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1 Introduction

High-energy collisions at CERN’s Large Hadron Collider (LHC) provide new opportunities

to search for physics beyond the Standard Model (SM). This paper describes such a search

in events containing a lepton (electron or muon) and missing transverse momentum using

8 TeV pp collision data collected with the ATLAS detector during 2012, corresponding to

a total integrated luminosity of 20.3 fb−1.

The first new-physics scenario that is considered in this paper is the Sequential Stan-

dard Model (SSM), the extended gauge model of ref. [1]. This model proposes the existence

of additional heavy gauge bosons, of which the charged ones are commonly denoted W ′.

The W ′ has the same couplings to fermions as the SM W boson and a width that increases

linearly with theW ′ mass. The coupling of theW ′ toWZ is set to zero. Similar searches [2–

7] have been performed using
√
s = 1.96 TeV pp̄ collision data by the CDF Collaboration,√

s = 7 TeV pp collision data by the ATLAS Collaboration as well as
√
s = 7 TeV and√

s = 8 TeV data by the CMS Collaboration.

The second new-physics scenario that is considered originates from ref. [8] and proposes

the existence of charged partners, denoted W ∗, of the chiral boson excitations described

in ref. [9]. The anomalous (magnetic-moment type) coupling of the W ∗ leads to kinematic

distributions significantly different from those of the W ′ as demonstrated in the previous

ATLAS search [7] that was performed using 7 TeV pp collision data collected in 2011

corresponding to an integrated luminosity of 4.7 fb−1. In the analysis presented in this

paper the search region is expanded to higher masses and the sensitivity is considerably

improved in the region covered by the previous search.
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The third new-physics scenario considered is of direct production of weakly interacting

candidate dark matter (DM) particles. These particles can be pair-produced at the LHC,

pp → χχ̄, via a new intermediate state. Since DM particles do not interact with the

detector material, these events can be detected if there is associated initial-state radiation

of a SM particle [10–13]. The Tevatron and LHC collaborations have reported limits on

the cross-section of pp̄/pp → χχ̄ + X where X is a hadronic jet [14–16], a photon [17,

18], a hadronically decaying W or Z boson [19] or a leptonically decaying Z boson [20].

Previous LHC results have also been reinterpreted to set limits on the scenario where X is

a leptonically decaying W boson [21]. This analysis is the first direct ATLAS search for this

case. Limits are reported for the DM–nucleon scattering cross-section as well as the mass

scale, M∗, of a new SM–DM interaction expressed in an effective field theory (EFT) as a

four-point contact interaction [22–27]. As discussed in the literature, e.g. refs. [28, 29], the

EFT formalism is not always an appropriate approximation but this issue is not addressed

any further in this paper. Four effective operators are used as a representative set based

on the definitions in ref. [13]: D1 scalar, D5 vector (both constructive and destructive

interference cases are considered, the former denoted by D5c and the latter by D5d) and

D9 tensor.

The analysis presented here identifies event candidates in the electron and muon chan-

nels, sets separate limits and then combines these assuming a common branching fraction

for the two final states. The kinematic variable used to identify the signal is the transverse

mass

mT =
√

2pTE
miss
T (1− cosϕℓν), (1.1)

where pT is the lepton transverse momentum, Emiss
T is the magnitude of the missing trans-

verse momentum vector and ϕℓν is the angle between the pT and Emiss
T vectors.1

The main background to theW ′, W ∗ and DM signals comes from the tail of themT dis-

tribution from SM W boson production with decays to the same final state. Other relevant

backgrounds are Z boson production with decays into two leptons where one lepton is not

reconstructed, W or Z production with decays to τ leptons where a τ subsequently decays

to either an electron or a muon, and diboson production. These are collectively referred to

as the electroweak (EW) background. There is also a contribution to the background from

tt̄ and single-top production, collectively referred to as the top background, which is most

important for the lowest W ′/W ∗ masses considered here, where it constitutes about 10% of

the background after event selection in the electron channel and 15% in the muon channel.

Other relevant strong-interaction background sources occur when a light or heavy hadron

decays semileptonically or when a jet is misidentified as an electron or muon. These are

referred to as the multi-jet background in this paper.

1ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the
centre of the detector and the z-axis along the beam pipe. Cylindrical coordinates (r, ϕ) are used in the
transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity η is defined in
terms of the polar angle θ by η = − ln tan(θ/2).
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2 The ATLAS detector

The ATLAS detector [30] is a multi-purpose particle physics detector with a forward-

backward symmetric cylindrical geometry and nearly 4π coverage in solid angle. The AT-

LAS detector has three major components: the inner tracking detector (ID), the calorimeter

and the muon spectrometer (MS). Tracks and vertices of charged particles are reconstructed

with silicon pixel and silicon microstrip detectors covering |η| < 2.5 and straw-tube transi-

tion radiation detectors covering |η| < 2.0, all immersed in a homogeneous 2 T magnetic

field provided by a superconducting solenoid. The ID is surrounded by a hermetic calorime-

ter that covers |η| < 4.9 and provides three-dimensional reconstruction of particle showers.

The electromagnetic calorimeter is a liquid argon (LAr) sampling calorimeter, which uses

lead absorbers for |η| < 3.2 and copper absorbers in the very forward region. The hadronic

sampling calorimeter uses plastic scintillator tiles as the active material and iron absorbers

in the region |η| < 1.7. In the region 1.5 < |η| < 4.9, liquid argon is used as the active

material, with copper and/or tungsten absorbers. The MS surrounds the calorimeters

and consists of three large superconducting toroid systems (each with eight coils) together

with multiple layers of trigger chambers up to |η| < 2.4 and tracking chambers, providing

precision track measurements, up to |η| < 2.7.

3 Trigger and reconstruction

The data used in the electron channel were recorded with a trigger requiring the presence

of an energy cluster in the EM compartment of the calorimeter (EM cluster) with ET >

120 GeV. For the muon channel, matching tracks in the MS and ID with combined pT >

36 GeV are used to select events. In order to compensate for the small loss in the selection

efficiency at high pT due to this matching, events are also recorded if a muon with pT >

40 GeV and |η| < 1.05 is found in the MS. The average trigger efficiency (measured with

respect to reconstructed objects) is above 99% in the electron channel and 80%–90% in the

muon channel for the region of interest in this analysis.

