α1α2

¼ Fa;J¼2

−3
2
−1
2
α1α2

¼ 1ffiffiffi
6

p g3MsTa
α1α2 : ð4:70Þ

A
�
χ

�
þ1

2

�
;þ1

2
;−;þ

�

¼ g23M
2
s

s− 2M2
s

�
2ffiffiffiffiffi
15

p d3−1;þ2ðθÞþ
ffiffiffi
2

3

r
d2−1;þ2ðθÞ

�
Ta
α1α2f

a3a4a;

ð4:71Þ

Fa;J¼3

þ1
2
þ1

2
α1α2

¼ Fa;J¼3

−1
2
−1
2
α1α2

¼ 1ffiffiffi
5

p g3MsTa
α1α2 ;

Fa;J¼2

þ1
2
þ1

2
α1α2

¼ Fa;J¼2

−1
2
−1
2
α1α2

¼ 1

2
g3MsTa

α1α2 : ð4:72Þ

A
�
χ

�
−
1

2

�
;þ 1

2
;−;þ

�

¼ g23M
2
s

s − 2M2
s

�
1ffiffiffiffiffi
10

p d30;þ2ðθÞ þ
1ffiffiffi
2

p d20;þ2ðθÞ
�
Ta
α1α2f

a3a4a;

ð4:73Þ

Fa;J¼3

−1
2
þ1

2
α1α2

¼ Fa;J¼3

þ1
2
−1
2
α1α2

¼ 1

2

ffiffiffiffiffi
3

10

r
g3MsTa

α1α2 ;

Fa;J¼2

−1
2
þ1

2
α1α2

¼ Fa;J¼2

þ1
2
−1
2
α1α2

¼ 1

4

ffiffiffi
3

p
g3MsTa

α1α2 : ð4:74Þ

A
�
χ

�
−
3

2

�
;þ 1

2
;−;þ

�

¼ g23M
2
s

s − 2M2
s

�
1

3
ffiffiffi
5

p d3þ1;þ2ðθÞ þ
ffiffiffi
2

p

3
d2þ1;þ2ðθÞ

�
× Ta

α1α2f
a3a4a; ð4:75Þ

Fa;J¼3

−3
2
þ1

2
α1α2

¼ Fa;J¼3

þ3
2
−1
2
α1α2

¼ 1

2
ffiffiffiffiffi
15

p g3MsTa
α1α2 ;

Fa;J¼2

−3
2
þ1

2
α1α2

¼ Fa;J¼2

þ3
2
−1
2
α1α2

¼ 1

2
ffiffiffi
3

p g3MsTa
α1α2 : ð4:76Þ

The corresponding decay widths read

ΓJ¼3
ðGð2Þ→χq̄ÞþðGð2Þ→χ̄qÞ ¼

5g23MsNf

896
ffiffiffi
2

p
π
;

ΓJ¼2
ðGð2Þ→χq̄ÞþðGð2Þ→χ̄qÞ ¼

11g23MsNf

1280
ffiffiffi
2

p
π
: ð4:77Þ

2. Gð2ÞðJ ¼ 1Þ → χ þ q̄

The second massive level spin-1 excitations arise from
factorization of

A
�
χ

�
þ 3

2

�
;þ 1

2
;−;−

�
¼ g23M

2
s

s − 2M2
s
d1þ1;0ðθÞTa

α1α2f
a3a4a;

ð4:78Þ

Fa;J¼1

þ3
2
þ1

2
α1α2

¼ Fa;J¼1

−3
2
−1
2
α1α2

¼ 1

2
g3MsTa

α1α2 : ð4:79Þ

We also need to take into account the channel of
Gð2ÞðJ ¼ 1Þ → χ̄ þ q. The sum of the decay widths reads

ΓJ¼1
ðGð2Þ→χq̄ÞþðGð2Þ→χ̄qÞ ¼

g23MsNf

384
ffiffiffi
2

p
π
: ð4:80Þ
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3. Qð2ÞðJ ¼ 5=2;3=2Þ → χ þ g

Qð2ÞðJ ¼ 5=2; 3=2Þ → χ þ g− can be obtained from

A
�
χ

�
þ 3

2

�
;−;−;þ 1

2

�

¼ g23M
2
s

s − 2M2
s

�
1

5
d5=2−1=2;þ3=2ðθÞ −

ffiffiffi
6

p

5
d3=2−1=2;þ3=2ðθÞ

�
× Ta2

α1αT
a3
αα4 ; ð4:81Þ

Fα;J¼5=2
þ3

2
−α1a2

¼ Fα;J¼5=2
−3
2
þα1a2

¼ 1

2
ffiffiffiffiffi
10

p g3MsT
a2
α1α;

Fα;J¼3=2
þ3

2
−α1a2

¼ Fα;J¼3=2
−3
2
þα1a2

¼ 1ffiffiffiffiffi
10

p g3MsT
a2
α1α: ð4:82Þ

A
�
χ

�
þ 1

2

�
;−;−;þ 1

2

�

¼ g23M
2
s

s − 2M2
s

� ffiffiffi
6

p

5
d5=2þ1=2;þ3=2ðθÞ −

4

5
d3=2þ1=2;þ3=2ðθÞ

�
× Ta2

α1αT
a3
αα4 ; ð4:83Þ

Fα;J¼5=2
þ1

2
−α1a2

¼ Fα;J¼5=2
−1
2
þα1a2

¼ 1

2

ffiffiffi
3

5

r
g3MsT

a2
α1α;

Fα;J¼3=2
þ1

2
−α1a2

¼ Fα;J¼3=2
−1
2
þα1a2

¼ 2ffiffiffiffiffi
15

p g3MsT
a2
α1α: ð4:84Þ

A
�
χ

�
−
1

2

�
;−;−;þ 1

2

�

¼ g23M
2
s

s − 2M2
s

�
2

ffiffiffi
6

p

5
d5=2þ3=2;þ3=2ðθÞ −

2
ffiffiffi
6

p

5
d3=2þ3=2;þ3=2ðθÞ

�
× Ta2

α1αT
a3
αα4 ; ð4:85Þ

Fα;J¼5=2
−1
2
−α1a2

¼ Fα;J¼5=2
þ1

2
þα1a2

¼
ffiffiffi
3

5

r
g3MsT

a2
α1α;

Fα;J¼3=2
−1
2
−α1a2

¼ Fα;J¼3=2
þ1

2
þα1a2

¼
ffiffiffi
2

5

r
g3MsT

a2
α1α: ð4:86Þ

A
�
χ

�
−
3

2

�
;−;−;þ 1

2

�

¼ g23M
2
s

s − 2M2
s

4ffiffiffi
5

p d5=2þ5=2;þ3=2ðθÞTa2
α1αT

a3
αα4 ; ð4:87Þ

Fα;J¼5=2
−3
2
−α1a2

¼ Fα;J¼5=2
þ3

2
þα1a2

¼
ffiffiffi
2

p
g3MsT

a2
α1α: ð4:88Þ

Qð2ÞðJ ¼ 5=2; 3=2Þ → χ þ gþ can be obtained from

A
�
χ

�
þ 3

2

�
;þ;−;þ 1

2

�

¼ g23M
2
s

s − 2M2
s
4

ffiffiffi
2

5

r
d5=2−5=2;þ3=2ðθÞTa2

α1αT
a3
αα4 ; ð4:89Þ

Fα;J¼5=2
þ3

2
þα1a2

¼ Fα;J¼5=2
−3
2
−α1a2

¼ 2g3MsT
a2
a1a: ð4:90Þ

A
�
χ

�
þ 1

2

�
;þ;−;þ 1

2

�

¼ g23M
2
s

s − 2M2
s

�
4

ffiffiffi
3

p

5
d5=2−3=2;þ3=2ðθÞ þ

4
ffiffiffi
3

p

5
d3=2−3=2;þ3=2ðθÞ

�
× Ta2

α1αT
a3
αα4 ; ð4:91Þ

Fα;J¼5=2
þ1

2
þα1a2

¼ Fα;J¼5=2
−1
2
−α1a2

¼
ffiffiffi
6

5

r
g3MsT

a2
α1α;

Fα;J¼3=2
þ1

2
þα1a2

¼ Fα;J¼3=2
−1
2
−α1a2

¼ 2ffiffiffi
5

p g3MsT
a2
α1α: ð4:92Þ

A
�
χ

�
−
1

2

�
;þ;−;þ 1

2

�

¼ g23M
2
s

s − 2M2
s

�
2

ffiffiffi
3

p

5
d5=2−1=2;þ3=2ðθÞ þ

4
ffiffiffi
2

p

5
d3=2−1=2;þ3=2ðθÞ

�
× Ta2

α1αT
a3
αα4 ; ð4:93Þ

Fα;J¼5=2
−1
2
þα1a2

¼ Fα;J¼5=2
þ1

2
−α1a2

¼
ffiffiffiffiffi
3

10

r
g3MsT

a2
α1α;

Fα;J¼3=2
−1
2
þα1a2

¼ Fα;J¼3=2
þ1

2
−α1a2

¼ 2

ffiffiffiffiffi
2

15

r
g3MsT

a2
α1α; ð4:94Þ

A
�
χ

�
−
3

2

�
;þ;−;þ 1

2

�

¼ g23M
2
s

s − 2M2
s

� ffiffiffi
2

p

5
d5=2þ1=2;þ3=2ðθÞ þ

2
ffiffiffi
3

p

5
d3=2þ1=2;þ3=2ðθÞ

�
× Ta2

α1αT
a3
αα4 ; ð4:95Þ

Fα;J¼5=2
−3
2
þα1a2

¼ Fα;J¼5=2
þ3

2
−α1a2

¼ 1

2
ffiffiffi
5

p g3MsT
a2
α1α;

Fα;J¼3=2
−3
2
þα1a2

¼ Fα;J¼3=2
þ3

2
−α1a2

¼ 1ffiffiffi
5

p g3MsT
a2
α1α: ð4:96Þ

The corresponding decay widths read

ΓJ¼5=2
Qð2Þ→χg

¼ 111g23Ms

5120
ffiffiffi
2

p
π
N;

ΓJ¼3=2
Qð2Þ→χg

¼ 23g23Ms

2560
ffiffiffi
2

p
π
N: ð4:97Þ
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4. Qð2ÞðJ ¼ 3=2;1=2Þ → χ þ g−

The second massive level spin-3
2
and spin-1

2
resonances

arise from

A
�
χ

�
þ 3

2

�
;−;þ 1

2
;þ

�

¼ g23M
2
s

s − 2M2
s

� ffiffiffi
2

p

3
d3=2−1=2;þ1=2ðθÞ þ

ffiffiffi
2

p

3
d1=2−1=2;þ1=2ðθÞ

�
× Ta2

α1αT
a4
αα3 ; ð4:98Þ

Fα;J¼3=2
þ3

2
−α1a2

¼ Fα;J¼3=2
−3
2
þα1a2

¼ 1

2
ffiffiffi
3

p g3MsT
a2
α1α;

Fα;J¼1=2
þ3

2
−α1a2

¼ Fα;J¼1=2
−3
2
þα1a2

¼ 1ffiffiffi
6

p g3MsT
a2
α1α: ð4:99Þ

Channels to Qð2ÞðJ ¼ 3=2; 1=2Þ → χg− are not possible
since A½χ;þ;þ 1

2
;þ� ¼ 0,

ΓJ¼3=2
~Qð2Þ→χg−

¼ g23Ms

3072
ffiffiffi
2

p
π
N; ΓJ¼1=2

Qð2Þ→χg−
¼ g23Ms

768
ffiffiffi
2

p
π
N:

ð4:100Þ

F. aðJ ¼ 1=2Þ
The vertex operator of the spin-1

2
fermion a is given in

Eq. (5.9). We will use the following amplitudes:

A½a1; ϵ2; ϵ3; u4� ¼ 2g23ðα0Þ−1½VtðTa2Ta3Þα4α1 − VsðTa3Ta2Þα4α1 �
×A½a1; ϵ2; ϵ3; u4�; ð4:101Þ

where

A
�
a

�
þ 1

2

�
;þ;þ;þ 1

2

�
¼ hp4i

h23ih34ih42i ;

A
�
a

�
−
1

2

�
;þ;þ;þ 1

2

�
¼ hq4i

h23ih34ih42i ; ð4:102Þ

and

A
�
a

�
þ 1

2

�
;þ;−;þ 1

2

�
¼ α03=2

½q2�½24�2
½23�½34� ;

A
�
a

�
−
1

2

�
;þ;−;þ 1

2

�
¼ α03=2

½p2�½24�2
½23�½34� : ð4:103Þ

1. Gð2ÞðJ ¼ 3; 2Þ → aþ q̄

The second massive level spin-3 and spin-2 resonances
arise from

A
�
a

�
þ 1

2

�
;þ 1

2
;−;þ

�

¼ g23M
2
s

s − 2M2
s

�
1

3
ffiffiffi
5

p d3−1;þ2ðθÞ −
ffiffiffi
2

p

3
d2−1;þ2ðθÞ

�
× Ta

α1α2f
a3a4a; ð4:104Þ

Fa;J¼3

þ1
2
þ1

2
α1α2

¼ Fa;J¼3

−1
2
−1
2
α1α2

¼ 1

2
ffiffiffiffiffi
15

p g3MsTa
α1α2 ;

Fa;J¼2

þ1
2
þ1

2
α1α2

¼ Fa;J¼2

−1
2
−1
2
α1α2

¼ 1

2
ffiffiffi
3

p g3MsTa
α1α2 : ð4:105Þ

A
�
a

�
−
1

2

�
þ 1

2
;−;þ

�

¼ g23M
2
s

s − 2M2
s

�
1ffiffiffiffiffi
30

p d30;þ2ðθÞ −
1ffiffiffi
6

p d20;þ2ðθÞ
�
Ta
α1α2f

a3a4a;

