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ABSTRACT

We discuss the communication of supersymmetry breaking from the gravitino mass
mszz tO gaugino masses mi», scalar masses mo, and trilinear scalar couplings A in
superstring models, assuming that the effective low-energy N = 1, d = 4 supergravity
has a modified ‘no-scale’ structure. It is known that my, + 0 at the one-loop level,
whilst squared scalar masses m vanish at the one-loop level. We analyse a large class of
two-loop diagrams, showing that their quadratic divergences cancel and that they
contribute m§ = O(m}~/m3). We also show that A appears in one-loop order, but is
much smaller than my». Therefore the initial conditions my» 3> A > me are appropriate
in renormalization group analyses of effective low-energy models inspired by the
superstring.
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One of the key issues in the extraction of phenomenology [1} from the superstring [2] is to
determine how supersymmetry is broken. A plausible suggestion [3, 4] 1s that this is triggered by
gaugino condensation in the hidden sector which generates a non-zero gravitino mass ms-. In order
for the cosmological constant to vanish at the tree level, this condensate must cohabit with some
other condensate, whose origin is more obscure but may be the antisymmetric tensor field H,., [4].
The next question is, How is this supersymmetry breaking is communicated to the observable sector?
Here there are three possible classes of soft supersymmetry-breaking parameters, namely gaugino
masses my2, scalar masses mo, and trilinear scalar couplings A. None of these [5] are present at the
tree level when supersymmetry is broken spontaneously in the hidden sector as described above. One
expects these supersymmetry-breaking parameters to be generated by loop corrections, so the next
questions are, How many loops? which loops? which of my», mo, and A is the greater? and how large
are the resulting supersymmetry-breaking parameters relative o ma»?

These questions are analysed here using the effective low energy N = | supergravity theory
obtained by truncation from manifold compactification of the superstring [6], which is of a modified
no-scale form [7]. It contains two relevant gauge singlet fields S and T as well as the gauge

non-singlet fields ¢!, and has the following Kdhler potential G and gauge kinetic terms:
g - go = n [W(* %o = (M,(SJrS"') +3(,;,,,(T+TT—2¢{*¢9(1a)
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where W(S,¢) is the superpotential which takes the form
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with \ijk being the Yukawa couplings in the gauge non-singlet sector, ¢ and h result from H,,, and
gauging condensation, respectively and k = 872/c2(G’) where G’ is the subgroup of E¢ whose
gauginos condense. It has been argued previously [8] that m and A vanish at the one-loop level, and
to all orders [9] when the gauge couplings of the o' are neglecfed, if one works with the minimal
no-scale model corresponding to the (T,¢') sector of the Kihler potential (1a). In this paper we study
to what extent these results may [10] be modified by the inclusion of the S field in the model (1). It is
known [11, 12] that myz is non-zero at the one-loop level in the model (1), and we will compare the
magnitudes of my;, mg, and A.

We find that two-loop diagrams may generate a non-zero value of mg which 1s at most of order
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in the phenomenologically relevant limit ms- < mp. This is much smaller than the observable sector

gaugino mass which we [12] have estimated to be of order
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We also find that the trilinear supersymmetry-breaking parameter A is expected to be small:
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where « = g%/4x. Both (3) and (4) result from the shift in {0IS|0} which is induced by one-loop
corrections to the effective potential. The results (3)-(5) should be interpreted as initial conditions for
a renormalization group analysis of the effective low-energy theory. Although mys 3 mo and A
initially, the physical values renormalized by gauge loops (not considered here) and chiral loops are
of similar magnitude. The results (3), (4), (5) contrast with those obtained from the most general
supergravity model compatible with the classical symmetries of the string [13-15], and with those of
the most general supergravity model compatible with the symmetries of quantum corrections in string
theory [16, 15].
We first make a diagrammatic analysis of one-loop contributions to my in the effective theory
(1). This step provides no new results, but gives us a basis for the subsequent discussion of two-loop
diagrams. The squared scalar mass is defined by
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and the contributing one-loop diagrams are shown in Fig. 1. We work in the harmonic gauge

Y*¥» = 050 that there is no mixing in any fermion propagator”. Note that no diagrams involving the
Yukawa couplings \ appear because there is no supersymmetry breaking for the ¢’ fields at the tree
level. This means that the supersymmetry-breaking one-loop effective potential V, can depend on ¢
only through the combination Go=3In (T + TT- 2q!5;r ¢} [8, 9]. This point can be verified explicitly
by comparing the diagrams of Fig. 1 with those of Fig. 2, which contribute to 3V/3T. Diagrams (a),
(b), (¢}, (d), and (e) clearly correspond directly, whilst diagrams (f) and (g) of Fig. 2 do not
correspond to anything in Fig. 1. However, a simple calculation shows that this is not a problem
because both of these diagrams vanish at zero external momentum, and hence do not contribute to
the effective potential. Diagrams (a) to (¢) are quadratically divergent, but there is a physical
momentum cut-off provided by the scale A. of gaugino condensation. Since mz» = Ad/mé < mp,