Each EM cluster with ET > 125 GeV and |η| < 1.37 or 1.52 < |η| < 2.47 is considered

as an electron candidate if it is matched to an ID track. The region 1.37 ≤ |η| ≤ 1.52

exhibits degraded energy resolution due to the transition from the central region to the

forward regions of the calorimeters and is therefore excluded. The track and the cluster

must satisfy a set of identification criteria that are optimised for the conditions of many

proton–proton collisions in the same or nearby beam bunch crossings (in-time or out-of-

time pile-up, respectively) [31]. These criteria require the shower profiles to be consistent

with those expected for electrons and impose a minimum requirement on the amount of

transition radiation that is present. In addition, to suppress background from photon

conversions, a hit in the first layer of the pixel detector is required if an active pixel sensor

is traversed. The electron’s energy is obtained from the calorimeter measurements while

its direction is obtained from the associated track. In the high-ET range relevant for this

analysis, the electromagnetic calorimeter energy resolution is measured in data to be 1.2%
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in the central region and 1.8% in the forward region [32]. These requirements result in

about a 90% identification efficiency for electrons with ET > 125 GeV.

Muons are required to have a pT > 45 GeV, where the momentum of the muon is

obtained by combining the ID and MS measurements. To ensure an accurate measurement

of the momentum, muons are required to have hits in three MS layers and are restricted to

the ranges |η| < 1.0 and 1.3 < |η| < 2.0. Some of the chambers in the region 1.0 < |η| < 1.3

were not yet installed, hence the momentum resolution of MS tracks is degraded in this

region. Including the muon candidates with an η-range 2.0 < |η| < 2.5 would lead to an

increase in the signal selection efficiency of up to 12% for lower W ′ masses and of up to

3% for a W ′ mass of 3 TeV. However, the background levels in the signal region would

increase by more than 15%. Therefore, the previously stated η restrictions are retained.

For the final selection of good muon candidates, the individual ID and MS momentum

measurements are required to be in agreement within 5 standard deviations. The average

momentum resolution is about 15%–20% at pT = 1 TeV. About 80% of the muons in the

η-range considered are reconstructed, with most of the loss coming from regions without

three MS layers.

The Emiss
T in each event is evaluated by summing over energy-calibrated physics objects

(jets, photons and leptons) and adding corrections for calorimeter deposits not associated

with these objects [33].

This analysis makes use of all of the
√
s = 8 TeV data collected in 2012 for which the

relevant detector systems were operating properly and all data quality requirements were

satisfied. The integrated luminosity of the data used in this study is 20.3 fb−1 for both the

electron and muon decay channels. The uncertainty on this measurement is 2.8%, which

is derived following the methodology detailed in ref. [34].

4 Monte Carlo simulation

With the exception of the multi-jet background, which is estimated from data, expected

signals and backgrounds are evaluated using simulated Monte Carlo samples and normalised

using the calculated cross-sections and the integrated luminosity of the data.

The W ′ signal events are generated at leading order (LO) with Pythia v8.165 [35, 36]

using the MSTW2008 LO [37] parton distribution functions (PDFs). Pythia is also used

for the fragmentation and hadronisation of W ∗ → ℓν events that are generated at LO with

CalcHEP v3.3.6 [38] using the CTEQ6L1 PDFs [39]. DM signal samples are generated at

LO with Madgraph5 v1.4.5 [40] using the MSTW2008 LO PDFs, interfaced to Pythia

v8.165.

The W/Z boson and tt̄ backgrounds are generated at next-to-leading order (NLO)

with Powheg-Box r1556 [41] using the CT10 NLO [42] PDFs. For the W/Z backgrounds,

fragmentation and hadronisation is performed with Pythia v8.165, while for tt̄ Pythia

v6.426 is used. The single-top background is generated at NLO with MC@NLO v4.06 [43]

using the CT10 NLO PDFs for the Wt- and s-channels, and with AcerMC v3.8 [44] using

the CTEQ6L1 PDFs for the t-channel. Fragmentation and hadronisation for the MC@NLO

samples are performed with Herwig v6.520 [45], using Jimmy v4.31 [46] for the underlying
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event, whereas Pythia v6.426 is used for the AcerMC samples. The WW , WZ and ZZ

diboson backgrounds are generated at LO with Sherpa v1.4.1 [47] using the CT10 NLO

PDFs.

The Pythia signal model for W ′ has V−A SM couplings to fermions but does not

include interference between the W and W ′. For both W ′ and W ∗, decay channels beside

eν and µν, notably τν, ud, sc and tb, are included in the calculation of the widths but are

not explicitly included as signal or background. At high mass (mW ′ > 1 TeV), the total

width is about 3.5 % of the pole mass, and the branching fraction to each of the lepton

decay channels is 8.2%.

For all samples, final-state photon radiation from leptons is handled by Photos [48].

The ATLAS full detector simulation [49] based on Geant4 [50] is used to propagate the

particles and account for the response of the detector. For the underlying event, the AT-

LAS tune AUET2B [51] is used for Pythia 6 and AU2 [52] is used for Pythia 8, while

AUET2 [53] is used for the Herwig with Jimmy. The effect of pile-up is incorporated into

the simulation by overlaying additional minimum-bias events generated with Pythia onto

the generated hard-scatter events. Simulated events are weighted to match the distribu-

tion of the number of interactions per bunch crossing observed in data, but are otherwise

reconstructed in the same manner as data.

The W → ℓν and Z → ℓℓ cross-sections are calculated at next-to-next-to-leading order

(NNLO) in QCD with ZWPROD [54] using MSTW2008 NNLO PDFs. Consistent results

are obtained using VRAP v0.9 [55] and FEWZ v3.1b2 [56, 57]. Higher-order electroweak

corrections are calculated with MCSANC [58]. Mass-dependent K-factors obtained from

the ratios of the calculated higher-order cross-sections to the cross-sections of the generated

samples are used to scale W+, W− and Z backgrounds separately. The W ′ → ℓν cross-

sections are calculated in the same way, except that the electroweak corrections beyond

final-state radiation are not included because the calculation for the SM W cannot be ap-

plied directly. Cross sections for W ∗ → ℓν are kept at LO due to the non-renormalisability

of the model at higher orders in QCD. The tt̄ cross-section is also calculated at NNLO

including resummation of next-to-next-to-leading logarithmic (NNLL) soft gluon terms ob-

tained with Top++ v2.0 [59–64] for a top quark mass of 172.5 GeV. TheW ′, W ∗, and DM

particle signal cross-sections are listed in tables 1 and 2. The most important background

cross-sections are listed in table 3.