ð4:106Þ

Fa;J¼3

−1
2
þ1

2
α1α2

¼ Fa;J¼3

þ1
2
−1
2
α1α2

¼ 1

2
ffiffiffiffiffi
10

p g3MsTa
α1α2 ;

Fa;J¼2

−1
2
þ1

2
α1α2

¼ Fa;J¼2

þ1
2
−1
2
α1α2

¼ 1

4
g3MsTa

α1α2 : ð4:107Þ

The corresponding decay widths read

ΓJ¼3
ðGð2Þ→aq̄ÞþðGð2Þ→āqÞ ¼

g23MsNf

2688
ffiffiffi
2

p
π
;

ΓJ¼2
ðGð2Þ→aq̄ÞþðGð2Þ→āqÞ ¼

7g23MsNf

3840
ffiffiffi
2

p
π
: ð4:108Þ

2. Gð2ÞðJ ¼ 1Þ → aþ q̄

The second massive level spin-1 resonances arise from

A
�
a

�
þ 1

2

�
;þ 1

2
;þ;þ

�
¼ g23M

2
s

s − 2M2
s
d1−1;0ðθÞTa

α1α2f
a3a4a;

ð4:109Þ

Fa;J¼1

þ1
2
þ1

2
α1α2

¼ Fa;J¼1

−1
2
−1
2
α1α2

¼ 1

2
g3MsTa

α1α2 : ð4:110Þ

The corresponding decay width reads

ΓJ¼1
ðGð2Þ→aq̄ÞþðGð2Þ→āqÞ ¼

g23MsNf

384
ffiffiffi
2

p
π
: ð4:111Þ

3. Qð2ÞðJ ¼ 5=2; 3=2Þ → aþ gþ

We could obtain the second massive level spin-5
2
and

spin-3
2
resonances from

A
�
a

�
−
1

2

�
;þ;−;þ 1

2

�

¼ g23M
2
s

s − 2M2
s

�
1

5
d5=2−1=2;þ3=2ðθÞ −

ffiffiffi
6

p

5
d3=2−1=2;þ3=2ðθÞ

�
× Ta2

α1αT
a3
αα4 ; ð4:112Þ
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Fα;J¼5=2
−1
2
þα1a2

¼ Fα;J¼5=2
þ1

2
−α1a2

¼ 1

2
ffiffiffiffiffi
10

p g3MsT
a2
α1α;

Fα;J¼3=2
−1
2
þα1a2

¼ Fα;J¼3=2
þ1

2
−α1a2

¼ 1ffiffiffiffiffi
10

p g3MsT
a2
α1α: ð4:113Þ

Again, decaying into aþ g− is not possible since
A½aðþ 1

2
Þ;−;−;þ 1

2
� ¼ 0. The decay widths read

ΓJ¼5=2
Qð2Þ→ag

¼ g23Ms

15360
ffiffiffi
2

p
π
N; ΓJ¼3=2

Qð2Þ→ag
¼ g23Ms

2560
ffiffiffi
2

p
π
N:

ð4:114Þ

4. Qð2ÞðJ ¼ 3=2; 1=2Þ → aþ g

Qð2ÞðJ ¼ 3=2; 1=2Þ → aþ gþ can be obtained from

A
�
a

�
þ 1

2

�
;þ;þ 1

2
;þ

�

¼ g23M
2
s

s − 2M2
s

2ffiffiffi
3

p d3=2−3=2;þ1=2ðθÞTa2
α1αT

a4
αα3 ; ð4:115Þ

Fα;J¼3=2
þ1

2
þα1a2

¼ Fα;J¼3=2
−1
2
−α1a2

¼ 1ffiffiffi
2

p g3MsT
a2
α1α: ð4:116Þ

A
�
a

�
−
1

2

�
;þ;þ 1

2
;þ

�

¼ g23M
2
s

s − 2M2
s

� ffiffiffi
2

p

3
d3=2−1=2;þ1=2ðθÞ þ

ffiffiffi
2

p

3
d1=2−1=2;þ1=2ðθÞ

�
× Ta2

α1αT
a4
αα3 ; ð4:117Þ

Fα;J¼3=2
−1
2
þα1a2

¼ Fα;J¼3=2
þ1

2
−α1a2

¼ 1

2
ffiffiffi
3

p g3MsT
a2
α1α;

Fα;J¼1=2
−1
2
þα1a2

¼ Fα;J¼1=2
þ1

2
−α1a2

¼ 1ffiffiffi
6

p g3MsT
a2
α1α: ð4:118Þ

Qð2ÞðJ ¼ 3=2; 1=2Þ → aþ g− can be obtained from

A
�
a

�
þ 1

2

�
;−;þ 1

2
;þ

�

¼ g23M
2
s

s − 2M2
s

�
4

3
d3=2þ1=2;þ1=2ðθÞ þ

4

3
d1=2þ1=2;þ1=2ðθÞ

�
× Ta2

α1αT
a4
αα3 ; ð4:119Þ

Fα;J¼3=2
þ1

2
−α1a2

¼ Fα;J¼3=2
−1
2
þα1a2

¼
ffiffiffi
2

3

r
g3MsT

a2
α1α;

Fα;J¼1=2
þ1

2
−α1a2

¼ Fα;J¼1=2
−1
2
þα1a2

¼ 2ffiffiffi
3

p g3MsT
a2
α1α: ð4:120Þ

A
�
a

�
−
1

2

�
;−;þ 1

2
;þ

�
¼ g23M

2
s

s − 2M2
s
4

ffiffiffi
2

3

r
d3=2þ3=2;þ1=2ðθÞ

× Ta2
α1αT

a4
αα3 ; ð4:121Þ

Fα;J¼3=2
−1
2
−α1a2

¼ Fα;J¼3=2
þ1

2
þα1a2

¼ 2g3MsT
a2
α1α: ð4:122Þ

The corresponding decay widths read

ΓJ¼3=2
~Qð2Þ→ag

¼ 21g23Ms

1024
ffiffiffi
2

p
π
N; ΓJ¼1=2

Qð2Þ→ag
¼ 3g23Ms

256
ffiffiffi
2

p
π
N:

ð4:123Þ

G. Excited quarks decay to SUð2Þ gauge bosons

For exited quarks which arise from the intersection of the
Uð3Þ stack and Uð2Þ [or Spð1Þ] stack, it is easy to see that
the massive quarks could decay into a SUð2Þ gauge boson
plus a massless quark. One could obtain the total decay
width of the massive quark decaying into SUð2Þ gauge
bosons Aa by performing a factorization of the amplitude
Aðq; Aa; q̄; gÞ which was obtained in Ref. [9], while in the
broken electroweak symmetry, W and Z bosons are
produced. Hence, we need to translate the decay widths
of the massive quarks to Aa into the decay width of W and
Z bosons.
For illustration, let us focus on the higher level excited

quark uðnÞ. Effectively, its couplings can be written as

Lint ¼
1

2
g2ū

ðnÞ
L γμdLðA1

μ − iA2
μÞ þ

1

2
g2ū

ðnÞ
L γμuLA3

μ

þ 1

6
gYū

ðnÞ
L γμuLYμ

→
1ffiffiffi
2

p g2ū
ðnÞ
L γμdLWþ

μ þ g2
cW

�
1

2
−
2

3
s2W

�
ūðnÞL γμuLZμ

þ
�
2

3
e

�
ūðnÞL γμuLA

γ
μ; ð4:124Þ

where cW ≡ cos θW; sW ≡ sin θW , e ¼ g2gY=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g22 þ g2Y

p
,

and

Wþ ¼ 1ffiffiffi
2

p ðA1 − iA2Þ; Z ¼ cWA3 − sWY;

Aγ ¼ sWA3 þ cWY: ð4:125Þ

Since uðnÞ is very massive (∼
ffiffiffi
n

p
Ms), we can simply treat

all the gauge bosons after the electroweak symmetry
breaking as massless. A simple calculation shows

ΓðuðnÞL → Wþ þ dLÞ ¼ 2ΓðuðnÞL → A1 þ dLÞ
¼ 2ΓðuðnÞL → A2 þ dLÞ
¼ 2ΓðuðnÞL → A3 þ uLÞ; ð4:126Þ
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and

ΓðuðnÞL → Z þ uLÞ ¼
2

c2W

�
1

2
−
2

3
s2W

�
2

ΓðuðnÞL → Wþ þ dLÞ:

ð4:127Þ

At 10–100 TeV, we have 2
c2W

ð1
2
− 2

3
s2WÞ2 ≈ 0.28. Thus, we

conclude the decay widths of the massive quark uðnÞL that
decay into Wþ and Z are approximately

ΓðuðnÞL → Wþ þ dLÞ þ ΓðuðnÞL → Z þ uLÞ
≈ 0.86 ×

X
a¼1;2;3

ΓðuðnÞL → Aa þ � � �Þ: ð4:128Þ

Since g3 is not much greater than g2 at 10–100 TeV, we
should also include these contributions to the total decay
widths of the massive quark excitations.
For the second massive level excited quarks, the decay

channels Qð2Þ → Aa þQð1Þ also exist. A similar analysis
gives the same front factor

X
ΓðQð2Þ → Qð1Þ þW=ZÞ ≈ 0.86

×
X

a¼1;2;3

ΓðQð2Þ → Aa þQð1ÞÞ: ð4:129Þ

For the massive string states decaying into photon plus
other string states, see the discussion of the next subsection
on massive string states decaying to anomalous Uð1Þ’s.

H. Massive string states decaying to anomalous Uð1Þ’s
We have seen that for intersecting D-brane brane models

the SM gauge group must be extended with new Uð1Þ
symmetries. These Uð1Þ’s are in general anomalous. They
couple to RR axions and would obtain a string scale mass
[86]. These Uð1Þ’s would mix with each other through the
Uð1Þ mass-squared matrix. The mass mixing effects have
been discussed in Sec. II A. Massive string excitations carry
the SM gauge charges, and thus they could decay into
anomalousUð1Þ’s if kinetically allowed. In this subsection,
we will briefly study the possible decay channels of
massive string excitations.
Let us first focus on the amplitude Aðg; g; g; AaÞ, where

Aa denotes the Uð1Þ from the Uð3Þa stack. Factorization
gives rise to the resonances of excited massive gluons, and
we have

GðnÞ → gþ Aa: ð4:130Þ

Similarly, the factorization of amplitude Aðg; g; Aa; AaÞ
gives rise to a massive color singlet that

CðnÞ → Aa þ Aa; ð4:131Þ

and we also need to write this decay in terms of
mass eigenfields. We can also consider amplitudes
AðGð1Þ; g; g; AaÞ and AðCð1Þ; g; g; AaÞ, for which factori-
zation could give the following decay channels:

GðnÞ → Gð1Þ þ Aa; GðnÞ → Cð1Þ þ g; ð4:132Þ

CðnÞ → Cð1Þ þ Aa: ð4:133Þ

Additionally, the factorization of the amplitude
Aðg; q; q̄; AaÞ gives rise to higher level excited massive
quarks decaying into anomalous Uð1Þ’s,

QðnÞ → qþ Aa; ð4:134Þ

if kinetically allowed. Also, factorization of the amplitudes
Aðg; q; q̄; Cð1ÞÞ and AðQð1Þ; g; q̄; AaÞ gives

QðnÞ → Cð1Þ þ q; QðnÞ → Qð1Þ þ Aa: ð4:135Þ

Since Aa is not in the physical eigenbasis, we need to
write it in terms of physical fields (fields in the mass
eigenbasis). Using Eq. (2.7), we rewrite Eq. (4.130) as

GðnÞ → gþ Aa

¼ gþOa1A
ðmÞ
1 þOa2A

ðmÞ
2 þ � � �

¼ gþOa1Bμ þOa2Z0 þ � � � ð4:136Þ

and similarly for other decay channels. As long as kineti-
cally allowed, the massive string excitations can decay also
into heavier massive anomalous Uð1Þ’s. This is a model-
dependent issue, since the transformation matrixO depends
on the details of the model building. Unless we know an
explicit model construction, we cannot perform further
studies for these decay channels.
In this work, we follow the treatment of Ref. [7] that

we consider Aa [the anomalous Uð1Þ from the Uð3Þa
stack] as massless and do not consider the mass mixing
effect of this Uð1Þ with others (this field was referred as
C0 in Ref. [7]). The cases involving the excitation of the
color singlet fields Cð1Þ (as a decay product) is simpler. It
has a mass Ms, and we expect they do not couple to RR
axions.

