

$B_s \rightarrow J/\psi \phi$ and $B_d \rightarrow J/\psi K_s$

CP - Asymmetry

$$A_{f} \equiv \frac{R_{f}(t) - \overline{R}_{\overline{f}}(t)}{R_{f}(t) + \overline{R}_{\overline{f}}(t)} = -\frac{(1 - \left|\lambda_{f}\right|^{2})\cos(\Delta mt) - 2\Im\lambda_{f}\sin(\Delta mt)}{(1 + \left|\lambda_{f}\right|^{2})\cosh(\Delta\Gamma t/2) - 2\Re\lambda_{f}\sinh(\Delta\Gamma t/2)}$$

CP-eigenstate, $|\lambda_f| = 1$:

$$A_{fcp} = -\frac{\Im \lambda_{fcp} \sin(\Delta mt)}{\cosh(\Delta \Gamma t/2) - \Re \lambda_{fcp} \sinh(\Delta \Gamma t/2)}$$

 $\Delta \Gamma = 0$ (for \mathbf{B}^{0}_{d}) :

$$A_{fcp} = -\Im\lambda_{fcp}\sin(\Delta mt)$$

3

$B_s \rightarrow J/\psi \phi$ and $B_d \rightarrow J/\psi K_s$

Jeroen van Hunen

Physics at LHC, Prague

$J/\psi \rightarrow \mu^+\mu^-$ selection

• Two opposite charged muons 300 $\sigma = 10 \text{ MeV}$ with : 250 • $P_t > 0.5 \text{ GeV}$ 200 •Vertex with a $\chi^2 < 9$ 150 100 • Invariant mass within 50 MeV/c^2 of $m_{J/\psi}$ 50 03 3.1 3.05 3,15 3.2

μ⁺μ⁻ mass (GeV)

$J/\psi \rightarrow e^+e^-selection$

- Two opposite charged electrons one with $P_t > 0.8$ GeV/c and one with $P_t > 1.8$ GeV/c
- A vertex $\chi^2 < 6$
- vertex $|\mathbf{Z}| < 150 \text{ mm}$
- An invariant mass between 2.7 –
 3.2 GeV/c²

$\boldsymbol{\varphi} \rightarrow \boldsymbol{\mathsf{K}^{\!+}}\boldsymbol{\mathsf{K}^{\!-}}$ selection

• Two opposite charged kaons with $P_t > 0.5$ GeV, giving a vertex with a $\chi^2 < 9$, an invariant mass within 20 MeV/c² of m_{ϕ} , and $P_{\phi} > 12$ GeV/c²

$B_s \to J/ \, \psi \; \varphi$ selection

• Combine the J/ ψ and ϕ if the four tracks form a vertex with $\chi^2 < 20$, then select the primary vertex with smallest IP (< 4mm)

$B_s \rightarrow J/\psi \phi$ selection

Other constraints on the B_s^{0} :

• Proper time (consistency between the B_s^{0} momentum and the vector between the production and decay vertex) significance > 5

• m_{B_s} within 50 MeV/c² of the nominal B_s^{0} mass

Jeroen van Hunen

Physics at LHC, Prague

$K_s \rightarrow \pi^+\pi^-$ selection

• Two oppositely charged pions, giving a vertex with a z position between 0 - 3 meter, invariant mass within 60 (100 for TT) MeV/c^2 of m_{K_e} , and a combined $P_t > 200 MeV/c$.

category	fraction	vertex Z res.
LL	0.29	107 μm
LV	0.09	182 μm
TT	0.62	199 µm

$B_d \rightarrow J/\psi \ (\mu^+\mu^-)K_s$ selection

B_d : combining J/ ψ and K_s

- J/ ψ and K_s make a vertex with $\chi^2 < 50$
- IP significance of K_s with respect to J/ ψ vtx < 3.5 (< 8 for TT)
- IP significance of Ks pions with respect to the primary vtx > 4 (2 for TT)
- significance of the distance between primary and J/ ψ vtx > 1.2(LL), 3.1(LV), 2.4(TT)
- B_d mass window 60 MeV/c²

10

$B_d \rightarrow J/\psi K_s$ selection

Results for the B_d^0 mass :

Annual yield and Background estimate for $B_s \rightarrow J/\psi \phi$ and $B_d \rightarrow J/\psi K_s$