Uncertainties on the W ′ cross-section and the W/Z background cross-sections are esti-

mated from variations of the renormalisation and factorisation scales, PDF+αs variations

and PDF choice. The scale uncertainties are estimated by varying both the renormalisation

and factorisation scales simultaneously up or down by a factor of two. The resulting maxi-

mum variation from the two fluctuations is taken as the symmetric scale uncertainty. The

PDF+αs uncertainty is evaluated using 90% confidence level (CL) eigenvector and 90%

CL αs variations of the nominal MSTW2008 NNLO PDF set and combined with the scale

uncertainty in quadrature. The PDF choice uncertainty is evaluated by comparing the

central values of the MSTW2008 NNLO, CT10 NNLO, NNPDF 2.3 NNLO [65], ABM11

5N NNLO [66] and HERAPDF 1.5 NNLO [67] PDF sets. The envelope of the PDF central

value comparisons and the combination of the scale and PDF+αs uncertainties is taken as
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Table 1. Predicted values of the cross-section times branching fraction (σB) for W ′ → ℓν and
W ∗ → ℓν. The σB for W ′ → ℓν are at NNLO while those for W ∗ → ℓν are at LO. The values are
given per channel, with ℓ = e or µ.

Mass W ′ → ℓν W ∗ → ℓν
[GeV] σB [pb] σB [pb]

300 149.0
400 50.2 37.6
500 21.4 16.2
600 10.4 7.95
750 4.16 3.17
1000 1.16 0.882
1250 0.389 0.294
1500 0.146 0.108
1750 0.0581 0.0423
2000 0.0244 0.0171
2250 0.0108 0.00700
2500 0.00509 0.00290
2750 0.00258 0.00120
3000 0.00144 4.9×10−4

3250 8.9×10−4 2.0×10−4

3500 5.9×10−4 8.0×10−5

3750 4.2×10−4 3.2×10−5

4000 3.1×10−4 1.3×10−5

Table 2. Predicted values of σB for DM signal with different mass values, mχ. The values of M∗

used in the calculation for a given operator are also shown. The cross-sections are at LO, and the
values are given for the sum of three lepton flavours ℓ = e, µ, τ .

DM production
mχ σB [pb]

[GeV] D1 D5d D5c D9
M∗ = 10 GeV M∗ = 100 GeV M∗ = 1 TeV M∗ = 1 TeV

1 439 72.2 0.0608 0.0966
100 332 70.8 0.0575 0.0870
200 201 58.8 0.0488 0.0695
400 64.6 32.9 0.0279 0.0365

1000 1.60 2.37 0.00192 0.00227
1300 0.213 0.454 0.000351 0.000412
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Table 3. Predicted values of σB for the leading backgrounds. The value for tt̄ → ℓX includes
all final states with at least one lepton (e, µ or τ). The others are exclusive and are used for both
ℓ = e and ℓ = µ. All cross-sections are at NNLO.

Process σB [pb]

W → ℓν 12190
Z/γ∗ → ℓℓ (mZ/γ∗ > 60 GeV) 1120

tt̄ → ℓX 137.3

the total uncertainty on the differential cross-section as a function of the invariant mass of

the lepton–neutrino system (mℓν). The PDF and αs uncertainties on the tt̄ cross-section

are calculated using the PDF4LHC prescription [68] with the MSTW2008 68% CL NNLO,

CT10 NNLO and NNPDF2.3 5f FFN PDF error sets added in quadrature to the scale

uncertainty. The systematic uncertainty arising from the variation of the top mass by

±1 GeV is also added in quadrature.

An additional uncertainty on the differential cross-section due to the beam energy

uncertainty is calculated as function of mℓν for the charged-current Drell–Yan process with

VRAP at NNLO using CT10 NNLO PDFs by taking a 0.66% uncertainty on the energy of

each 4 TeV proton beam as determined in ref. [69]. The size of this uncertainty is observed

to be about 2% (6%) at mℓν = 2 (3) TeV. The calculated uncertainties are propagated

to both the W and W ′/W ∗ processes in order to derive uncertainties on the background

levels as well as the signal selection efficiencies in each signal region.

Uncertainties are not reported on the cross-sections for the W ∗ due to the breakdown

of higher-order corrections for non-renormalisable models. However, uncertainties on the

signal selection efficiency for the W ∗ are evaluated using the same relative differential cross-

section uncertainty as for the W ′. Uncertainties on DM production are evaluated using

68% confidence level eigenvector variations of the nominal MSTW2008 LO PDF set as

in [19].

5 Event selection

The primary vertex for each event is required to have at least three tracks with pT >

0.4 GeV and to have a longitudinal distance less than 200 mm from the centre of the

collision region. There are on average 20.7 interactions per event in the data used for this

analysis. The primary vertex is defined to be the one with the highest summed track p2T.

Spurious tails in the Emiss
T distribution, arising from calorimeter noise and other detector

problems are suppressed by checking the quality of each reconstructed jet and discarding

events containing reconstructed jets of poor quality, following the description given in

ref. [70]. In addition, the ID track associated with the electron or muon is required to

be compatible with originating from the primary vertex by requiring that the transverse

distance of closest approach, d0, satisfies |d0| < 1 (0.2) mm and longitudinal distance, z0,

satisfies |z0| < 5 (1) mm for the electron (muon). Events are required to have exactly
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one electron candidate with ET > 125 GeV or one muon candidate with pT > 45 GeV

satisfying these requirements and the identification criteria described in section 3. In

the electron channel, events having additional electrons with ET > 20 GeV, passing all

electron identification criteria, are discarded. Similarly, in the muon channel, events having

additional muon candidates with a pT threshold of 20 GeV are discarded.

To suppress the multi-jet background, the lepton is required to be isolated. In the elec-

tron channel, the isolation energy is measured with the calorimeter in a cone ∆R =
√

(∆η)2 + (∆ϕ)2 = 0.2

around the electron track, and the requirement is ΣEcalo
T < 0.007×ET +5 GeV, where the

sum includes all calorimeter energy clusters in the cone excluding those that are attributed

to the electron. The scaling of the isolation requirement with the electron ET reduces the

efficiency loss due to radiation from the electron at high ET. In the muon channel, the

isolation energy is measured using ID tracks with ptrkT > 1 GeV in a cone ∆R = 0.3 around

the muon track. The isolation requirement is
∑

ptrkT < 0.05 × pT, where the muon track is

excluded from the sum. As in the electron channel, the scaling of the isolation requirement

with the muon pT reduces the efficiency loss due to radiation from the muon at high pT.

An Emiss
T requirement is imposed to select signal events and to further suppress the

contributions from the multi-jet and SMW backgrounds. In both channels, the requirement

placed on the charged lepton pT is also applied to the Emiss
T : Emiss

T > 125 GeV for the

electron channel and Emiss
T > 45 GeV for the muon channel.