I. Comments on how to realize right-handed
quarks in intersecting brane models

In intersecting brane models, right-handed quarks can
be realized as either open string stretching between the
Uð3Þa stack and another Uð1Þ stack (let us label this
stack as c stack) or open string stretching between the
Uð3Þa stack and its orientifold image. In the former case,
right-handed quarks are bifundamental representations
under Uð3Þa and Uð1Þc; whereas in the latter case,

LUIS A. ANCHORDOQUI et al. PHYSICAL REVIEW D 90, 066013 (2014)

066013-26



right-handed quarks are the antisymmetric representation
of Uð3Þ.
For the former case, Uð1ÞB is a symmetry remaining

unbroken at the perturbative level in the low-energy
effective theory [100], but it can be broken by nonpertur-
bative effects, which are in principle sufficient to suppress
proton decay. For the latter case that (one of the two)
right-handed quarks are realized as an antisymmetric
representation of Uð3Þ, Uð1ÞB is not a symmetry. This is
problematic since the leftover global Uð1Þ of Uð3Þ allows
for baryon number violating couplings already at the lowest
order. However, this might be cured by the implementation
of discrete gauge symmetries [101–103] to forbid the
unwanted couplings.
The difference between these two realizations is that we

can have the scattering process Aðg; qR; q̄R; AcÞ for the
former case, but this process is absent for the latter
case. Thus, compared to the latter case, from factorization
we know that the second massive level right-handed
quark excitations have several more decay channels
Qð2Þ → qþ Ac, Qð2Þ → Qð1Þ þ Ac and Qð2Þ → Að1Þ

c þ q.
However, as we discussed in the previous subsection,
Ac is not in the physical eigenbasis, and we need to
rewrite it in terms of physical mass eigenfields.16 These
are all model-dependent issues. Unless we focus on a
specific D-brane model, we cannot make any general
statements on them.
Similarly for the left-handed quarks, if one uses Spð1Þ

type construction, there is no additional Uð1Þ coming
from this stack. Thus, compared to the Uð2Þ type con-
structions, decay channels Qð2Þ → qþ Ab, Qð2Þ → Qð1Þ þ
Ab and Qð2Þ → Að1Þ

b þ q do not exist, since the amplitude
Aðg; qR; q̄R; AbÞ is absent for Spð1Þ cases.

J. Summary of the results

Using factorization, for the second massive level bosonic
string states, we have identified a spin-3 field, a spin-2
field, and complex vector fields, which contribute to
scattering processes gg → gg and gg → qq̄. For the second
massive level fermionic states, we have identified a spin-5

2
field, two spin-3

2
fields, and a spin-1

2
field, which contribute

to scattering process gq → gq.
For a second massive level color octet, its total decay

width includes

ΓGð2Þ ¼ ΓðGð2Þ → ggÞ þ ΓðGð2Þ → qq̄Þ þ ΓðGð2Þ → Gð1ÞgÞ
þ ΓðGð2Þ → Qð1Þq̄; Q̄ð1ÞqÞ þ ΓðGð2Þ → CgÞ
þ ΓðGð2Þ → Gð1ÞCÞ þ ΓðGð2Þ → Cð1ÞgÞ: ð4:137Þ

For the second massive level color singlets, we have

ΓCð2Þ ¼ ΓðCð2Þ → ggÞ þ ΓðCð2Þ → qq̄Þ þ ΓðCð2Þ → Gð1ÞgÞ
þ ΓðCð2Þ → Qð1Þq̄; Q̄ð1ÞqÞ þ ΓðCð2Þ → CCÞ
þ ΓðCð2Þ → Cð1ÞCÞ: ð4:138Þ

For the second massive level excited quarks, we have

ΓQð2Þ ¼ ΓðQð2Þ → gqÞ þ ΓðQð2Þ → Gð1ÞqÞ
þ ΓðQð2Þ → Qð1ÞgÞ þ ΓðQð2Þ → CqÞ
þ ΓðQð2Þ → Cð1ÞqÞ þ � � � ; ð4:139Þ

where “� � �” denotes model-dependent decay channels for
left- or right-handed excited quarks. In general left- and
right-handed excited quarks have different decay channels
and therefore different widths. We note that among the
amplitudes contributing to the dijet signal, Qð2Þ

L only
appears as the intermediate state in the channel of gqL →
gqL and similarly Qð2Þ

R only appears in gqR → gqR. In the
phenomenology analysis, we will take the average of
jMðgqL → gqLÞj2 and jMðgqR → gqRÞj2 since the incom-
ing quark is equally likely to be left or right handed.
The total decay widths of the second massive level string

states are summarized in Table IV.

V. STRING COMPUTATION OF PARTIAL
DECAY WIDTHS

In this section, we will focus on two second massive
level universal string states: the spin-3 field σμνρ and
the spin-2 field πμν, computing their decays in various
channels.
N-point tree level string amplitudes are obtained by

calculating the N-point correlation functions17 of associate
vertex operators inserted on the boundary of the disk world
sheet, which read

A ¼
X

V−1
CKG

Z �YN
i¼3

dzi

�
hVð1ÞVð2ÞVð3Þ � � �VðNÞi;

ð5:1Þ

where the sum runs over all the cyclic ordering of the N
(N ≥ 3) vertices on the boundary of the disk. The corre-
sponding string vertex operators are constructed from the
fields of the underlying superconformal field theory and
contain explicit Chan–Paton factors. To cancel the total
background ghost charge −2 on the disk, we should choose
the vertex operators in the correlator in appropriate ghost
“pictures” which makes the total ghost number to be −2. In
addition, the factor VCKG is defined to be the volume of the
conformal Killing group of the disk after choosing the
conformal gauge, which would be canceled by fixing three

16Note that in the four-stack SMD-brane construct of Sec. II C,
Ac can either be B or ~B, the Uð1ÞL or Uð1ÞR gauge fields,
respectively.

17The relevant world sheet fields correlation functions can be
found in Refs. [9,10].
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vertices and introducing respective c-ghost fields into the
vertex operators. Then we integrate over other N − 3 points
and get the amplitude.
To obtain the decay widths of the second massive level

string states, we only need to compute the three-point
amplitudes, in which all the positions of the vertex
operators on the disk boundary are fixed.

A. Vertex operators of the second massive level
universal string states

Before we compute the amplitudes, we summarize all the
relevant vertex operators of the zeroth to the second
massive level string states. For the zeroth level string,
the vertex operator for massless gluon g (with the polari-
zation vector ϵμ) in the −1 and 0 ghost picture read,
respectively,

Vð−1Þ
ϵa ¼ ½Ta�α1α2

ffiffiffiffiffiffiffi
2α0

p
g3ϵμψμe−ϕeikX; ð5:2Þ

Vð0Þ
ϵa ¼ ½Ta�α1α2g3ϵμði∂Xμ þ 2α0k · ψψμÞeikX; ð5:3Þ

where ϵμ · kμ ¼ k2 ¼ 0. The Chan–Paton factor Ta indi-
cates the vertex operator is inserted on the segment of disk
boundary on stack a, and α1; α2 represent the two string
ends. Massless quarks originated from brane intersections
are given by

V
ð−1

2
Þ

uαβ
¼ ½Tα

β�β1α1
ffiffiffi
2

p
α034 eϕ10=2uaSaΞa∩be−ϕ=2eikX; ð5:4Þ

V
ð−1

2
Þ

ūβα
¼ ½Tβ

α�α1β1
ffiffiffi
2

p
α034 eϕ10=2ū _aS _aΞ̄a∩be−ϕ=2eikX; ð5:5Þ

where the ua; ū _a satisfy the Dirac equation uaka _a ¼
ū _ak _aa ¼ 0, and Ξa∩b is the boundary changing operator
[9]. These vertex operators connect two segments of disk
boundary, associate to two stacks of D-branes, with the
indices α1 and β1 representing the string ends on the
respective stacks.
The first massive level string states and their properties

were comprehensively studied in Refs. [11,13]. For the
bosonic sector, we only need the spin-2 field αμν and the
complex scalar Φ�,

Vð−1Þ
αa ¼ ½Ta�α1α2g3αμνi∂Xμψνe−ϕeikX; ð5:6Þ

Vð−1Þ
Φa
�

¼ ½Ta�α1α2
g3
2
f½ðημν þ 2α0kμkνÞi∂Xμψν þ 2α0kν∂ψν�

� i
6
2α0εμνρσψμψνψρkσge−ϕeikX; ð5:7Þ

where αμν is symmetric, transverse, and traceless.
The fermionic sector contains spin-3

2
and spin-1

2
fields,

which read

V
ð−1

2
Þ

χαβ
¼ ½Tα

β�β1α1α0
1
4 eϕ10=2χaμði∂XμSa −

ffiffiffi
2

p
α0ka _aSμ _aÞ

× Ξa∩be−ϕ=2eikX; ð5:8Þ

V
ð−1

2
Þ

aαβ
¼ ½Tα

β�β1α1
α034ffiffiffi
2

p eϕ10=2ab½ðσμkÞcbi∂XμSc − 4∂Sb�
× Ξa∩be−ϕ=2eikX; ð5:9Þ

which involve the excited spin field Sμ and the derivative of
the standard spin field, cf. Ref. [13] for their OPEs. The
spin-3

2
field satisfies χaμkμ ¼ χaμσ

μ
a _a ¼ 0.

Here, all the normalization factors for the vertex oper-
ators listed above were fixed by factorization as worked out
in Ref. [11] and have also been checked from supersym-
metry transformations in Ref. [13].
For the second massive level, we will focus on two

bosonic universal states σ; π, for which the vertex operators
were obtained in Ref. [12],

Vð−1Þ
σa ¼ ½Ta�α1α2Cσσμνρi∂Xμi∂Xνψρe−ϕeikX; ð5:10Þ

Vð−1Þ
πa ¼ ½Ta�α1α2Cπkλελðμjργjπ

γ
νÞ

× ði∂Xμi∂Xνψρ − 4α0∂ψμψνψρÞe−ϕeikX; ð5:11Þ

where inVð−1Þ
πa we symmetrize only μ; ν indices. σμνρ; πμν are

spin-3 and spin-2 bosonic fields, respectively, which are both
symmetric, transverse, and traceless. The normalization
Cσ; Cπ will be fixed later. Before we carry out the scattering
amplitudes and obtain the partial decay widths of various
channels, we pause and present the construction of helicity
wave functions for higher spin massive bosonic fields.

B. Helicity wave functions for higher spin
massive fields

In this subsection, we first review the helicity wave
functions for spin-1 and spin-2 bosonic fields. Then we
construct the helicity wave functions for higher spin
massive bosonic fields. Helicity formalism for massless
fields as well as massive fermions is briefly reviewed in
Appendixes B and C.

1. Review of helicity wave functions
for spin-1 and spin-2 bosonic fields

Massive spin-1 boson.—A spin-J particle contains
2J þ 1 spin degrees of freedom associated to the eigen-
states of Jz. The choice of the quantization axis ~z can be
handled in an elegant way by decomposing the momentum
kμ into two arbitrary lightlike reference momenta p and q:

kμ ¼ pμ þ qμ;

k2 ¼ −m2 ¼ 2pq;

p2 ¼ q2 ¼ 0: ð5:12Þ
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Then the spin quantization axis is chosen as the direction of
~q in the rest frame. The 2J þ 1 spin wave functions depend
on p and q, while this dependence would drop out in the
squared amplitudes summing over all spin directions.
The massive spin-1 wave functions ξμ (transverse, i.e.,

ξμkμ ¼ 0) are given by the following polarization vectors
(up to a phase factor) [104]:

ξμþðkÞ ¼
1ffiffiffi
2

p
m
p�

_aσ̄
μ _aaqa; ð5:13Þ

ξμ0ðkÞ ¼
1

2m
σ̄μ _aaðp�

_apa − q�_aqaÞ; ð5:14Þ

ξμ−ðkÞ ¼ −
1ffiffiffi
2

p
m
q�_aσ̄

μ _aapa: ð5:15Þ

Massive spin-2 boson.—The wave function (polarization
tensor) of massive spin-2 boson αμν satisfies the following
relations (symmetric, transverse, traceless), which read

αμνðk; λÞ ¼ ανμðk; λÞ; ð5:16Þ

kμαμνðk; λÞ ¼ 0; ð5:17Þ

gμναμνðk; λÞ ¼ 0; ð5:18Þ

where λ denotes the helicity of αμν.
An arbitrary four by four tensor has 16 degrees of

freedom. The first condition above reduces the degree of
freedom to 10, and the second and third conditions would
further reduce the degrees of freedom 4 and 1, respectively.
Thus, we are left with 5 physical degrees of freedom as
expected. Different helicity states of the spin-2 massive
boson satisfy the relation

αμνðk;þλÞ ¼ ½αμνðk;−λÞ�†: ð5:19Þ

The spin-2 boson helicity wave functions are constructed
in Ref. [105], up to a phase factor,

αμνðk;þ2Þ ¼ 1

2m2
σ̄μ _aaσ̄ν _bbp�

_aqap
�
_b
qb;

αμνðk;þ1Þ ¼ 1

4m2
σ̄μ _aaσ̄ν _bb½ðp�

_apa − q�_aqaÞp�
_b
qb þ p�

_aqaðp�
_b
pb − q�_bqbÞ�;

αμνðk; 0Þ ¼ 1

2m2
ffiffiffi
6

p σ̄μ _aaσ̄ν _bb½ðp�
_apa − q�_aqaÞðp�

_b
pb − q�_bqbÞ − p�

_aqaq
�
_b
pb − q�_apap�

_b
qb�;

αμνðk;−1Þ ¼ −
1

4m2
σ̄μ _aaσ̄ν _bb½ðp�

_apa − q�_aqaÞq�_bpb þ q�_apaðp�
_b
pb − q�_bqbÞ�;

αμνðk;−2Þ ¼ 1

2m2
σ̄μ _aaσ̄ν _bbq�_apaq�_bpb: ð5:20Þ

2. Building helicity wave functions for higher spin
massive bosons

This spin-n massive boson Φμ1μ2���μn
n satisfies the follow-

ing physical state conditions:

Φμ1μ2���μn
n ¼ 1

n!
Φðμ1μ2���μnÞ

n ; ð5:21Þ

kμiΦ
μ1μ2���μn
n ¼ 0; ð5:22Þ

ημiμjΦ
μ1μ2���μn
n ¼ 0: ð5:23Þ

In four dimensions, the first symmetric condition brings

down the degrees of freedom from 4n to



4þn−1

n

�
, and the

transversality and tracelessness eliminate further



4þn−2

n−1

�
and



n

2

�
conditions. Thus, the Φμ1μ2���μn

n has

�
4þ n − 1

n

�
−
�
4þ n − 2

n − 1

�
−
�
n

2

�
¼ 2nþ 1

degrees of freedom.
Thus, the helicity wave function of the highest helicity

jz ¼ þn of a spin-n massive boson Φμ1μ2���μn
n can be written

as, up a phase factor,

Φμ1μ2���μn
n ðn; nÞ ¼ 1

ð ffiffiffi
2

p
mÞn ðp

�
_a1
σ̄μ1 _a1a1qa1Þðp�

_a2
σ̄μ2 _a2a2qa2Þ

� � � ðp�
_an
σ̄μn _ananqanÞ;

and as always, pμ þ qμ ¼ kμ. Now to obtain all the helicity
wave functions of a spin-n boson Φμ1μ2���μn

n , we can make
use of angular momentum ladder operators J−. By acting
J− on the highest Jz state successively, one can obtain all
the helicity wave functions of Φμ1μ2���μn

n using the formula
J−jj; mi ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðjþmÞðj −mþ 1Þp jj; m − 1i. Based on
spin-1 gauge boson wave functions, we have
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J−ðp�
_aσ̄

μ _aaqaÞ ¼ ðp�
_aσ̄

μ _aapa − q�_aσ̄
μ _aaqaÞ; ð5:24Þ

J−ðp�
_aσ̄

μ _aapa − q�_aσ̄
μ _aaqaÞ ¼ −2q�_aσ̄μ

_aapa: ð5:25Þ

More specifically, we have the following relations:

J−p�
_a ¼ −q�_a; J−pa ¼ 0; ð5:26Þ

J−q�_a ¼ 0; J−qa ¼ pa: ð5:27Þ

One could write these relations in a simpler form as

J− ¼ pa
∂
∂qa − q�_a

∂
∂p�

_a
: ð5:28Þ

These formulas allow us to get all the wave functions of an
arbitrary spin massive boson. By applying the J− operator
on Φμ1μ2���μn

n ðn; nÞ successively, one can obtain wave func-
tions of all the helicities.
Indeed, this J− operator is extremely useful in the

computation of the helicity amplitudes involving massive
states. Since the wave function of the highest helicity state
Φμ1μ2���μn

n ðn; nÞ has the simplest form, one could relatively
easily obtain the helicity amplitude A½Φnðn; nÞ; � � �� that
Φμ1μ2���μn

n ðn; nÞ interacts with other states, and it is usually in
a simple form. One could then apply J− successively to the
amplitude A½Φnðn; nÞ; � � �� to obtain all the helicity ampli-
tudes A½Φnðn;mÞ; � � ��, which is much simpler than

plugging in explicit forms of the Φn helicity wave functions
of lower jz.

18

There is another way of constructing the helicity wave
functions of a spin-n massive boson, that we can treat the
spin-n boson as a spin-ðn − 1Þ and a spin-1 boson coupling.
Thus, given the helicity wave function of a spin-ðn − 1Þ
boson, one can write down an arbitrary Jz ¼ m state of the
spin-n boson as

Φμ1μ2���μn
n ðn;mÞ
¼ hn−1;m−1;1;þ1jn;miΦμ1μ2���μn−1

n−1 ðn−1;m−1Þξμnþ
þhn−1;mþ1;1;−1jn;miΦμ1μ2���μn−1

n−1 ðn−1;mþ1Þξμn−
þhn−1;m;1;0jn;miΦμ1μ2���μn−1

n−1 ðn−1;mÞξμn0 ;

ð5:29Þ

where the CG coefficients read

8>>>>><
>>>>>:

hn − 1; m − 1; 1;þ1jn;mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþmÞðnþmþ1Þ
ð2nþ1Þð2nþ2Þ

q
;

hn − 1; m; 1; 0jn;mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn−mþ1Þðnþmþ1Þ

ðnþ1Þð2nþ1Þ
q

;

hn − 1; mþ 1; 1;−1jn;mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn−mÞðn−mþ1Þ
ð2nþ1Þð2nþ2Þ

q
:

ð5:30Þ

Thus, Eq. (5.29) can be written as

Φμ1μ2���μn
n ðn;mÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþmÞðnþmþ 1Þ
ð2nþ 1Þð2nþ 2Þ

s
Φμ1μ2���μn−1

n−1 ðn − 1; m − 1Þξμnþ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn −mÞðn −mþ 1Þ
ð2nþ 1Þð2nþ 2Þ

s
Φμ1μ2���μn−1

n−1 ðn − 1; mþ 1Þξμn−

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn −mþ 1Þðnþmþ 1Þ

ðnþ 1Þð2nþ 1Þ

s
Φμ1μ2���μn−1

n−1 ðn − 1; mÞξμn0 : ð5:31Þ

18As a simple example, we consider the amplitudes Eqs. (4.5) obtained in Ref. [11]. We have

J−A½αð2;þ2Þ;þ;þ;−� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2þ 2Þð2 − 2þ 1Þ

p
A½αð2;þ1Þ;þ;þ;−�;

and thus

A½αð2;þ1Þ;þ;þ;−� ¼ 1

2
J−A½αð2;þ2Þ;þ;þ;−�

¼ 1

2
×

4

2
ffiffiffi
2

p hp4i3h4qi
h23ih34ih42i ;

which just reproduce the desired result. Using this method, one could then check all the results in Ref. [11], where all the helicity
amplitudes were computed using the explicit forms of the helicity wave functions in different jz, for example, Eqs. (5.20).
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Indeed, the helicity wave function of an arbitrary jz state of Φn can be written in a general form,

Φμ1μ2���μn
n ðn;mÞ ¼

�X
α

2n−m−2α · n!
α!ðmþ αÞ!ðn − 2α −mÞ! ð2m

2Þn
�
−1
2

×
X
α

�Y
i

ðp�σ̄ðμiqÞmþα
Y
j

ð−q�σ̄μjpÞα
Y
k

½σ̄μkÞðp�p − q�qÞ�n−m−2α
	
; ð5:32Þ

where m ≥ 0, the sum over α is over such values that the factorials are non-negative, and we symmetrize all the spacetime
indices μi; μj; μk. We have omitted all the spinor indices, e.g., p�σ̄μq≡ p�

_aσ̄
μ _aaqa. These wave functions satisfy physical

state conditions (symmetric, transverse, and traceless) Eqs. (5.21)–(5.23). The helicity wave functions of Φμ1μ2���μn
n ðn;−mÞ

can be easily obtained by

Φμ1μ2���μn
n ðn;−mÞ ¼ Φμ1μ2���μn

n ðn;mÞ†: ð5:33Þ

We now write down the helicity wave functions for the massive spin-3 boson, which wewill need for further calculations:

Φμνρ
3 ðk;þ3Þ ¼ 1

ð ffiffiffi
2

p
mÞ3 σ̄

μ _aaσ̄ν _bbσ̄ρ_ccp�
_aqap

�
_b
qbp�

_cqc;

Φμνρ
3 ðk;þ2Þ ¼ σ̄μ _aaσ̄ν _bbσ̄ρ_ccffiffiffi

6
p ð ffiffiffi

2
p

mÞ3 ½p�
_aqap

�
_b
qbðp�

_cpc − q�_cqcÞ þ p�
_aqaðp�

_b
pb − q�_bqbÞp�

_cqc þ ðp�
_apa − q�_aqaÞp�

_b
qbp�

_cqc�;

Φμνρ
3 ðk;þ1Þ ¼ σ̄μ _aaσ̄ν _bbσ̄ρ_ccffiffiffiffiffi

15
p ð ffiffiffi

2
p

mÞ3 ½p
�
_aqaðp�

_b
pb − q�_bqbÞðp�

_cpc − q�_cqcÞ þ ðp�
_apa − q�_aqaÞp�

_b
qbðp�

_cpc − q�_cqcÞ

þ ðp�
_apa − q�_aqaÞðp�

_b
pb − q�_bqbÞp�

_cqc − p�
_aqap

�
_b
qbq�_cpc − p�

_aqaq
�
_b
pbp�

_cqc − q�_apap�
_b
qbp�

_cqc�;

Φμνρ
3 ðk; 0Þ ¼ σ̄μ _aaσ̄ν _bbσ̄ρ_cc

2
ffiffiffi
5

p ð ffiffiffi
2

p
mÞ3 ½ðp

�
_apa − q�_aqaÞðp�

_b
pb − q�_bqbÞðp�

_cpc − q�_cqcÞ − p�
_aqaq

�
_b
pbðp�

_cpc − q�_cqcÞ

− q�_apap�
_b
qbðp�

_cpc − q�_cqcÞ − p�
_aqaðp�

_b
pb − q�_bqbÞq�_cpc − q�_apaðp�

_b
pb − q�_bqbÞp�

_cqc

− ðp�
_apa − q�_aqaÞp�

_b
qbq�_cpc − ðp�

_apa − q�_aqaÞq�_bpbp�
_cqc�;

Φμνρ
3 ðk;−1Þ ¼ −

σ̄μ _aaσ̄ν _bbσ̄ρ_ccffiffiffiffiffi
15

p ð ffiffiffi
2

p
mÞ3 ½ðp

�
_apa − q�_aqaÞðp�

_b
pb − q�_bqbÞq�_cpc þ ðp�

_apa − q�_aqaÞq�_bpbðp�
_cpc − q�_cqcÞ

þ q�_apaðp�
_b
pb − q�_bqbÞðp�

_cpc − q�_cqcÞ − p�
_aqaq

�
_b
pbq�_cpc − q�_apap�

_b
qbq�_cpc − q�_apaq�_bpbp�

_cqc�;

Φμνρ
3 ðk;−2Þ ¼ σ̄μ _aaσ̄ν _bbσ̄ρ_ccffiffiffi

6
p ð ffiffiffi

2
p

mÞ3 ½ðp�
_apa − q�_aqaÞq�_bpbq�_cpc þ q�_apaðp�

_b
pb − q�_bqbÞq�_cpc þ q�_apaq�_bpbðp�

_cpc − q�_cqcÞ�;

Φμνρ
3 ðk;−3Þ ¼ −

1

ð ffiffiffi
2

p
mÞ3 σ̄

μ _aaσ̄ν _bbσ̄ρ_ccq�_apaq�_bpbq�_cpc: ð5:34Þ

C. Decay of the second massive level string states

We need to first fix the normalization of vertex operators for σμνρ and πμν. To this end, we compute the amplitude that
σμνρ; πμν decay into two massless gluons, and the result reads

Aðσ1; ϵ2; ϵ3Þ ¼ TrðTa1 ½Ta2 ; Ta3 �ÞCσg23CD2
ð2α0Þ72σμνρ

�
1

α0
ϵμ2ϵ

ν
3k

ρ
2 þ kμ2k

ν
2k

ρ
2ðϵ2 · ϵ3Þ þ kμ2k

ν
2ϵ

ρ
3ðϵ2 · k3Þ − kμ2k

ν
2ϵ

ρ
2ðϵ3 · k2Þ

�
:

ð5:35Þ
Applying the helicity formalism, we obtain

A½σ1ðþ2Þ; ϵþ2 ; ϵ−3 � ¼
8ffiffiffi
3

p CσTrðTa1 ½Ta2 ; Ta3 �Þ: ð5:36Þ
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Extracting the second level pole information from the
Veneziano amplitudeAðg; g; g; gÞ, we obtain (up to a phase
factor)

Aðσ1; ϵþ2 ; ϵ−3 Þ ¼
2g3ffiffiffiffiffiffiffi
3α0

p fa1a2a3 : ð5:37Þ

Thus, we obtainCσ ¼ g3=2
ffiffiffiffi
α0

p
, wherewe have usedCD2

¼
1=ðg23α02Þ and Eq. (A3).
For πμν decay to two massless gluons, we have

Aðπ1; ϵ2; ϵ3Þ ¼ TrðTa1 ½Ta2 ; Ta3 �ÞCπg23CD2
ð2α0Þ32kλ1ελðμjργjπγνÞ

× ½2ϵμ2kν2ϵρ3 þ 2ϵμ3k
ν
2ϵ

ρ
2 − 2ϵμ2ϵ

ν
3k

ρ
2

− 2α0kμ2k
ν
2ϵ

ρ
2ðϵ3 · k2Þ þ 2α0kμ2k

ν
2ϵ

ρ
3ðϵ2 · k3Þ

− 2α0kμ2k
ν
2k

ρ
3ðϵ2 · ϵ3Þ�: ð5:38Þ

Similarly, by applying the helicity formalism, we match the
helicity amplitude with the amplitude we extract from
Veneziano amplitude, and we obtain Cπ ¼ g3=4

ffiffiffi
3

p
.

The partial decay widths of second massive level string
states to two massless string states were already obtained in
Refs. [22,23]. We are now the most interested in computing
the partial decay widths of a second massive level string
states decay into one first massive level string state plus a
massless one.