the quadratically divergent pieces of the diagrams o AZ Str ? are much larger than the logarithmi-
cally divergent pieces oc Str 9* In M?/A2, and so on. The fact that the diagrams (a) to (e) give an

effective potential which depends only on o means that

*) Note that the gravitino propagator in this gauge is not the same as the propagators given by van Nieuwenhuizen [17].
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In the true vacuum of the theory, we must have dV/9T = 0 and we assume that the unknown parts of
the potential which determine T depend on it only via Go. Assuming that we started calculating with
dVo/dT = 0 at the tree level, the non-zero value of 3V /8T (7) tells us that we must shift the vacuum
expectation value of the T field. This can be taken into account diagrammatically by introducing

counter terms V¢ depending on Go which ensure that
2V 2 ( 2
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However, it is then obvious from (7) that the counter terms also cancel 3*V,/3¢!a¢:
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Thus any gauge non-singlet squared scalar mass can be at most a two-loop effect, which we now
analyse.

The above argument that mj = 8*°V/3¢'8¢ o« dV/3T = 0 can be extended [9] to all loops in the
minimal no-scale model in which one neglects S and the Yukawa couplings . If one includes A but
still neglects S, a similar argument can be made on the basis of a plausible conjecture for the form of
the n-loop effective potential [9]. If one includes S but neglects A, it is easy to see that the first

non-zero contribution to mé is a three-loop effect:

OQL) M'z/z P WMy = o) (10)

A full two-loop analysis of mé will be given elsewhere [18]. Here we concentrate on the most
interesting two-loop diagrams, namely those which are o \* and include S-superfield loops, shown in
Fig. 3. One diagram of this type (see Fig. 3a) has been mentioned previously [10] as a possible source
of mj. It has been argued [12] that this particular diagram gives m3 < m%./m$, and we now show
that this conclusion holds true for all the diagrams in Fig. 3.

We first introduce the following notation:

o = (jﬁs) 35)[ [J"Ll ’a;_g){s:s
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where So 1s the tree-level expectation value of $. In terms of the quantities (11)
T
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where we have used the relation Ya = (So + S§)~! which is valid when the tree-level potential is

minimized. For the fields in the S supermultiplet we have
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and the spin-zero S propagators are
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where the angle 6 diagonalizes the spin-zero mass matrix. Using the Weyl representation, the §

fermion propagators take the form
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The gauge non-singlet propagators are
s,
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for spin zero, and
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for spin half.
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The table lists, for each of the diagrams (a) to (k) in Fig. 3, the contribution it makes to m3 and

its quadratically divergent part. We use the notation
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and denote the quadratically divergent parts of the one- and two-loop integrals which appear by
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Here in the text we list the vertices which are needed to calculate each of the diagrams:
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It is immediately apparent from adding up the last column in the table that the quadratically
divergent contributions to mj which are o mg- cancel. There is a residual quadratic divergence
o m3z, but we expect this to cancel against other two-loop diagrams which do not involve S propaga-
tion. We are therefore left with the following estimate for the net two-loop contribution to mj:

2. 0 (ﬁqx" eb%°>m‘" '
W, = axr 28w /M 1)

where we have used
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We apologize for the fact that so far we lack the courage to evaluate the coefficient of the O(miz)
contribution (21).

Equation (21) is the main result of this paper. As mentioned above, we do not expect [9] a
guadratically divergent contribution to m3 from diagrams which do not involve S propagators. In a
future publication {18] we will present a complete analysis of the two-loop diagrams which are o A
and only involve particles from the (T,qbi) supermultiplets. As a sneak preview, we draw the reader’s
attention to the class of such. diagrams shown in Fig. 4. They, together with Figs. 3b and 3f, do have
a net quadratic divergence o« min, but it is solely due to the one-loop subgraphs shown in Fig. 1.
When we include the one-loop counter term which ensures 3V/8T = O(h?) as in Eq. (8), this net
guadratic divergence is cancelled, and this class of diagrams also contributes at most O(mis/mé) to
m3.

We conclude with a final comment on the trilinear supersymmetry-breaking parameter A. This
acquires a one-loop contribution from the same shift in (0[S|0) which contributed [12] to mys in

O(h). A simple calculation gives

|
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using the non-standard normalization of the ¢ fields corresponding to the ¢! propagators (16) and
(17), where
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Comparing (23) and (24) we find
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Introducing the conventional normalization ¢ = (3/Tgr)"?¢ and the reduced coefficient A = A/myz,

we obtain

-Fst = p‘NS -rg - 9
m,, ) 213 (26)

which yields A = 0.05 for a plausible value g = O(1).

Comparing the results (21) and (26) with our previous estimate (4) of myz, it seems to us that the
appropriate initial conditions to be used in renmormalization group analyses of the effective
low-energy theories [Eqs. (1)] inspired by the superstring that we have considered are:

M‘/,_ 2 A > Mo @n

given the phenomenologically necessary assumption ms, < mp. It is possible that other two-loop
diagrams could yield a larger contribution Q(m%,\2) to m3, or that higher-loop diagrams could make
a contribution of this order. We find this unlikely, but the hierarchy (27) of initial conditions might
even survive such an effect, because of the small coefficients (21} characteristic of multi-loop

diagrams.