The multi-jet background around the Jacobian peak of themT distribution is evaluated

using the matrix method as described in ref. [71] in both the electron and muon channels.

The high-mass tail of the distribution is then fitted by a power-law function in order to de-

termine the level of the multi-jet background in the region used to search for new physics.

In the electron channel, the multi-jet background constitutes about 2%–4% of the total

background at high mT. Consistent results are obtained using the inverted isolation tech-

nique described in ref. [5]. In the muon channel, the multi-jet background constitutes about

1%–3% of the total background at high mT. The uncertainty of the multi-jet background

is determined by varying the selection requirements used to define the control region and

by varying the mT threshold of the fitting range used in the extrapolation to high mT.

The same reconstruction criteria and event selection are applied to both the data

and simulated samples. Figure 1 shows the pT, E
miss
T , and mT spectra for each channel

after event selection for the data, the expected background and three examples of W ′

signals at different masses. Prior to investigating if there is evidence for a signal, the

agreement between the data and the predicted background is established for events with

mT < 252 GeV, the lowest mT threshold used to search for new physics. The optimisation

of the mT thresholds for event selection is described below. The agreement between the

data and expected background is good. Table 4 shows an example of how different sources

contribute to the background for mT > 1500 GeV, the region used to search for a W ′ with

a mass of 2000 GeV. The W → ℓν background is the dominant contribution for both the

electron and muon channels. The Z → ℓℓ background in the electron channel is smaller

than in the muon channel due to calorimeters having larger η coverage than the MS, and

the electron energy resolution being better than the muon momentum resolution at high

pT.
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Figure 1. Spectra of lepton pT (top), Emiss
T (centre) and mT (bottom) for the electron (left) and

muon (right) channels after the event selection. The spectra of pT and Emiss
T are shown with the

requirement mT > 252 GeV. The points represent data and the filled, stacked histograms show
the predicted backgrounds. Open histograms are W ′ → ℓν signals added to the background with
their masses in GeV indicated in parentheses in the legend. The signal and background samples
are normalised using the integrated luminosity of the data and the NNLO cross-sections listed in
tables 1 and 3, except for the multi-jet background which is estimated from data. The error bars
on the data points are statistical. The ratio of the data to the total background prediction is
shown below each of the distributions. The bands represent the systematic uncertainties on the
background including the ones arising from the statistical uncertainty of the simulated samples.
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Table 4. Expected numbers of events from the various background sources in each decay channel
for mT > 1500 GeV, the region used to search for a W ′ with a mass of 2000 GeV. The W → ℓν and
Z → ℓℓ rows include the expected contributions from the τ -lepton. The uncertainties are statistical.

eν µν

W → ℓν 2.65 ± 0.10 2.28 ± 0.21
Z → ℓℓ 0.00163 ± 0.00022 0.232 ± 0.005
Diboson 0.27 ± 0.23 0.46 ± 0.23
Top 0.0056 ± 0.0009 0.0017 ± 0.0001
Multi-jet 0.066 ± 0.020 0.046 ± 0.039

Total 2.99 ± 0.25 3.01 ± 0.31

6 Statistical analysis and systematic uncertainties

A Bayesian analysis is performed to set limits on the studied processes. For each candidate

mass and decay channel, events are counted above an mT threshold. The optimisation

of mTmin is done separately for W ′ → ℓν and W ∗ → ℓν. For each candidate mass, the

mTmin values that minimise the expected cross-section limits are obtained in the electron

and muon channels separately, but for simplicity the lower value is used in both channels

since this has a negligible impact on the final results. A similar optimisation is performed

when setting the limits on DM production, and in this case a single mTmin is chosen for

each operator. The expected number of events in each channel is

Nexp = εsigLintσB +Nbkg, (6.1)

where Lint is the integrated luminosity of the data sample, εsig is the signal selection

efficiency defined as the fraction of signal events that satisfy the event selection criteria as

well as mT > mTmin, Nbkg is the expected number of background events, and σB is the

cross-section times branching fraction. Using Poisson statistics, the likelihood to observe

Nobs events is

L(Nobs|σB) =
(LintεsigσB +Nbkg)

Nobse−(LintεsigσB+Nbkg)

Nobs!
. (6.2)

Uncertainties are included by introducing nuisance parameters θi, each with a probability
density function gi(θi), and integrating the product of the Poisson likelihood with the
probability density function. The integrated likelihood is

LB(Nobs|σB) =

∫

L(Nobs|σB)
∏

gi(θi)dθi, (6.3)

where a log-normal distribution is used for the gi(θi). The nuisance parameters are taken

to be: Lint, εsig and Nbkg, with the appropriate correlation accounted for between the first

and the third parameters.

The measurements in the two decay channels are combined assuming the same branch-
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ing fraction for each. Equation (6.3) remains valid with the Poisson likelihood replaced by

the product of the Poisson likelihoods for the two channels. The integrated luminosities for

the electron and muon channels are fully correlated. For W ′/W ∗ → ℓν the signal selection

efficiencies and background levels are partly correlated with each other and between the

two channels due to the full correlation of the cross-section uncertainties. If these correla-

tions were not included, the observed σB limits would improve by 25%–30% for the lowest

mass points, a few percent for the intermediate mass points and by about 10% for the

highest mass points.

Bayes’ theorem gives the posterior probability that the signal has signal strength σB:

Ppost(σB|Nobs) = NLB(Nobs|σB)Pprior(σB) (6.4)

where Pprior(σB) is the assumed prior probability, here chosen to be flat in σB, for σB > 0.

The constant factor N normalises the total probability to one. The posterior probability is

evaluated for each mass and decay channel as well as for their combination, and then used

to set a limit on σB.

The inputs for the evaluation of LB (and hence Ppost) are Lint, εsig, Nbkg, Nobs and

the uncertainties on the first three. The uncertainties on εsig and Nbkg account for experi-

mental and theoretical systematic effects as well as the statistics of the simulated samples.

The experimental systematic uncertainties include those on the efficiencies of the electron

or muon trigger, reconstruction and event/object selection. Uncertainties in the lepton

energy/momentum and Emiss
T , characterised by scale and resolution uncertainties, are also

included. Performance metrics are obtained in-situ using well-known processes such as

Z → ℓℓ [31, 72, 73]. Since most of these performance metrics are measured at relatively

low pT their values are extrapolated to the high-pT regime relevant to this analysis using

MC simulation. The uncertainties in these extrapolations are included but are too small to

significantly affect the results. Table 5 summarises the uncertainties on the event selection

efficiencies and the expected number of background events for the W ′ → ℓν signal with

mW ′ = 2000 GeV using mT > 1500 GeV, and W ∗ signal with mW ∗ = 2000 GeV using

mT > 1337 GeV.
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Table 5. Relative uncertainties on the selection efficiency εsig and expected number of background
events Nbkg for a W ′ (upper part of the table) and W ∗ (lower part of the table) with a mass of
2000 GeV. The efficiency uncertainties include contributions from the trigger, reconstruction and
event selection. The last row gives the total relative uncertainties.