1. Partial decay widths of the spin-3 state σμνρ
We now focus on the spin-3 bosonic string state σμνρ. It

has four possible decay channels for which the final states
consist of one first massive level string state and one
massless string state, which read σ → αþ g; σ → Φ� þ
g; σ → χ̄ þ u; σ → āþ u (the decay widths of σ → χ þ
ū; σ → aþ ū are the same as the last two channels).
Straightforward computation gives

Aðσ1; α2; ϵ3Þ ¼ TrðTa1fTa2 ; Ta3gÞ 2g3ffiffiffiffi
α0

p σμνρ

× fð2α0Þ2½kμ3kν3ϵρ3αγζkγ3kζ3 − kμ3k
ν
3k

ρ
3αγζϵ

γ
3k

ζ
3

− kμ3k
ν
3α

ργk3γðϵ3 · k2Þ�
þ ð2α0Þ½3kμ3kν3αργϵ3γ − 4kμ3ϵ

ν
3α

ργk3γ

þ 2kμ3α
νρðϵ3 · k2Þ� þ 2αμνϵρ3g; ð5:39Þ

Aðσ1;Φ2�; ϵ3Þ ¼ TrðTa1fTa2 ; Ta3gÞ2g3
ffiffiffi
α

p
σμνρ

× ½−2α0kμ3kν3kρ3ðϵ3 · k2Þ − kμ3k
ν
3ϵ

ρ
3

� i2α0kμ3k
ν
3ε

ργζλϵ3γk3ζk2λ�: ð5:40Þ
We place the second massive level string state, the first
massive level string state, and themassless string at positions
1, 2, and 3with correspondingmomentum k1, k2, and k3, and
thus we have

k21 ¼ −
2

α0
; k22 ¼ −

1

α0
; k23 ¼ 0: ð5:41Þ

To obtain the partial decaywidths of the above channels, again
we apply the helicity formalism. In principle, by plugging in
directly thehelicitywave functionsof the fieldsparticipating in
the processes, e.g., Eqs. (5.20) and (5.34), we could obtain the
helicity amplitudes. Then by summing over their squares, we
can achieve the final results. However, special treatment is
needed here. For example, for the amplitudeAðσ1; α2; ϵ3Þ, σ
has7degreesof freedom,α has5, and ϵ has2.Thus,weneed to
compute total 7 × 5 × 2 ¼ 70 helicity amplitudes, and the
computationwouldbevery tedious.Firstof all,weobserve that

Γðσ1 → α2 þ ϵþ3 Þ ¼ Γðσ1 → α2 þ ϵ−3 Þ; ð5:42Þ
since

A½σ1ð−nÞ; α2ð−mÞ; ϵ−3 � ¼ A½σ1ðnÞ; α2ðmÞ; ϵþ3 �†: ð5:43Þ
Thiswould reduce the total number of the amplitudesweneed
to compute by half. In addition, as wementioned, the helicity
wave functions of massive bosonic fields are built by
decomposing their momentum into two lightlike momenta
kμ → pμ þ qμ, and the spin axis of the field aligns to the ~q
direction. Hence, if we align the spin axes of all the scattering
fields toone samedirection,weonlyneed tocomputevery few
helicity amplitudes, and the others should vanish automati-
cally because of the angular momentum conservation.
The most clever choice of reference momenta read19

pμ
1 ¼ −rμ; qμ1 ¼ −2kμ3; pμ

2 ¼ rμ; qμ2 ¼ kμ3;

ð5:45Þ

19This choice can be easily generated to more general cases:
(1) Assuming the three particles are all incoming (k1 þ k2þ
k3 ¼ 0) with corresponding momentum k21 ¼ −M2

1; k
2
2 ¼ −M2

2;
k23 ¼ 0, we can choose the reference momenta

pμ
1 ¼ −r; q1 ¼

−M2
1

M2
1 −M2

2

k3; p2 ¼ r; q2 ¼
M2

2

M2
1 −M2

2

k3;

where r2 ¼ 0 and r · k3 ¼ ðM2
2 −M2

1Þ=2; (2) if all the three
incoming particles are massive with corresponding momentum
k21 ¼ −M2

1; k
2
2 ¼ −M2

2; k
2
3 ¼ −M2

3, we can choose the reference
momenta

p2 ¼ αp1; q2 ¼ βq1; p3 ¼ ð−α− 1Þp1; q3 ¼ ð−β − 1Þq1;
ð5:44Þ

where p1 · q1 ¼ −M2
1=2, and the coefficients

α ¼ M2
3 −M2

1 −M2
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

1 þM2
2 −M2

3Þ2 − 4M2
1M

2
2

p
2M2

1

;

β ¼ 2M2
2

M2
3 −M2

1 −M2
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

1 þM2
2 −M2

3Þ2 − 4M2
1M

2
2

p :

With these choices, the spin axes of the three particles align to the
same direction, and thus the computation of helicity amplitude
will be dramatically simplified.
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where r is the reference momentum for the massless gluon
ϵ3ðk3Þ with r2 ¼ 0. It can be easily verified that

k1 þ k2 þ k3 ¼ p1 þ q1 þ p2 þ q2 þ k3 ¼ 0; ð5:46Þ

ðp1 þ q1Þ2 ¼ 2ðp2 þ q2Þ2: ð5:47Þ

Then by using the mass shell condition Eq. (5.41), we fix
the reference momentum r as r · k3 ¼ −1=ð2α0Þ. This
particular choice of reference momenta not only sim-
plifies the computation dramatically but also aligns the
spins of all the interacting particles in one same direction
(the direction of ~k3), and thus we are expecting the
results we obtained from this section to match exactly
with the results we obtained in the previous section using
factorization.
Using massive helicity wave functions and the above

choice of reference momenta, we compute the helicity
amplitudes of Aðσ1; α2; ϵþ3 Þ. Only five survive, which
read

A½σ1ð−3Þ; α2ðþ2Þ; ϵþ3 � ¼
8g3ffiffiffiffi
α0

p da1a2a3 ; ð5:48Þ

A½σ1ð−2Þ; α2ðþ1Þ; ϵþ3 � ¼
8g3ffiffiffiffiffiffiffi
3α0

p da1a2a3 ; ð5:49Þ

A½σ1ð−1Þ; α2ð0Þ; ϵþ3 � ¼
4

ffiffiffi
2

p
g3ffiffiffiffiffiffiffi

5α0
p da1a2a3 ; ð5:50Þ

A½σ1ð0Þ; α2ð−1Þ; ϵþ3 � ¼
4g3ffiffiffiffiffiffiffiffiffi
10α0

p da1a2a3 ; ð5:51Þ

A½σ1ðþ1Þ; α2ð−2Þ; ϵþ3 � ¼
2g3ffiffiffiffiffiffiffiffiffi
15α0

p da1a2a3 : ð5:52Þ

All other helicity amplitudes are checked to vanish.
These results match exactly with the results obtained
from factorization Eqs. (4.9)–(4.17), as expected.
With the same choice of the reference momenta, for

Aðσ1;Φ2�; ϵ3Þ, we obtain

A½σ1ð−1Þ;Φ2þ; ϵþ3 � ¼
2g3ffiffiffiffiffiffiffiffiffi
15α0

p da1a2a3 ; ð5:53Þ

A½σ1ð−1Þ;Φ2−; ϵ
þ
3 � ¼ 0; ð5:54Þ

which match Eq. (4.53) exactly.
For the decay channels that final states being fermions.

The scattering amplitudes read,

Aðσ1; χ̄2; u3Þ ¼ Ta
α2α3g3

ffiffiffiffi
α0

p
σμνρ½2α0kμ3kν3ðua3σρa _aχ̄λ _a2 k1λ

− ua3k1a _aχ̄
ρ _a
2 Þ þ 2kμ3u

a
3σ

ν
a _aχ̄

ρ _a
2 �; ð5:55Þ

Aðσ1; ā2; u3Þ ¼ Ta
α2α3

ffiffiffi
2

p
g3α0σμνρð−2α0kμ3kν3kρ3ub3k2b _bā _b

2

þ kμ3k
ν
3u

b
3σ

ρ

b _b
ā _b
2Þ: ð5:56Þ

For scattering amplitudes involving two fermionic fields, a
factor of ~CD2

would appear, and we have used ~CD2
¼

e−ϕ10=ð2α02Þ [11].
For the fermionic decay channels, again we align the

spin axes of the three interacting states into the direction of
~k3. We will use exactly the same reference momenta
Eq. (5.45) as we did for the bosonic decay channels.
Here, we also need to introduce an additional reference
momentum r with r · k3 ¼ −1=ð2α0Þ. Using the massive
fermion helicity wave functions summarized in
Appendix C, we obtain the following helicity amplitudes:

A
�
σ1ðþ2Þ; χ̄2

�
−
3

2

�
; u3

�
−
1

2

��
¼ g3ffiffiffiffiffiffiffi

3α0
p Ta

α2α3 ; ð5:57Þ

A
�
σ1ðþ1Þ; χ̄2

�
−
1

2

�
; u3

�
−
1

2

��
¼ g3ffiffiffiffiffiffiffi

5α0
p Ta

α2α3 ; ð5:58Þ

A
�
σ1ð0Þ; χ̄2

�
þ 1

2

�
; u3

�
−
1

2

��
¼

ffiffiffi
3

p
g3

2
ffiffiffiffiffiffiffiffiffi
10α0

p Ta
α2α3 ; ð5:59Þ

A
�
σ1ð−1Þ; χ̄2

�
þ 3

2

�
; u3

�
−
1

2

��
¼ g3

2
ffiffiffiffiffiffiffiffiffi
15α0

p Ta
α2α3 ; ð5:60Þ

and

A
�
σ1ðþ1Þ; ā2

�
−
1

2

�
; u3

�
−
1

2

��
¼ g3

2
ffiffiffiffiffiffiffiffiffi
15α0

p Ta
α2α3 ; ð5:61Þ

A
�
σ1ð0Þ; ā2

�
þ 1

2

�
; u3

�
−
1

2

��
¼ g3

2
ffiffiffiffiffiffiffiffiffi
10α0

p Ta
α2α3 ; ð5:62Þ

which match exactly with the results of Eqs. (4.70)–(4.76)
and Eqs. (4.105) and (4.107), respectively. In addition, we
also have the contributions

Γðσ1 → χ2 þ ū3Þ ¼ Γðσ1 → χ̄2 þ u3Þ: ð5:63Þ

Thus, the partial decay widths of the spin-3 field σ match
exactly the results we obtain from factorization.

2. Partial decay width of the spin-2 state πμν

We now turn to the decay of the spin-2 field πμν. For
the decay channels π → αþ g; π → Φ� þ g; π → χ̄ þ u;
π → āþ u, we obtain
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Aðπ1; α2; ϵ3Þ ¼ TrðT1fT2; T3gÞ g3ffiffiffi
3

p kλ1ελðμjργjπ
γ
νÞfð2α0Þ2½kμ3kν3ϵρ3αγζkγ3kζ3 − kμ3k

ν
3α

ρζk3ζðϵ3 · k2Þ�

þ ð2α0Þ½2kμ3ανρðϵ3 · k2Þ − 2kμ3ϵ
ν
3α

ρζk3ζ þ kμ3k
ν
3α

ρζϵ3ζ − 4kν3ϵ
ρ
3α

μζk3ζ þ 2kν3k
ρ
3α

μζϵ3ζ þ 2ϵν3k
ρ
3α

μζk3ζ�
þ 2ϵμ3α

νρg; ð5:64Þ

Aðπ1;Φ2; ϵ3Þ ¼ TrðT1fT2; T3gÞ g3
2

ffiffiffi
3

p kλ1ελðμjργjπ
γ
νÞfð2α0Þ½4ϵμ3kν3kρ3 − 6kμ3k

ν
3ϵ

ρ
3 þ 2kμ3η

νρðϵ3 · k2Þ�

þ 2ϵμ3η
νρ � ið2α0kμ3kν3ηργεγζτλϵζ3kτ3kλ2 − 2k3μενρτλϵτ3k

λ
2 þ 2ϵ3μενρτλkτ3k

λ
2Þg; ð5:65Þ

Aðπ1; χ̄2; u3Þ ¼ Ta
α2α3

g3α0ffiffiffi
3

p kλ1ελðμjργjπ
γ
νÞ½α0kμ3kν3ðua3σρa _aχ̄λ _a2 k1λ − ua3k1a _aχ̄

ρ _a
2 Þ

þ kμ3u
a
3σ

ρ
a _aχ̄

ν _a
2 þ 1

3
ua3ðσνσρk2Þa _aχ̄μ _a2 �; ð5:66Þ

Aðπ1; ā2; u3Þ ¼ Ta
α2α3

g3α0
3
2ffiffiffi
6

p kλ1ελðμjργjπ
γ
νÞðkμ3kν3ub3σρb _bā

_b
2 − kμ3u

a
3σ

ρ
a _aσ̄

ν _abk2b _bā
_b
2Þ: ð5:67Þ

Applying helicity techniques and using the reference
momenta we have chosen above, we obtain

A½π1ð−2Þ; α2ðþ1Þ; ϵþ3 � ¼
8g3ffiffiffiffiffiffiffi
6α0

p da1a2a3 ; ð5:68Þ

A½π1ð−1Þ; α2ð0Þ; ϵþ3 � ¼
2

ffiffiffi
2

p
g3ffiffiffiffi
α0

p da1a2a3 ; ð5:69Þ

A½π1ð0Þ; α2ð−1Þ; ϵþ3 � ¼
2g3ffiffiffiffi
α0

p da1a2a3 ; ð5:70Þ

A½π1ðþ1Þ; α2ð−2Þ; ϵþ3 � ¼
2g3ffiffiffiffiffiffiffi
3α0

p da1a2a3 ; ð5:71Þ

and

A½π1ð−1Þ;Φ2þ; ϵþ3 � ¼
2g3ffiffiffiffiffiffiffi
3α0

p da1a2a3 ; ð5:72Þ

A½π1ð−1Þ;Φ2−; ϵ
þ
3 � ¼ 0; ð5:73Þ

which match exactly with Eqs. (4.11)–(4.17) and
Eqs. (4.53), respectively. For the fermionic decay channels,
we have

A
�
π1ðþ2Þ; χ̄2

�
−
3

2

�
; u3

�
−
1

2

��
¼ g3ffiffiffiffiffiffiffi

6α0
p Ta

α2α3 ; ð5:74Þ

A
�
π1ðþ1Þ; χ̄2

�
−
1

2

�
; u3

�
−
1

2

��
¼ g3

2
ffiffiffiffi
α0

p Ta
α2α3 ; ð5:75Þ

A
�
π1ð0Þ; χ̄2

�
þ 1

2

�
; u3

�
−
1

2

��
¼

ffiffiffi
3

p
g3

4
ffiffiffiffi
α0

p Ta
α2α3 ; ð5:76Þ

A
�
π1ð−1Þ; χ̄2

�
þ 3

2

�
; u3

�
−
1

2

��
¼ g3

2
ffiffiffiffiffiffiffi
3α0

p Ta
α2α3 ; ð5:77Þ

and

A
�
π1ðþ1Þ; ā2

�
−
1

2

�
; u3

�
−
1

2

��
¼ g3

2
ffiffiffiffiffiffiffi
3α0

p Ta
α2α3 ; ð5:78Þ

A
�
π1ð0Þ; ā2

�
þ 1

2

�
; u3

�
−
1

2

��
¼ g3

4
ffiffiffiffi
α0

p Ta
α2α3 ; ð5:79Þ

which match the results of Eqs. (4.70)–(4.76) and
Eqs. (4.105) and (4.107) precisely. Thus, we also confirm
the partial decay widths of these channels obtained from
factorization in the previous section.
In closing, it is important to stress that the bosonic

states we considered in Secs. IV and V are gluons, the
color singlet Cμ, and their excitations. As a result, we
have taken the QCD coupling g3 in all the amplitudes.
The derivation of the amplitudes, however, is valid for
any vector boson. To obtain the amplitudes involving
(excited) bosons on other stacks, one can just simply
replace g3 by the corresponding coupling constant in all
the formulas.