Acknowledgements

One of us (J.E.) thanks the Democritos Nuclear Research Centre for its kind hospitality while
this work was completed.

The work of D.V.N. was supported in part by DOE grant DE-ACO2-76ER(Q081 and in part by
the University of Wisconsin Research Committee with funds granted by the Wisconsin Alumni
Research Foundation. The work of F.Z. is supported by a Fellowship of the Istituto Nazionale di
Fisica Nucleare, Italy.



(1

[2]
(3]
[4]
{s]
[6]
(7}

(8]

(9]
[10]

(1]

{12]
[13]
{14]
[15]

[16]

[17]
(18]

REFERENCES

For reviews, see J. Ellis, CERN preprint TH.4439/86 (1986);

H.-P. Nilles, CERN preprint TH.4444/86 (1986);

L.E. Ibafnez, CERN preprint TH.4459/86 (1986).

J.H. Schwarz (ed.), Superstrings —the first 15 years (World Scientific, Singapore, 1985).

J.-P. Derendinger, L.E. Ibafiez and H.-P. Nilles, Phys. Lett. 155B, 65 (1985).

M. Dine, R. Rohm, N. Seiberg and E. Witten, Phys. Lett. 1568, 55 (1985).

J. Ellis, C. Kounnas and D.V. Nanopoulos, Nucl. Phys. B247, 373 (1984).

E. Witten, Phys. Lett. 155B, 151 (1985).

E. Cremmer, S. Ferrara, C. Kounnas and D.V. Nanopoulos, Phys. Lett. 133B, 61 (1983);

J. Ellis, A.B. Lahanas, D.V. Nanopoulos and K. Tamvakis, Phys. Lett. 134B, 429 (1934);

J. Ellis, C. Kounnas and D.V. Nanopoulos, Nucl. Phys. B241, 406 (1984).

J.D. Breit, B.A. Ovrut and G. Segré, Phys. Lett. 162B, 303 (1985);

P. Binétruy and M.K. Gaillard, Phys. Lett. 168B, 347 (1986).

G. Diamandis, J. Ellis, A.B. Lahanas and D.V. Nanopoulos, Phys. Lett. 173B, 303 (1986).

Y.J. Ahn and J.ID. Breit, Nucl. Phys. B273, 75 (1986);

Y.J. Ahn and G. Segré, private communication.

P. Binétruy, S. Dawson and 1. Hinchliffe, Phys. Lett. 179B, 262 (1986) and Berkeley preprint
LB1-22322 (1986).

J. Eliis, D.V. Nanopoulos, M. Quirés and F. Zwirner, Phys. Lett. 180B, 83 (1986).

C. Burgess, A. Font and F. Quevedo, Nucl. Phys. B272, 661 (1986).

A. Font, F. Quevedo and M. Quirds, CERN preprint TH.4577/86 (1986).

S. Ferrara, A. Font, F. Quevedo, M. Quirds and M. Villasante, CERN preprint TH.4580/86
(1986).

L.E. Ibafiez and H.-P. Nilles, Phys. Lett. 169B, 354 (1986);

H.-P. Nilles, Phys. Lett. 180B, 240 (1986).

P. van Nieuwenhuizen, Phys. Rep. 68C, 189 (1981).

J. Ellis, A.B. Lahanas, D.V. Nanopoulos, M. Quirds and F. Zwirner, in preparation (1987).



Table

Diagram Contribution to m3 Quadratically
divergent part
g, E (1 IS Ly quw Lk
@ ko Lt e 2§(weend )@,
dledle C 1 4
C>S ey [ - ﬂ%
2 tpgt,
o wmgﬂt RIS )
&) -4 (v Y,

(L"__ -Unc) %ﬁ{% {E“‘\_’_'_g%

“%{S LrEt [~ P

@) -—%'S(V"lz.., T ""tz3 )(Qz
+ € +L, Cnglhéjt[f wr { ;,u,?— } 5 *
tka*s k- .
@) 85— \gd é—a}k {)1(1:}“%) 4:‘& MgQ\
© | SITRE e e sa)
&) 45 { E{”h&q h,,}) - %;m) Heiq,
o | Sww g e 0
.
W % 5 %) o
4] dedY [ ars P
Q’) {S Q fh& S \ 45(&%% “""l';)@?_
(%—, {""-@g”‘ L (- e [
(J) ~4£ (o™ Afh = <O(Slo>“"°°(’ -4 (v +e™),
(k) + 4L (U’-{-U*)S‘EEE + 4§ (v+®a,




Figure captions

Fig.
Fig.
Fig.

Fig.
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One-loop diagrams which might contribute to m3.

One-loop contributions to 9V/9T. Note the correspondence to diagrams (a) to (e) of Fig. 1.
Two-loop diagrams which might contribute to m3, selected bééause‘ they (i) involve S
superfield propagation, (ii) are o A2,

A subset of two-loop diagrams which might contfib‘ute to m3 and are in one-to-one

correspondence with (a), (b), (c), (f) and (g) of Fig. 1.
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