εsig Nbkg

Source eν µν eν µν

W ′ → ℓν

Reconstruction and trigger efficiency 2.5% 4.1% 2.7% 4.1%
Lepton energy/momentum resolution 0.2% 1.4% 1.9% 18%
Lepton energy/momentum scale 1.2% 1.8% 3.5% 1.5%
Emiss

T scale and resolution 0.1% 0.1% 1.2% 0.5%
Beam energy 0.5% 0.5% 2.8% 2.1%
Multi-jet background - - 2.2% 3.4%
Monte Carlo statistics 0.9% 1.3% 8.5% 10%
Cross-section (shape/level) 2.9% 2.8% 18% 15%

Total 4.2% 5.6% 21% 27%

W ∗ → ℓν

Reconstruction and trigger efficiency 2.7% 4.1% 2.6% 4.0%
Lepton energy/momentum resolution 0.4% 0.9% 3.0% 17%
Lepton energy/momentum scale 2.4% 2.4% 3.1% 1.5%
Emiss

T scale and resolution 0.1% 0.4% 3.1% 0.6%
Beam energy 0.1% 0.1% 2.5% 1.9%
Multi-jet background - - 1.8% 2.6%
Monte Carlo statistics 1.2% 1.8% 6.7% 8.6%
Cross-section (shape/level) 0.2% 0.2% 17% 15%

Total 3.9% 5.1% 19% 25%

7 Results

The inputs for the evaluation of LB are listed in tables 6, 7 and 8. The uncertainties

on εsig and Nbkg account for all relevant experimental and theoretical effects except for

the uncertainty on the integrated luminosity. The latter is included separately and is

correlated between signal and background. The tables also list the predicted numbers of

signal events, Nsig, with their uncertainties accounting for the uncertainties in both εsig and

the cross-section calculation. The maximum value for the signal selection efficiency is at

mW ′ = 2000 GeV. For lower masses, the efficiency falls because the relative mT threshold,

mTmin/mW ′ , increases in order to reduce the background level. The contribution from

W ′ → τν with a leptonically decaying τ is neglected. It would increase the signal yield

by 2%–3% for the highest masses. The background level is estimated for each mass by

summing over all of the background sources.
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Table 6. Inputs for the W ′ → ℓν σB limit calculations. The first three columns are the W ′

mass, mT threshold and decay channel. The next two are the signal selection efficiency, εsig, and
the prediction for the number of signal events, Nsig, obtained with this efficiency. The last two
columns are the expected number of background events, Nbkg, and the number of events observed
in data, Nobs. The uncertainties on Nsig and Nbkg include contributions from the uncertainties on
the cross-sections but not from that on the integrated luminosity.

mW ′ mTmin Channel εsig Nsig Nbkg Nobs

[GeV] [GeV]

300 252
eν 0.228 ± 0.009 688000 ± 28000 12900 ± 820 12717
µν 0.184 ± 0.007 555000 ± 21000 11300 ± 770 10927

400 336
eν 0.319 ± 0.012 325000 ± 12000 5280 ± 360 5176
µν 0.193 ± 0.007 196000 ± 7500 3490 ± 250 3317

500 423
eν 0.325 ± 0.013 141000 ± 5700 2070 ± 150 2017
µν 0.186 ± 0.007 80900 ± 3200 1370 ± 100 1219

600 474
eν 0.397 ± 0.014 83800 ± 2900 1260 ± 96 1214
µν 0.229 ± 0.009 48200 ± 1900 827 ± 64 719

750 597
eν 0.393 ± 0.013 33200 ± 1100 456 ± 45 414
µν 0.226 ± 0.009 19100 ± 750 305 ± 30 255

1000 796
eν 0.386 ± 0.012 9080 ± 290 116 ± 15 101
µν 0.219 ± 0.009 5160 ± 220 84 ± 10 58

1250 1002
eν 0.378 ± 0.012 2980 ± 98 35.3 ± 5.8 34
µν 0.210 ± 0.009 1650 ± 73 28.3 ± 4.6 19

1500 1191
eν 0.376 ± 0.014 1110 ± 40 13.2 ± 2.5 14
µν 0.206 ± 0.010 610 ± 30 10.9 ± 2.3 6

1750 1416
eν 0.336 ± 0.013 396 ± 16 4.56 ± 0.92 5
µν 0.182 ± 0.010 214 ± 12 4.3 ± 1.1 0

2000 1500
eν 0.370 ± 0.015 183.0 ± 7.7 2.99 ± 0.61 3
µν 0.198 ± 0.011 98.0 ± 5.5 3.01 ± 0.80 0

2250 1683
eν 0.327 ± 0.015 71.5 ± 3.3 1.38 ± 0.33 0
µν 0.173 ± 0.011 37.9 ± 2.3 1.44 ± 0.33 0

2500 1888
eν 0.262 ± 0.018 27.1 ± 1.8 0.432 ± 0.091 0
µν 0.140 ± 0.012 14.4 ± 1.2 0.61 ± 0.15 0

2750 1888
eν 0.235 ± 0.024 12.3 ± 1.3 0.432 ± 0.091 0
µν 0.127 ± 0.014 6.64 ± 0.74 0.61 ± 0.15 0

3000 1888
eν 0.183 ± 0.029 5.33 ± 0.86 0.432 ± 0.091 0
µν 0.100 ± 0.016 2.93 ± 0.48 0.61 ± 0.15 0

3250 1888
eν 0.124 ± 0.033 2.22 ± 0.59 0.432 ± 0.091 0
µν 0.069 ± 0.018 1.24 ± 0.32 0.61 ± 0.15 0

3500 1888
eν 0.077 ± 0.031 0.92 ± 0.36 0.432 ± 0.091 0
µν 0.044 ± 0.017 0.52 ± 0.20 0.61 ± 0.15 0

3750 1888
eν 0.047 ± 0.024 0.40 ± 0.21 0.432 ± 0.091 0
µν 0.028 ± 0.013 0.24 ± 0.11 0.61 ± 0.15 0

4000 1888
eν 0.031 ± 0.018 0.20 ± 0.11 0.432 ± 0.091 0
µν 0.019 ± 0.010 0.121 ± 0.061 0.61 ± 0.15 0
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Table 7. Inputs for the W ∗ → ℓν σB limit calculations. The columns are the same as in table 6.