VI. DISCOVERY REACH AT HL-LHC,
HE-LHC, AND VLHC

A. Bump hunting

We have seen that particles created by vibrations of
relativistic strings populate Regge trajectories relating their
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spins and masses. Most apparently, one would expect
that lowest massive Regge excitations would be visible
in data binned according to the invariant mass M of
dijets, after setting cuts on the different jet rapidities,

jy1j; jy2j < ymax ¼ 2.5, and both transverse momenta pT >
30 GeV [33]. With the definitions Y ≡ 1

2
ðy1 þ y2Þ and y≡

1
2
ðy1 − y2Þ, the cross section per interval of M for pp →

dijet is given by

dσ
dM

¼ Mτ
X
ijkl

�Z
0

−Ymax

dY fiðxa;MÞfjðxb;MÞ
Z

ymaxþY

−ðymaxþYÞ
dy

dσ
dt̂

����
ij→kl

1

cosh2y

þ
Z

Ymax

0

dY fiðxa;MÞfjðxb;MÞ
Z

ymax−Y

−ðymax−YÞ
dy

dσ
dt̂

����
ij→kl

1

cosh2y

�
; ð6:1Þ

where τ ¼ M2=s, xa ¼
ffiffiffi
τ

p
eY , xb ¼

ffiffiffi
τ

p
e−Y , and

jMðij → klÞj2 ¼ 16πŝ2
dσ
dt̂

����
ij→kl

: ð6:2Þ

In this section we reinstate the caret notation (ŝ; t̂; û) to
specify partonic processes. The Y integration range in
Eq. (6.1), Ymax ¼ minflnð1= ffiffiffi

τ
p Þ; ymaxg, comes from re-

quiring xa; xb < 1 together with the rapidity cuts
ymin < jy1j; jy2j < ymax. The kinematics of the scattering
also provides the relation M ¼ 2pT cosh y, which when
combined with pT ¼ M=2 sin θ� ¼ M=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos2θ�

p
yields cosh y ¼ ð1 − cos2θ�Þ−1=2, where θ� is the center-
of-mass scattering angle. Finally, the Mandelstam invari-
ants occurring in the cross section are given by ŝ ¼ M2,
t̂ ¼ − 1

2
M2e−y= cosh y, and û ¼ − 1

2
M2eþy= cosh y. An

equivalent expression can be obtained for pp → γ þ jet
[6]. Following Ref. [106], we take pγ

T; p
jet
T > 125 GeV,

yγmax ¼ 1.37, and yjetmax ¼ 2.8.
The QCD background is calculated at the partonic level

making use of the CTEQ6l1 parton distribution functions
(PDFs) [107]. Standard bump-hunting methods, such as
obtaining cumulative cross sections,

σðM0Þ ¼
Z

∞

M0

dσ
dM

dM; ð6:3Þ

from the data and searching for regions with significant
deviations from the QCD background, may reveal an
interval of M suspected of containing a bump. With the
establishment of such a region, one may calculate a signal-
to-noise ratio, with the signal rate estimated in the invariant
mass window ½Ms − 2Γ;Ms þ 2Γ�. The noise is defined as
the square root of the number of background events in the
same dijet mass interval for the same integrated luminosity.
The HL-LHC dijet discovery reach of lowest massive
Regee excitations (at the parton level) is encapsulated in
Fig. 4. It is remarkable that string scales as large as 7.1 TeV
are open to discovery at the ≥ 5σ level. Next, we duplicate
the calculation for the HE-LHC and VLCH. The results are
shown in Fig. 5. The 5σ discovery reach exceedingly

improves, reaching 15 TeV at the HE-LHC and 41 TeV at
the VLHC. Once more, we stress that all these results
contain no unknown parameters. They depend only on the
D-brane construct for the SM and are independent of
compactification details.
We now turn to the study of pp → γ þ jet. Armed with

(3.41) and (3.42), we first compute the signal for an
integrated luminosity of 20 fb−1 at

ffiffiffi
s

p ¼ 8 TeV. Using
the 95% C.L. upper limits on the production cross section ×
branching of excited quarks (into γ þ jet), as reported by
the ATLAS and CMS collaborations [106,108], we derived
an upper limit on the string scale for κ ¼ 0.14,Ms ¼ 4 TeV
at 95% C.L. This limit, however, does not include detailed
detector modeling. It is worth noting that this number is not
far from the dijet limit reported by ATLAS and CMS
collaboration using the dijet channel. The signal-to-noise
ratio for the HL-LHC is displayed in Fig. 4. For string
scales as high as 6.5 TeV, observations of resonant
structures in pp → γ þ jet can provide interesting corrobo-
ration for stringy physics.
Excitations of the second massive string state may

become visible at the HE-LHC and VLHC. The relevant
resonant amplitudes around s ¼ 2Ms are as follows:

Mðg−1 ; g−2 ; gþ3 ; gþ4 Þ ¼
8g23M

2
s cosðθÞ

s − 2M2
s

Trð½Ta1 ; Ta2 �½Ta3 ; Ta4 �Þ

¼ −
8g23M

2
s

s − 2M2
s
d10;0ðθÞfa1a2afa3a4a;

ð6:4Þ

Mðg−1 ; gþ2 ; gþ3 ; g−4 Þ ¼ −
8g23M

2
s

s − 2M2
s

�
1þ cos θ

2

�
2

× cos θfa1a2afa3a4a

¼ −
8g23M

2
s

s − 2M2
s

×

�
1

3
d3þ2;þ2ðθÞ þ

2

3
d2þ2;þ2ðθÞ

�
× fa1a2afa3a4a; ð6:5Þ
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Mðg−1 ; gþ2 ; g−3 ; gþ4 Þ ¼ −
8g23M

2
s

s − 2M2
s

�
1 − cos θ

2

�
2

cos θ fa1a2afa3a4a

¼ −
8g23M

2
s

s − 2M2
s

�
1

3
d3þ2;−2ðθÞ −

2

3
d2þ2;−2ðθÞ

�
fa1a2afa3a4a; ð6:6Þ

Mðq−1 ; q̄þ2 ; g−3 ; gþ4 Þ ¼
4g23M

2
s

s − 2M2
s

�
1

3

ffiffiffi
2

5

r
d3þ2;þ1ðθÞ þ

1

6
d2þ2;þ1ðθÞ

�
½Ta3 ; Ta4 �α1α2 ; ð6:7Þ

FIG. 5 (color online). Dijet signal-to-noise ratio of the lowest massive Regge excitations for the HE-LHC (left) and VLHC (right).

FIG. 4 (color online). Signal-to-noise ratio of the lowest massive Regge excitations for the HL-LHC in the dijet (left) and γ þ jet
(right) topologies. For comparison, we also show ATLAS and CMS upper limits on Ms from unsuccessful searches of new particles
decaying to pairs of partons (quarks, antiquarks, or gluons) [30–33]. For LHC phase I, the signal-to-noise ratio is suppressed by≃0.32.
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Mðq−1 ; q̄þ2 ; gþ3 ; g−4 Þ ¼
4g23M

2
s

s − 2M2
s

�
1

3

ffiffiffi
2

5

r
d3þ2;−1ðθÞ −

1

6
d2þ2;−1ðθÞ

�
½Ta3 ; Ta4 �α1α2 ; ð6:8Þ

Mðq�1 ; g�2 ; q̄∓3 ; g∓4 Þ ¼ −
4g23M

2
s

s − 2M2
s

�
1

3
dJ¼1=2
∓1=2;∓1=2ðθÞ þ

2

3
dJ¼3=2
∓1=2;∓1=2ðθÞ

�
ðTa4Ta2Þα3α1 ; ð6:9Þ

Mðq�1 ; g∓2 ; q̄∓3 ; g�4 Þ ¼ −
4g23M

2
s

s − 2M2
s

�
3

5
dJ¼3=2
�3=2;�3=2ðθÞ þ

2

5
dJ¼5=2
�3=2;�3=2ðθÞ

�
ðTa4Ta2Þα3α1 : ð6:10Þ

For phenomenological purposes, the poles need to be softened to a Breit–Wigner form. We can tell what the intermediate
states are from theWigner dmatrices and put in the corresponding total decay widths. After this is done, the contributions of
the various channels to the dijet production are as follows:

jMðgg → ggÞj2 ¼ 9g43
16M4

s

�
4M4

sðt − uÞ2
ðs − 2M2

sÞ2 þ 2ðΓJ¼1
Gð2ÞMsÞ2

þ 4

9

t4 − 6t3uþ 6t2u2 − 6tu3 þ u4

ðs − 2M2
sÞ2 þ 2ΓJ¼3

Gð2ÞΓJ¼2
Gð2ÞM2

s

þ 4

9

t4 þ u4

ðs − 2M2
sÞ2 þ 2ðΓJ¼2

Gð2ÞMsÞ2
þ 1

36M4
s

t6 − 10t5uþ 25t4u2 þ 25t2u4 − 10tu5 þ u6

ðs − 2M2
sÞ2 þ 2ðΓJ¼3

Gð2ÞMsÞ2
�
; ð6:11Þ

jMðqq̄ → ggÞj2 ¼ 4g43
9M4

s

�
1

6M4
s

tuðt4 − 4t3uþ 8t2u2 − 4tu3 þ u4Þ
ðs − 2M2

sÞ2 þ 2ðΓJ¼3
Gð2ÞMsÞ2

þ 1

6

tuðt2 þ u2Þ
ðs − 2M2

sÞ2 þ 2ðΓJ¼2
Gð2ÞMsÞ2

þ 2

3

tuðt2 − 3tuþ u2Þ
ðs − 2M2

sÞ2 þ 2ΓJ¼3
Gð2ÞΓJ¼2

Gð2ÞM2
s

�
; ð6:12Þ

jMðgg → qq̄Þj2 ¼ g43Nf

16M4
s

�
1

6M4
s

tuðt4 − 4t3uþ 8t2u2 − 4tu3 þ u4Þ
ðs − 2M2

sÞ2 þ 2ðΓJ¼3
Gð2ÞMsÞ2

þ 1

6

tuðt2 þ u2Þ
ðs − 2M2

sÞ2 þ 2ðΓJ¼2
Gð2ÞMsÞ2

þ 2

3

tuðt2 − 3tuþ u2Þ
ðs − 2M2

sÞ2 þ 2ΓJ¼3
Gð2ÞΓJ¼2

Gð2ÞM2
s

�
; ð6:13Þ

jMðqLg → qLgÞj2 ¼ jMðq̄Rg → q̄RgÞj2

¼ 8g43
9M2

s

��
1

9

−M4
su

ðs − 2M2
sÞ2 þ 2ðΓJ¼1=2

Qð2Þ
L

MsÞ2
þ 1

9

−uð2t − uÞ2
ðs − 2M2

sÞ2 þ 2ðΓJ¼3=2
~Qð2Þ
L

MsÞ2
�

þ 1

4M4
s

�
9

25

−M4
su3

ðs − 2M2
sÞ2 þ 2ðΓJ¼3=2

Qð2Þ
L

MsÞ2
þ 1

25

−u3ð4t − uÞ2
ðs − 2M2

sÞ2 þ 2ðΓJ¼5=2

Qð2Þ
L

MsÞ2
�

þ
�
2

9

M2
sð−2tuþ u2Þ

ðs − 2M2
sÞ2 þ 2ΓJ¼1=2

Qð2Þ
L

ΓJ¼3=2
~Qð2Þ
L

M2
s

þ 3

50

M−2
s ð−4tu3 þ u4Þ

ðs − 2M2
sÞ2 þ 2ΓJ¼3=2

Qð2Þ
L

ΓJ¼5=2

Qð2Þ
L

M2
s

�	
; ð6:14Þ

jMðqRg → qRgÞj2 ¼ jMðq̄Lg → q̄LgÞj2

¼ 8g43
9M2

s

��
1

9

−M4
su

ðs − 2M2
sÞ2 þ 2ðΓJ¼1=2

Qð2Þ
R

MsÞ2
þ 1

9

−uð2t − uÞ2
ðs − 2M2

sÞ2 þ 2ðΓJ¼3=2
~Qð2Þ
R

MsÞ2
�

þ 1

4M4
s

�
9

25

−M4
su3

ðs − 2M2
sÞ2 þ 2ðΓJ¼3=2

Qð2Þ
R

MsÞ2
þ 1

25

−u3ð4t − uÞ2
ðs − 2M2

sÞ2 þ 2ðΓJ¼5=2

Qð2Þ
R

MsÞ2
�

þ
�
2

9

M2
sð−2tuþ u2Þ

ðs − 2M2
sÞ2 þ 2ΓJ¼1=2

Qð2Þ
R

ΓJ¼3=2
~Qð2Þ
R

M2
s

þ 3

50

M−2
s ð−4tu3 þ u4Þ

ðs − 2M2
sÞ2 þ 2ΓJ¼3=2

Qð2Þ
R

ΓJ¼5=2

Qð2Þ
R

M2
s

�	
: ð6:15Þ
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The total decay widths for n ¼ 2 string resonances can be computed using the formulas in Table IV. We note that the widths
ofQð2Þ are model dependent since they can decay into theUð1Þ gauge bosons. In theUð3Þ × Spð1Þ × Uð1ÞD-brane model,
we have (at Ms ∼ 15 TeV)