Channel	Annual yield	B/S
$B_s \rightarrow J/\psi(\mu^+\mu^-)\phi$	100k	<0.3 (bb-incl)
		<0.7 (prompt J/ ψ)
$B_s \rightarrow J/\psi(\mu^+\mu^-) K_s$	166k	0.6±0.1 (bb-incl)
		<0.4 (prompt J/ ψ)
$B_s \rightarrow J/\psi(e^+e^-) K_s$	21k	<0.84 (prompt J/ ψ)
		3.4 ±0.5 (bb-incl)

LHCD

Sensitivity studies for $B_s \to J/\,\psi\,\phi\,$ and $B_d \to J/\,\psi\,K_s$

Extracting β_s from $B_s \to J/\psi ~\phi$

$$\frac{d \Gamma(t)}{d \cos(\theta)} \propto \left(\left| A_0(t) \right|^2 + \left| A_{\parallel}(t) \right|^2 \right) \frac{3}{8} \left(1 + \cos^2(\theta) \right) + \left| A_{\perp}(t) \right|^2 \frac{3}{4} \sin^2(\theta)$$

$$\mathbf{B}_s \rightarrow \mathbf{J}/\Psi \phi$$

$$\left| A_{0,\parallel}(t) \right|^2 = \left| A_{0,\parallel}(0) \right|^2 \left[e^{-\Gamma_L t} - e^{-\overline{\Gamma} t} \sin(\Delta m_s t) 2\beta_s \right]$$

$$\mathbf{A}_{\perp} = \operatorname{odd} \& \mathbf{A}_{0,\parallel} = \operatorname{even}$$

$$\mathbf{B}_s \rightarrow \mathbf{J}/\Psi \phi$$

$$\left| A_{\perp}(t) \right|^2 = \left| A_{0,\parallel}(0) \right|^2 \left[e^{-\Gamma_L t} + e^{-\overline{\Gamma} t} \sin(\Delta m_s t) 2\beta_s \right]$$

$$\left| A_{\perp}(t) \right|^2 = \left| A_{0,\parallel}(0) \right|^2 \left[e^{-\Gamma_L t} + e^{-\overline{\Gamma} t} \sin(\Delta m_s t) 2\beta_s \right]$$

$$\left| A_{\perp}(t) \right|^2 = \left| A_{\perp}(0) \right|^2 \left[e^{-\Gamma_L t} - e^{-\overline{\Gamma} t} \sin(\Delta m_s t) 2\beta_s \right]$$

$$\left| A_{\perp}(t) \right|^2 = \left| A_{\perp}(0) \right|^2 \left[e^{-\Gamma_L t} - e^{-\overline{\Gamma} t} \sin(\Delta m_s t) 2\beta_s \right]$$

LHCD

Extracting β_s from $B_s \rightarrow J/\psi \phi$

Jeroen van Hunen

LHCD

Sensitivity for β_s from $B_s \rightarrow J/\psi \phi$

Angular analysis to determine the sensitivity for:

R(A₁ fraction), $\Delta \Gamma_s$, τ_s and β_s

(for Δms and wrong tag fraction: fit $D_s\pi$ simultaneously)

$$\mathbf{R} = |\mathbf{A}_{\perp}|^2 / (|\mathbf{A}_0|^2 + |\mathbf{A}_{\parallel}|^2 + |\mathbf{A}_{\perp}|^2)$$

$$\omega = 35\%$$
 & $\varepsilon = 40\%$

One year of	β _s	R	τ	$\Delta \Gamma_{\rm s} / \Gamma_{\rm s}$	Δm_s
LHCb data	(Deg)	-	(ps)	-	(ps ⁻¹)
used	0.86 ⁰	0.2	1.5	0.1	20
sensitivity	3.5 ⁰	0.0085	0.011	0.026	0.038

Sensitivity for β from $B_s \rightarrow J/\psi K_s$

LHC

Conclusions

- Reconstruction of $B_s \rightarrow J/\psi \phi$ and $B_d \rightarrow J/\psi K_s$ decays :
- Good mass (9-15 MeV/c²) & vertex (107-199 μm) resolution
- \Rightarrow Excellent proper time resolution (38 fs) allows to follow the oscillations of the decay rates accurately.
- High annual yields with low background rates
- \Rightarrow Precise determination of CKM angles β and β_s

Sensitivity for β and β_s				
One Year of LHCb Data				
β	β _s			
0.60	3.50			