mW ∗ mTmin Channel εsig Nsig Nbkg Nobs

[GeV] [GeV]

400 317
eν 0.196 ± 0.010 149000 ± 7400 6630 ± 440 6448
µν 0.111 ± 0.005 84900 ± 3700 4420 ± 310 4230

500 377
eν 0.246 ± 0.011 80900 ± 3500 3320 ± 220 3275
µν 0.140 ± 0.006 45900 ± 1900 2210 ± 160 2008

600 448
eν 0.257 ± 0.011 41400 ± 1800 1630 ± 120 1582
µν 0.144 ± 0.006 23200 ± 960 1080 ± 79 938

750 564
eν 0.248 ± 0.011 15900 ± 680 593 ± 54 524
µν 0.143 ± 0.006 9200 ± 400 388 ± 35 321

1000 710
eν 0.302 ± 0.013 5390 ± 230 203 ± 24 177
µν 0.174 ± 0.007 3100 ± 130 143 ± 17 109

1250 843
eν 0.337 ± 0.013 2010 ± 79 86 ± 12 79
µν 0.191 ± 0.008 1140 ± 50 65.5 ± 8.5 40

1500 1062
eν 0.296 ± 0.011 648 ± 25 25.8 ± 4.4 26
µν 0.164 ± 0.007 360 ± 16 20.9 ± 3.8 12

1750 1191
eν 0.324 ± 0.013 278 ± 11 13.2 ± 2.5 14
µν 0.182 ± 0.009 156.0 ± 7.6 10.9 ± 2.3 6

2000 1337
eν 0.341 ± 0.013 118.0 ± 4.6 6.8 ± 1.3 9
µν 0.186 ± 0.010 64.6 ± 3.3 5.8 ± 1.4 3

2250 1416
eν 0.391 ± 0.014 55.5 ± 2.0 4.56 ± 0.92 5
µν 0.204 ± 0.010 28.9 ± 1.5 4.3 ± 1.1 0

2500 1683
eν 0.337 ± 0.013 19.80 ± 0.76 1.38 ± 0.33 0
µν 0.179 ± 0.010 10.50 ± 0.57 1.44 ± 0.33 0

2750 1888
eν 0.322 ± 0.013 7.84 ± 0.31 0.432 ± 0.091 0
µν 0.161 ± 0.011 3.92 ± 0.27 0.61 ± 0.15 0

3000 1888
eν 0.382 ± 0.015 3.80 ± 0.15 0.432 ± 0.091 0
µν 0.185 ± 0.011 1.84 ± 0.11 0.61 ± 0.15 0

3250 1888
eν 0.437 ± 0.018 1.770 ± 0.073 0.432 ± 0.091 0
µν 0.218 ± 0.014 0.880 ± 0.056 0.61 ± 0.15 0

3500 1888
eν 0.474 ± 0.025 0.766 ± 0.040 0.432 ± 0.091 0
µν 0.229 ± 0.016 0.371 ± 0.027 0.61 ± 0.15 0

3750 1888
eν 0.498 ± 0.055 0.320 ± 0.035 0.432 ± 0.091 0
µν 0.244 ± 0.029 0.157 ± 0.019 0.61 ± 0.15 0

4000 1888
eν 0.487 ± 0.150 0.124 ± 0.038 0.432 ± 0.091 0
µν 0.242 ± 0.073 0.062 ± 0.019 0.61 ± 0.15 0
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Table 8. Inputs to the limit calculations on the pair production of DM particles for the operators
D1, D5d, D5c and D9. Expected number of signal events for each operator is calculated for a
different value of the mass scale, notably M∗ = 10 GeV for D1, M∗ = 100 GeV for D5d, and
M∗ = 1 TeV for operators D9 and D5c. The columns are the same as in table 6.

mχ mTmin Channel εsig Nsig Nbkg Nobs

[GeV] [GeV]

D1 Operator

1

796

eν 0.0294 ± 0.0044 87000 ± 13000

eν 116± 15 101

µν 0.0177 ± 0.0023 52500 ± 7000

µν 84± 10 58

100
eν 0.0396 ± 0.0052 89000 ± 12000
µν 0.0252 ± 0.0033 56600 ± 7500

200
eν 0.0484 ± 0.0057 65800 ± 7700
µν 0.0293 ± 0.0034 39900 ± 4600

400
eν 0.0709 ± 0.0071 30900 ± 3100
µν 0.0398 ± 0.0041 17300 ± 1800

1000
eν 0.0989 ± 0.0100 1070 ± 110
µν 0.0621 ± 0.0068 673± 73

1300
eν 0.0964 ± 0.0095 138± 14
µν 0.0522 ± 0.0048 75.1 ± 6.9

D5d Operator

1

597

eν 0.0148 ± 0.0016 7230 ± 800

eν 456± 45 414

µν 0.0080 ± 0.0011 3890 ± 530

µν 305± 30 255

100
eν 0.0158 ± 0.0018 7580 ± 850
µν 0.0096 ± 0.0012 4600 ± 580

200
eν 0.0147 ± 0.0015 5850 ± 610
µν 0.0086 ± 0.0011 3420 ± 430

400
eν 0.0190 ± 0.0020 4220 ± 440
µν 0.0113 ± 0.0013 2500 ± 300

1000
eν 0.0281 ± 0.0025 450± 41
µν 0.0177 ± 0.0019 283± 30

1300
eν 0.0291 ± 0.0028 89.3 ± 8.5
µν 0.0167 ± 0.0018 51.1 ± 5.4

D5c Operator

1

843

eν 0.0737 ± 0.0047 30.3 ± 1.9

eν 86± 12 79

µν 0.0435 ± 0.0034 17.9 ± 1.4

µν 65.5± 8.5 40

100
eν 0.0798 ± 0.0050 31.0 ± 1.9
µν 0.0437 ± 0.0034 17.0 ± 1.3

200
eν 0.0762 ± 0.0049 25.1 ± 1.6
µν 0.0461 ± 0.0034 15.2 ± 1.1

400
eν 0.0857 ± 0.0055 16.2 ± 1.0
µν 0.0532 ± 0.0040 10.0 ± 0.8

1000
eν 0.0987 ± 0.0091 1.28 ± 0.12
µν 0.0636 ± 0.0057 0.824 ± 0.074

1300
eν 0.1010 ± 0.0095 0.240 ± 0.023
µν 0.0589 ± 0.0057 0.140 ± 0.014

D9 Operator

1

843

eν 0.0851 ± 0.0053 55.5 ± 3.5

eν 86± 12 79

µν 0.0517 ± 0.0035 33.8 ± 2.3

µν 65.5± 8.5 40

100
eν 0.0950 ± 0.0056 55.8 ± 3.3
µν 0.0529 ± 0.0038 31.1 ± 2.3

200
eν 0.1040 ± 0.0062 48.9 ± 2.9
µν 0.0553 ± 0.0039 26.0 ± 1.8

400
eν 0.1030 ± 0.0067 25.5 ± 1.6
µν 0.0578 ± 0.0042 14.3 ± 1.0

1000
eν 0.1070 ± 0.0092 1.63 ± 0.14
µν 0.0615 ± 0.0055 0.944 ± 0.084

1300
eν 0.1020 ± 0.0100 0.285 ± 0.029
µν 0.0573 ± 0.0056 0.160 ± 0.016
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The number of observed events is generally in good agreement with the expected