ΓJ¼3
Gð2Þ ¼ 58ðMs=TeVÞ GeV; ΓJ¼2

Gð2Þ ¼ 53ðMs=TeVÞ GeV;
ΓJ¼1
Gð2Þ ¼ 67ðMs=TeVÞ GeV; ΓJ¼5=2

Qð2Þ
L

¼ 30ðMs=TeVÞ GeV;

ΓJ¼3=2

Qð2Þ
L

¼ 26ðMs=TeVÞ GeV; ΓJ¼3=2
~Qð2Þ
L

¼ 38ðMs=TeVÞ GeV

ΓJ¼1=2

Qð2Þ
L

¼ 37ðMs=TeVÞ GeV; ΓJ¼5=2

Qð2Þ
R

¼ 26ðMs=TeVÞ GeV

ΓJ¼3=2

Qð2Þ
L

¼ 22ðMs=TeVÞ GeV; ΓJ¼3=2
~Qð2Þ
L

¼ 32ðMs=TeVÞ GeV

ΓJ¼1=2

Qð2Þ
L

¼ 31ðMs=TeVÞ GeV: ð6:16Þ

At higher string scales, the decay widths slightly decrease because of the running of the couplings. For Ms ∼ 40 TeV, we
obtain

ΓJ¼3
Gð2Þ ¼ 50ðMs=TeVÞ GeV; ΓJ¼2

Gð2Þ ¼ 46ðMs=TeVÞ GeV;
ΓJ¼1
Gð2Þ ¼ 59ðMs=TeVÞ GeV; ΓJ¼5=2

Qð2Þ
R

¼ 27ðMs=TeVÞ GeV;

ΓJ¼3=2

Qð2Þ
R

¼ 23ðMs=TeVÞ GeV; ΓJ¼3=2
~Qð2Þ
R

¼ 34ðMs=TeVÞ GeV

ΓJ¼1=2

Qð2Þ
R

¼ 33ðMs=TeVÞ GeV; ΓJ¼5=2

Qð2Þ
R

¼ 23ðMs=TeVÞ GeV

ΓJ¼3=2

Qð2Þ
R

¼ 19ðMs=TeVÞ GeV; ΓJ¼3=2
~Qð2Þ
R

¼ 28ðMs=TeVÞ GeV

ΓJ¼1=2

Qð2Þ
R

¼ 27ðMs=TeVÞ GeV: ð6:17Þ

The dijet signal-to-noise ratio for n ¼ 2 is shown in Fig. 6. ForMs ≲ 10.5 TeV the second massive Regge excitations could
also be observed with a statistical significance ≥ 5σ at the HE-LHC and for Ms ≲ 28 TeV at the VLHC. Measurement of
both resonant peaks would constitute definitive evidence for string physics.

FIG. 6 (color online). Dijet signal-to-noise ratio of n ¼ 2 Regge excitations for the HE-LHC (left) and VLHC (right).
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B. Angular distributions

In what follows we briefly comment on the angular
distributions. QCD parton-parton cross sections are domi-
nated by t-channel exchanges that produce dijet angular
distributions which peak at small center-of-mass scattering
angles. In contrast, nonstandard contact interactions or
excitations of resonances result in a more isotropic dis-
tribution. In terms of a rapidity variable for standard
transverse momentum cuts, dijets resulting from QCD
processes will preferentially populate the large rapidity
region, while the new processes generate events more
uniformly distributed in the entire rapidity region. To
analyze the details of the rapidity space the D0
Collaboration introduced a new parameter [109],

R ¼ dσ=dMjðjy1j;jy2j<0.5Þ
dσ=dMjð0.5<jy1j;jy2j<1.0Þ

; ð6:18Þ

the ratio of the number of events, in a given dijet mass bin,
for both rapidities jy1j; jy2j < 0.5 and both rapidities
0.5 < jy1j; jy2j < 1.0. The ratio R is a genuine measure
of the most sensitive part of the angular distribution,
providing a single number that can be measured as a
function of the dijet invariant mass. An illustration of the
use of this parameter in a heuristic model where standard
model amplitudes are modified by a Veneziano form factor
has been presented in Ref. [110].
It is important to note that, although there are no

s-channel resonances in qq → qq and qq0 → qq0 scatter-
ing, Kaluza–Klein modes in the t and u channels generate
calculable effective four-fermion contact terms. These in
turn are manifest in a small departure from the QCD value
of R outside the resonant region [14]. In an optimistic
scenario, measurements of this modification could shed
light on the D-brane structure of the compact space. It could
also serve to differentiate between a stringy origin for the
resonance as opposed to an isolated structure such as a Z0,
which would not modify R outside the resonant region.
While the signal of quark scattering is suggestive, the
analysis in Ref. [14] did not take into account all of the
potential detector effects, which is necessary to be con-
fident that the effect is real. In the next section, we describe
the first steps toward a more realistic description of the
string physics processes.

VII. SEGI

SEGI is a modification of the original BlackMax event
generator [34,35], which is extensively used by ATLAS
and CMS collaborations in search for exotic physics. At its
inception, BlackMax could simulate only black hole
production in particle collisions (including all the greybody
factors known to date) [111–118]. Then it gradually grew
into a very comprehensive generator that can accommodate
different signatures of quantum gravity, e.g., stringball

evaporation in a two-body final state [119]. With the
current modification, BlackMax will be able to simulate
production and decay of lowest massive Regge excitations
yielding γ þ jet, Z þ jet, and dijet events.
A necessary input for the event generator is the ampli-

tudes for perturbative string mediated processes. The
parton-parton subprocesses of lowest massive Regge exci-
tations decaying to dijets are given in Eqs. (3.29), (3.33),
(3.36), and (3.37), whereas those decaying into γ þ jet are
giving in Eqs. (3.41) and (3.42).20 The cross section can be
written as a convolution of (6.2) with PDFs e.g., for dijets,

σpp→dijet ¼
X
ij

Z
ŝmax=s

ŝmin=s
dτ

Z
1

τ

dxa
xa

σij→klfiðxa; ŝÞfjðτ=xa; ŝÞ;

ð7:1Þ

where ŝmax and ŝmin are the maximum and minimum square
center-of-mass energy of the colliding partons. The code
iterates 106 times to calculate the Monte Carlo integral.
As an illustration, in Fig. 7 we show a comparison of
the invariant mass distribution, setting Ms ¼ 5 TeV, as
obtained by SEGI and with the semianalytic (parton model)
approach adopted in the preceding section.
The input parameters for the generator are read from

the file parameter.txt (see Appendix D for how to access the
file). In the following list, we provide an explanation for the
relevant input parameters:
(1) Number_of_simulations: This parameter is the num-

ber of events to be generated.
(2) Type_of_incoming_particles: This parameter deter-

mines the type of incoming particles:
(a) pp
(b) pp̄
(c) eþe−

(3) Center_of_mass_energy_of_incoming_particles:
This is the center-of-mass energy of the two incom-
ing particles in units of GeV.

(4) Choose_a_case: This parameter determines which
type of events are simulated:
(a) nonrotating_black_hole_on_a_tensionless_brane
(b) nonrotating_black_hole_on_a_nonzero_tension_

brane
(c) rotating_black_hole_on_a_tensionless_brane
(d) nonrotating_black_hole_with_fermion_tension-

lees_brane_splitting
(e) stringballs_two_particle_final_states
(f) lowest_massive_Regge_excitations_decaying_

to_dijets

20Ignoring the Z mass and assuming that cross sections ×
branching into lepton pairs are large enough for complete
reconstruction of pp → Z þ jet, the contribution to the signal
is suppressed relative to the photon signal by a factor of
tan2θW ¼ 0.29.
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(g) lowest_massive_Regge_excitations_decaying_
to_gamma+jet

(h) lowest_massive_Regge_excitations_decaying_
to_Z+jet

(5) Choose_a_pdf_file (200_to_240_CTEQ6_or_
>10000_for_LHAPDF): This parameter determines
which PDF is used in the simulation. The code
includes CTEQ6 PDFs by default. In that case this
parameter should be set from 200 to 240. For
different PDFs one must install LHAPDF. The
impact of the different PDFs and induced system-
atics in the production and decay of Regge recur-
rences is shown in Fig. 8.

(6) Minimum_mass: This is the minimum mass that one
wants to include in the simulation in units of GeV.

(7) Maximum_mass: This is the maximummass that one
wants to include in the simulation in units of GeV.

(8) String_scale: This parameter is the string scaleMs in
units of GeV.

(9) string_coupling: This parameter is the string cou-
pling; the default is set to gs ¼ 0.1.

(10) kappa: This is the C − Y mixing parameter; the
default is set to κ ¼ 0.14.

All the other BlackMax parameters are irrelavant for
simulation of Regge recurrences.
The generator gives the output.txt file. This file

contains the cross sections and the energy momentum
distributions of the incoming and outgoing particles (pseu-
dorapidity distributions are displayed in Fig. 9 for illus-
trative purposes only). The incoming particles are marked
as parent. The outgoing particles are marked as elast. The
meaning of each column is the same as in the original
BlackMax event generator [34,35]. The most up-to-date
source code and TarBall can be downloaded from

FIG. 7 (color online). dσ=dM vs M of first resonance string signal as obtained through the semianalytic parton model calculation
(dots) and with SEGI (solid). We have taken Ms ¼ 5 TeV.

FIG. 8 (color online). Systematic uncertainty of the dijet (left) and γ þ jet (right) string signal due to PDFs as obtained with SEGI.
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http://projects.hepforge.org/blackmax/. The details for
SEGI installation can be found in the BlackMax manual
[35]. For completness, a brief summary of the installation
process is provided in Appendix D.
Thus far we have included in SEGI string excitations

only up to n ¼ 1. In future versions we plan to extend the
code to account for higher order excitations of the string, as
well as qq → qq and qq0 → qq0 interactions.

VIII. CONCLUSIONS

We have explored the discovery potential of existing and
proposed hadron colliders to unmask excitations of the
string. We have studied the direct production of Regge
recurrences, focusing on the first and second excited levels
of open strings localized on the world volume of D-branes.
In this framework, Uð1ÞB and SUð3ÞC appear as subgroups
of Uð3Þ associated with open strings ending on a stack of
three D-branes. In addition, the minimal models contain
two other stacks to accommodate the electroweak
SUð2ÞL ⊂ Uð2Þ and the hypercharge Uð1ÞY . For such
D-brane models, the resonant parts of the relevant string
theory amplitudes are universal to leading order in the
gauge coupling. As a consequence, it is feasible to extract
genuine string effects which are independent of the
compactification scheme. In this paper we have made
use of the amplitudes evaluated near the first and second
resonant poles to report on the discovery potential for
Regge excitations of the quark, the gluon, and the color
singlet living on the QCD stack of D-branes.
To calculate the string signal for n ¼ 1 resonances, we

used the partial decay widths obtained elsewhere [7]. To
compute the signal for n ¼ 2 resonances, we have pre-
sented here a complete calculation of all relevant decay
widths of the second massive level string states, including
decays into massless particles and a massive n ¼ 1 and a
massless particle. The latter were obtained from factorizing
four-point amplitudes with one first massive level string

state computed in Ref. [11]. The partial decay widths of the
spin-3 and spin-2 bosons from the second massive level
were also obtained from direct string amplitude computa-
tions and match exactly with the results obtained from
factorization. We also constructed the helicity wave func-
tions of arbitrary higher spin massive boson.
Our phenomenological study among the various proc-

esses indicates that:
(i) For Ms ≲ 7.1 TeV, the HL-LHC will be able to

discover (with statistical significance > 5σ) the
lowest massive Regge excitations in dijet events.
For string scales as high as 6.1 TeV, observations of
resonant structures in pp → γ þ jet can provide
interesting corroboration (with statistical signifi-
cance > 5σ) of low-mass-scale string physics.