number of background events for all mass bins. None of the observations for any mass

point in either channel or their combination show a significant excess above background,

so there is no evidence for the observation of either W ′ → ℓν or W ∗ → ℓν. A deficit in the

number of observed events with respect to the expected number of background events is

observed in the muon channel. This deficit has at most a 2.2σ local significance.

Tables 9 and 10 and figure 2 present the 95% confidence level (CL) observed limits on

σB for both W ′ → ℓν and W ∗ → ℓν in the electron channel, the muon channel and their

combination. The tables also give the limits obtained without systematic uncertainties.

Limits with various subsets of the systematic uncertainties are shown for W ′ → ℓν as a

representative case. The uncertainties on the signal selection efficiency have very little effect

on the final limits, and the background-level and luminosity uncertainties are important

only for the lowest masses. Figure 2 also shows the expected limits and the theoretical

σB for a W ′ and for a W ∗. Limits are evaluated by fixing the W ∗ coupling strengths to

give the same partial decay widths as the W ′. The off-shell production of W ′ degrades the

acceptance at high mass, worsening the limits. As discussed in chapter 1, W ∗ has different

couplings with respect to W ′, enhancing the production at the pole. Since the off-shell

production is reduced with respect to W ′, the W ∗ limits do not show the same behaviour

at high mass.

In figure 2 the intersection between the central theoretical prediction and the observed

limits provides the 95% CL lower limits on the mass. The expected and observed W ′ and

W ∗ mass limits for the electron and muon decay channels as well as their combination

are listed in table 11. The difference between the expected and observed combined mass

limits originate from the slight data deficit in each decay channel that are individually

not significant. The band around the theoretical prediction in figure 2 indicates the total

theory uncertainty as described earlier in the text. The mass limit for the W ′ decreases by

50 GeV if the intersection between the lower theoretical prediction and the observed limit

is used. The uncertainties on εsig, Nbkg and Lint affect the derived mass limits by a similar

amount. Limits are also evaluated following the CLs prescription [74] using the profile

likelihood ratio as the test statistic including all uncertainties. The cross-section limits are

found to agree within 10% across the entire mass range, with only marginal impact on

the mass limit. The mass limits presented here are a significant improvement over those

reported in previous ATLAS and CMS searches [4–7].

The results of the search for pair production of DM particles in association with a

leptonically decaying W boson are shown in figures 3 and 4. The former shows the observed

limits on M∗, the mass scale of the unknown mediating interaction for the DM particle

pair production, whereas the latter shows the observed limits on the DM–nucleon scattering

cross-section. Both are shown as a function of the DM particle mass, mχ, and presented

at 90% CL. Results of the previous ATLAS searches for hadronically decaying W/Z [19],

leptonically decaying Z [20], and j + χχ [15] are also shown. The observed limits on M∗

as a function of mχ are by a factor ∼1.5 stronger in the search for DM production in

association with hadronically decaying W with respect the ones presented in this paper.
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Table 9. Observed upper limits on σB for W ′ and W ∗ with masses up to 2000 GeV. The first
column is the W ′/W ∗ mass and the following columns refer to the 95% CL limits for the W ′ with
headers indicating the nuisance parameters for which uncertainties are included: S for the event
selection efficiency (εsig), B for the background level (Nbkg), and L for the integrated luminosity
(Lint). The column labelled SBL includes all uncertainties neglecting correlations. Results are also
presented when including the correlation of the signal and background cross-section uncertainties,
as well as the correlation of the background cross-section uncertainties for the combined limits (SBc,
SBcL). The last two columns show the limits for the W ∗ without nuisance parameters and when
including all nuisance parameters with correlations.

mW ′/W∗ [GeV] Channel 95% CL limit on σB [fb]
W ′ W ∗

none S SB SBL SBc SBcL none SBcL

300
eν 29.0 29.1 304 342 305 343
µν 22.4 22.4 327 363 327 363
both 14.2 14.2 219 269 290 331

400
eν 14.1 14.1 94.8 105 95.0 105 20.7 204
µν 12.6 12.6 91.3 102 91.4 102 25.1 233
both 7.55 7.56 63.4 77.0 83.2 94.7 12.6 197

500
eν 9.14 9.18 38.7 42.2 38.8 42.4 17.3 87.5
µν 6.42 6.44 30.6 34.0 30.7 34.1 10.5 77.9
both 4.26 4.26 22.3 27.0 29.8 33.9 7.54 77.7

600
eν 5.67 5.68 19.5 21.2 19.7 21.4 10.4 43.9
µν 4.38 4.40 15.5 17.0 15.6 17.1 7.11 32.8
both 2.78 2.78 11.1 13.2 15.5 17.4 4.75 33.9

750
eν 2.95 2.95 8.25 8.71 8.35 8.81 4.23 14.9
µν 3.33 3.34 7.89 8.35 7.97 8.43 5.23 14.7
both 1.73 1.73 5.06 5.63 7.01 7.52 2.51 12.8

1000
eν 1.84 1.85 3.25 3.34 3.29 3.38 2.69 6.01
µν 1.86 1.87 2.87 2.95 2.92 3.00 3.02 5.88
both 1.03 1.04 1.86 1.96 2.48 2.58 1.57 4.94

1250
eν 1.63 1.64 2.06 2.09 2.09 2.12 2.29 3.65
µν 1.62 1.62 2.01 2.04 2.04 2.07 1.78 2.60
both 0.990 0.991 1.30 1.34 1.54 1.57 1.16 2.53

1500
eν 1.27 1.28 1.40 1.41 1.42 1.43 1.99 2.39
µν 1.21 1.22 1.35 1.36 1.37 1.38 1.71 2.06
both 0.775 0.777 0.879 0.890 0.967 0.979 1.14 1.63

1750
eν 0.964 0.967 0.993 0.997 1.01 1.01 1.48 1.64
µν 0.813 0.818 0.818 0.821 0.827 0.831 1.37 1.54
both 0.521 0.522 0.533 0.537 0.563 0.567 0.889 1.10

2000
eν 0.721 0.724 0.735 0.738 0.743 0.746 1.34 1.40
µν 0.747 0.751 0.751 0.754 0.760 0.762 1.18 1.26
both 0.415 0.416 0.422 0.424 0.439 0.441 0.831 0.922
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Table 10. Observed upper limits on σB for W ′ and W ∗ with masses above 2000 GeV. The
columns are the same as in table 9.

mW ′/W∗ [GeV] Channel 95% CL limit on σB [fb]
W ′ W ∗

none S SB SBL SBc SBcL none SBcL

2250
eν 0.453 0.455 0.455 0.456 0.458 0.459 0.830 0.859
µν 0.853 0.859 0.859 0.862 0.866 0.869 0.726 0.734
both 0.296 0.297 0.297 0.298 0.301 0.303 0.457 0.488

2500
eν 0.564 0.569 0.569 0.570 0.572 0.573 0.438 0.441
µν 1.06 1.07 1.07 1.08 1.08 1.08 0.828 0.837
both 0.368 0.370 0.370 0.371 0.376 0.377 0.287 0.289

2750
eν 0.629 0.643 0.643 0.644 0.648 0.649 0.459 0.462
µν 1.16 1.19 1.19 1.20 1.21 1.21 0.917 0.928
both 0.409 0.413 0.413 0.414 0.425 0.426 0.306 0.308

3000
eν 0.809 0.852 0.852 0.853 0.863 0.865 0.387 0.389
µν 1.47 1.55 1.55 1.56 1.58 1.58 0.798 0.807
both 0.523 0.534 0.534 0.536 0.566 0.567 0.261 0.263

3250
eν 1.20 1.37 1.37 1.37 1.40 1.40 0.338 0.340
µν 2.14 2.45 2.45 2.45 2.52 2.52 0.678 0.687
both 0.768 0.815 0.815 0.816 0.919 0.920 0.226 0.228

3500
eν 1.92 2.56 2.56 2.56 2.64 2.64 0.312 0.315
µν 3.37 4.38 4.38 4.39 4.56 4.57 0.645 0.655
both 1.22 1.38 1.38 1.38 1.72 1.73 0.210 0.213

3750
eν 3.12 4.90 4.90 4.90 5.07 5.08 0.297 0.307
µν 5.32 7.85 7.85 7.86 8.22 8.24 0.605 0.630
both 1.97 2.37 2.37 2.38 3.26 3.27 0.199 0.208

4000
eν 4.76 8.07 8.07 8.09 8.38 8.40 0.304 0.372
µν 7.75 12.0 12.0 12.0 12.6 12.6 0.613 0.749
both 2.95 3.66 3.66 3.66 5.24 5.24 0.203 0.255

Table 11. Lower limits on the W ′ and W ∗ masses. The first column is the decay channel (eν, µν
or both combined) and the following give the expected (Exp.) and observed (Obs.) mass limits.

mW ′ [TeV] mW ∗ [TeV]
Decay Exp. Obs. Exp. Obs.

eν 3.13 3.13 3.08 3.08
µν 2.97 2.97 2.83 2.83
Both 3.17 3.24 3.12 3.21
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Figure 2. Observed and expected limits on σB for W ′ (left) and W ∗ (right) at 95% CL in the
electron channel (top), muon channel (centre) and the combination (bottom) assuming the same
branching fraction for both channels. The predicted values for σB and their uncertainties (except
for W ∗) are also shown. The calculation of uncertainties on the W ′ cross-sections is explained in
section 4.
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Figure 3. Observed limits on M∗ as a function of the DM particle mass (mχ) at 90% CL for
the combination of the electron and muon channel, for various operators as described in the text.
For each operator, the values below the corresponding line are excluded. No signal samples are
generated for masses below 1 GeV but the limits are expected to be stable down to arbitrarily small
values. Results of the previous ATLAS searches for hadronically decayingW/Z [19] and leptonically
decaying Z [20] are also shown.
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90% CL for spin-independent (left) and spin-dependent (right) operators in the EFT. Results are
compared with the previous ATLAS searches for hadronically decaying W/Z [19], leptonically de-
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parison between direct detection and ATLAS results is only possible within the limits of the validity
of the EFT [84].
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8 Conclusions

A search is presented for new high-mass states decaying to a lepton (electron or muon)

plus missing transverse momentum using 20.3 fb−1 of proton–proton collision data at
√
s =

8 TeV recorded with the ATLAS experiment at the Large Hadron Collider. No significant

excess beyond SM expectations is observed. Limits on σB are presented. A W ′ with

SSM couplings is excluded for masses below 3.24 TeV at 95% CL. The exclusion for W ∗

with equivalent couplings is 3.21 TeV. For the pair production of weakly interacting DM

particles in events with a leptonically decaying W , limits are set on the mass scale, M∗, of

the unknown mediating interaction as well as on the DM–nucleon scattering cross-section.
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F. Spanò76, W.R. Spearman57, R. Spighi20a, G. Spigo30, M. Spousta128, T. Spreitzer159,

B. Spurlock8, R.D. St. Denis53,∗, S. Staerz44, J. Stahlman121, R. Stamen58a,

E. Stanecka39, R.W. Stanek6, C. Stanescu135a, M. Stanescu-Bellu42, M.M. Stanitzki42,

S. Stapnes118, E.A. Starchenko129, J. Stark55, P. Staroba126, P. Starovoitov42 ,

R. Staszewski39, P. Stavina145a,∗, P. Steinberg25, B. Stelzer143, H.J. Stelzer30,

O. Stelzer-Chilton160a, H. Stenzel52, S. Stern100, G.A. Stewart53, J.A. Stillings21,

M.C. Stockton86, M. Stoebe86, G. Stoicea26a, P. Stolte54, S. Stonjek100, A.R. Stradling8,

A. Straessner44, M.E. Stramaglia17, J. Strandberg148, S. Strandberg147a,147b,

A. Strandlie118, E. Strauss144, M. Strauss112, P. Strizenec145b, R. Ströhmer175,
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50 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova,
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116 LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
117 Graduate School of Science, Osaka University, Osaka, Japan
118 Department of Physics, University of Oslo, Oslo, Norway
119 Department of Physics, Oxford University, Oxford, United Kingdom
120 (a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
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