(ii) The dijet discovery potential exceedingly improves
at the HE-LHC and VLHC. For n ¼ 1, the HE-LHC
will be able to discover string excitations up to
Ms ≈ 15 TeV, whereas the VLHC will attain 5σ
discovery up to Ms ≈ 41 TeV. Moreover, for n ¼ 2,
the HE-LHC will reach 5σ discovery for
Ms ≲ 10.5 TeV, while the VLHC will be able to
discover Regge excitations for Ms ≲ 28 TeV.

(iii) Keeping only transverse Z’s and assuming that cross
sections × branching into lepton pairs are large
enough for complete reconstruction of pp→Zþjet,
the D-brane contribution to the signal is suppressed
relative to pp→γþjet by a factor of tan2θW ¼ 0.29.
This differs radically from stringball evaporation in
two-body final state. In such a case, emissions of
γ þ jet and Z þ jet are comparable. The suppression
of Z þ jet production, the origin of which lies in the
particular structure of the D-brane model, will hold
true for all the low-lying levels of the string.

Our calculations have been performed using a semianalytic
parton model approach which is cross checked against an
original software package. The string event generator
interfaces with HERWIG and Pythia through BlackMax.

FIG. 9 (color online). Dijet (left) and γ þ jet (right) pseudorapidity distributions.
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The source code is publicly available in the hepforge
repository.
In summary, in this paper we have provided a concrete

starting point for understanding the string physics potential
of proposed machines that would collide protons at
energies approaching the boundary of what (wo)mankind
can daydream to achieve. The results presented herein will
help to lay out opportunities, connections, and challenges
for future LHC upgrades.
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APPENDIX A: NOTATION OF GROUP FACTORS

We define the structure constant fabc and the total
symmetric group factor dabc as

½Ta; Tb� ¼ i
X
c

fabcTc; ðA1Þ

fTa; Tbg ¼ 4
X
c

dabcTc: ðA2Þ

With the notation TrðTaTbÞ ¼ 1
2
δab, we could obtain

Trð½Ta; Tb�TcÞ ¼ i
2
fabc; ðA3Þ

TrðfTa; TbgTcÞ ¼ 2dabc: ðA4Þ

We could also obtain

TrðTabTcdÞ ¼ 2
X
e

TrðTabTeÞTrðTcdTeÞ; ðA5Þ

where Tab or Tcd presents either ½Ta; Tb� or fTa; Tbg.

We thus arrive at

Trð½Ta; Tb�½Tc; Td�Þ ¼ −
1

2

X
e

fabefcde; ðA6Þ

TrðfTa; TbgfTc; TdgÞ ¼ 8
X
e

dabedcde; ðA7Þ

Trð½Ta; Tb�fTc; TdgÞ ¼ 2i
X
e

fabedcde: ðA8Þ

APPENDIX B: SPINOR HELICITY FORMALISM
FOR MASSLESS FIELDS

1. Helicity wave functions for massless
spin-12 fermions

For massless spin-1
2
spinors, we use the notation follow-

ing Ref. [11],

jii ¼ jkii ¼ uþðkiÞ ¼ v−ðkiÞ ¼
�

0

k� _ai

�
; ðB1Þ

ji� ¼ jki� ¼ u−ðkiÞ ¼ vþðkiÞ ¼
�
ki;a
0

�
; ðB2Þ

½ij ¼ ½kij ¼ ūþðkiÞ ¼ v̄−ðkiÞ ¼ ðkai ; 0Þ; ðB3Þ

hij ¼ hkij ¼ ū−ðkiÞ ¼ v̄þðkiÞ ¼ ð0; k�i; _aÞ; ðB4Þ

where the momenta with spinor indices are two-component
commutative spinors, which are defined by

P _aa ¼ pμσ̄
μ _aa ¼ −p� _apa; ðB5Þ

Pa _a ¼ pμσ
μ
a _a ¼ −pap�

_a; ðB6Þ

where p� _a ¼ ðpaÞ� and p�
_a ¼ ðpaÞ�. Spinor indices could

be raised (lowered) by εab (εab) or a; b with dots,

pa ¼ εabpb; p� _a ¼ ε _a _bp�
_b
: ðB7Þ

The spinor products are defined by

hpqi ¼ hpjqi ¼ ū−ðpÞuþðqÞ ¼ p�
_aq

� _a; ðB8Þ

½pq� ¼ ½pjq� ¼ ūþðpÞu−ðqÞ ¼ paqa; ðB9Þ

and we have the following relations:

½pq� ¼ −½qp�; hpqi ¼ −hqpi; hppi ¼ ½pp� ¼ 0;

ðB10Þ

hpqi� ¼ ½qp�; hpqi ¼ −2ðp · qÞ: ðB11Þ
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2. Helicity wave functions for massless
spin-1 gauge boson

The gauge transformation for a spin-1 gauge boson reads
ϵμ → ϵμ þ Λkμ. The massless spin-1 gauge boson only has
2 degrees of freedom, which are helicity up (þ) and down
(−). The helicity wave functions (polarization vectors) of a
massless spin-1 gauge boson can be written as

ϵþμ ðk; rÞ ¼
hrjγμjk�ffiffiffi
2

p hrki ¼
r�_aσ̄

_aa
μ kaffiffiffi

2
p hrki ; ðB12Þ

ϵ−μ ðk; rÞ ¼ −
½rjγμjkiffiffiffi
2

p ½rk� ¼ −
raσμa _ak� _affiffiffi

2
p ½rk� ; ðB13Þ

where k is the momentum of the gauge boson and r is the
reference momentum which can be chosen to be any
lightlike momentum except k. The final results of the
helicity amplitudes are independent of the choice of
reference momentum r.

APPENDIX C: HELICITY WAVE FUNCTIONS
FOR MASSIVE SPIN-12 AND -32 FERMIONS

The wave functions of massive spin-1
2
and spin-3

2
fer-

mions were constructed in Ref. [104].

1. Helicity wave functions for massive spin-12 fermions

Massive spin-1
2
fermions wave functions satisfy the Dirac

equation

ðkþmÞuðkÞ ¼ 0; ðC1Þ

ðk −mÞvðkÞ ¼ 0; ðC2Þ

where uðkÞ and vðkÞ are positive and negative energy
solutions with the momentum kμ, which correspond to
fermion and antifermion wave functions, respectively. After
decomposing k into two lightlike momenta p; q, up to a
phase factor, the helicity wave function of the massive spin-
1
2
fermions can be written as

uþðkÞ ¼
� hqpi

m qa

p� _a

�
; u−ðkÞ ¼

� pa

½qp�
m q� _a

�
; ðC3Þ

vþðkÞ ¼
� pa

½pq�
m q� _a

�
; v−ðkÞ ¼

� hpqi
m qa

p� _a

�
: ðC4Þ

2. Massive spin-32 fermions wave functions

A massive spin-3
2
fermion could be described by Rarita–

Schwinger spinor-vector ΨA;μ which satisfies equations

ði∂ −mÞABΨB;μ ¼ 0; ðC5Þ

ðγμÞABΨB;μ ¼ 0; ðC6Þ

∂μΨB;μ ¼ 0; ðC7Þ

where A and B are spinor indices which run from 1 to 4. We
can rewrite the first equation in terms of positive and
negative solutions of Dirac equation, i.e., U and V, which
read

ðkþmÞABUðkÞB;μ ¼ 0; ðC8Þ

ðk −mÞABVðkÞB;μ ¼ 0: ðC9Þ

Using the same decomposition k ¼ pþ q, where p; q are
lightlike reference momenta, we have, up to a phase factor,

UA;μ

�
þ 3

2

�
¼ 1ffiffiffi

2
p

m

� hqpi
m qa

p� _a

�
ðp�

_b
σ̄μ _bbqbÞ; ðC10Þ

UA;μ

�
þ 1

2

�

¼ σ̄μ _bbffiffiffi
6

p
m

�� hqpi
m qa

p� _a

�
ðp�

_b
pb − q�_bqbÞ þ

� hqpi
m pa

−q� _a

�
ðp�

_b
qbÞ

�
;

ðC11Þ

UA;μ

�
−
1

2

�

¼ σ̄μ _bbffiffiffi
6

p
m

�� pa

½qp�
m q� _a

�
ðp�

_b
pb −q�_bqbÞþ

� −qa
½qp�
m p� _a

�
ðq�_bpbÞ

�
;

ðC12Þ

UA;μ

�
−
3

2

�
¼ 1ffiffiffi

2
p

m

� pa

½qp�
m q� _a

�
ðq�_bσ̄μ

_bbpbÞ; ðC13Þ

and

VA;μ

�
þ 3

2

�
¼ 1ffiffiffi

2
p

m

� pa

½pq�
m q� _a

�
ðq�_bσ̄μ

_bbpbÞ; ðC14Þ

VA;μ

�
þ1

2

�

¼ σ̄μ _bbffiffiffi
6

p
m

�� pa

½pq�
m q� _a

�
ðp�

_b
pb − q�_bqbÞ þ

� −qa
½pq�
m p� _a

�
ðq�_bpbÞ

�
;

ðC15Þ
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VA;μ

�
−
1

2

�

¼ σ̄μ _bbffiffiffi
6

p
m

�� hpqi
m qa

p� _a

�
ðp�

_b
pb − q�_bqbÞ þ

� hpqi
m pa

−q� _a

�
ðp�

_b
qbÞ

�
;

ðC16Þ

VA;μ

�
−
3

2

�
¼ 1ffiffiffi

2
p

m

� hpqi
m qa

p� _a

�
ðp�

_b
σ̄μ _bbqbÞ: ðC17Þ

APPENDIX D: SEGI INSTALLATION

The first step is to download the zipped tar file which has
to be unzipped to extract the files and make the program
executable:
gunzip BlackMax-2.00.tar.gz
tar -xvf BlackMax-2.00.tar
Before compilation one has to check the compiler

version of gcc by executing the command
gcc–version
which generates the output
gcc (GCC) 3.4.6 20060404 (Red Hat 3.4.6-10)
Copyright (C) 2006 Free Software Foundation, Inc.
…
This second step is required because the latest gcc

compiler version (4.1.2) has changed the names of some
system libraries needed to compile Fortran with C code.
The download is configured to use gcc version 4. If an older
gcc version (e.g. 3.4.6) is in operation, then one needs to
modify the BlackMax Makefile. This can be accomplished
by uncommenting the following lines in the Makefile:
F77LIB=g2c
F77COMP=g77
After that SEGI is ready for compilation. There are three

different ways to run SEGI: (i) standalone mode for which
no additional libraries are required, (ii) accessing PDFs
from LHAPDF, or (iii) accessing PDFs from LHAPDF and
simultaneous hadronization from Pythia. In each case a
different compilation/linking step is required to produce the
executable. For all three options, the default format of the
event output is the Les Houches Accord format [36]. This
text file can be used as input into HERWIG and Pythia to
hadronize the SEGI events.

1. Standalone mode

In this version the proton parton densities are taken from
CTEQ6m which are packaged with BlackMax. After
unpacking, the command
gmake BlackMaxOnly

has to be executed, and the file parameter.txt has to be
modified to select one of the 41 CTEQ6m PDF sets that has
been bundled with BlackMax, e.g.,
choose_a_pdf_file(200_to_240_cteq6)Or_>10000_for_

LHAPDF

200
After that, the executable can be run:
BlackMax >&! out

2. LHAPDF

This version uses the proton parton densities from the
LHAPDF library, which must be downloaded from http://
projects.hepforge.org/lhapdf/.
Of course, one has to install the package in a directory

with write permission. One can do this by specifying an
installation directory (for additional information, the reader
is referred to the LHAPDF manual). Then the BlackMax
Makefile must be edited to insert the library locations. One
has to verify that the LD_LIBRARY_PATH environment
variable includes the location of the newly built LHAPDF
library:
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/

data/rizvi/atlas/lhapdf-5.3.0/lhapdf/lib
export LHAPATH=/data/rizvi/atlas/lhapdf-5.3.0/lhapdf/

share/lhapdf/PDFsets
The next step is to select a valid PDF set in parameter.txt,

e.g., the LHAPDF partons from the H1 PDF2000 fit of
HERA data:
choose_a_pdf_file(200_to_240_cteq6_or_>10000_for_

LHAPDF)
70050
After unpacking the source files, one can compile the

program
gmake BlackMax
After that, the executable can be run:
BlackMax >&! out

3. LHAPDF with simultaneous
Pythia hadronization

To hadronize the events, BlackMax comes with an
interface to Pythia. To generate fully hadronized events,
one needs to download and install the latest versions of
LHAPDF and PYTHIA. They are available at http://www
.hepforge.org/downloads/pythia6 and http://www.hepforge
.org/downloads/lhapdf.
BlackMax has been tested wth Pythia 6.4.10 and

LHAPDF 5.3.0. After that, one has to create the Pythia
libraries and remove both the following four dummy
routines,
upinit.f
upevnt.f
pdfset.f
structm.f

and the pdfset.f routine from the Pythia Makefile. The four
routines above are all dummy routines which actually exist
in LHAPDF. Next, one must edit the BlackMaxMakefile to
insert the library locations, while checking that the
LD_LIBRARY_PATH environment variable includes the
location of the newly built Pythia and LHAPDF libraries:
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export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:
data/rizvi/atlas/lhapdf-5.3.0/lhapdf/lib
exportLHAPATH=/data/rizvi/atlas/lhapdf-5.3.0/lhapdf/

share/lhapdf/PDFsets
Finally, one has to create the BlackMax executable using

the target “all,” which will link to the Pythia and LHAPD
Flibraries,

gmake all
and select a valid PDFsetinparameter.txt, e.g.,
choose_a_pdf_file(200_to_240_cteq6)Or_>10000_for_

LHAPDF
10050
After that, the exectuable can be run:
BlackMax >&! out
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