Simultaneous measurements of  $t\bar{t}$ , WW and  $Z/\gamma^* \rightarrow \tau^+\tau^-$  production at  $\sqrt{s} = 7$  TeV with the ATLAS detector

Antonio Limosani<sup>†</sup> on behalf of the ATLAS collaboration

# 37th International Conference on High Energy Physics Valencia, Spain

<sup>†</sup> University of Sydney // ARC Centre of Excellence in Particle Physics at the Tera-scale

July 3, 2014

• Provide a global test of the standard model.

• Making measurements of three processes using a common definition of the fiducial region allows for a unique exploration of the effect of parton distribution functions (PDFs) on cross-section predictions.

• Simultaneous cross-section measurements complement results obtained from dedicated analyses.

### AIDA - An inclusive dilepton analysis

- Select opposite sign e + μ events
- Three main SM processes,  $t\bar{t}$ , WW, and  $Z/\gamma^* \rightarrow \tau\tau$  can be distinguished in Missing  $E_{\tau}$   $(E_{\rm T}^{\rm miss})$  and jet multiplicity  $(N_{\rm jets})$
- Fit MC templates for these processes to data. Backgrounds remain fixed.
- Developed at CDF (Phys. Rev. D 78 (2008) 012003), here greatly extended at ATLAS (submitted to PRD arXiv:1407.0573)

Energy Missing Transverse



Number of Jets

### Modelling of signal processes



### Modelling of background contributions



### Main object and event selection criteria

#### Electrons

- Cluster of energy in calorimeter consistent with electron hypothesis, and matched to a track
- $E_T > 25~{
  m GeV}$  &  $|\eta| < 2.47~{
  m (veto}~1.37 < |\eta_{
  m CL}| < 1.52)$

#### Muons

- Track in both inner detector and muon spectrometer
- $p_T > 20 \text{ GeV}/c \& |\eta| < 2.5$

#### Isolation variables

• Measure activity within cone of  $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$  centred around lepton candidate

• 
$$E_T^{\text{cone}\Delta R=0.2} = \sum |E_T|$$
  
•  $p_T^{\text{cone}\Delta R=0.3} = \sum |p_T|$ 

#### Jets

- Anti- $k_T R = 0.4$  Topological cluster
- Count jet if  $p_T > 30~{
  m GeV}/c$  and  $|\eta| < 2.5$

#### Event

- Exactly two leptons of opposite charge
- Data Triggers : Muon  $p_T > 18 \text{ GeV}/c$  or Electron  $E_T > 22 \text{ GeV}$
- Integrated luminosity 4.6 fb $^{-1}$

### Fiducial region

- 1 electron  $E_T > 25$  GeV,  $|\eta| < 2.47$  (veto 1.37  $< |\eta| < 1.52$ )
- 1 muon  $p_T > 20$  GeV,  $|\eta| < 2.5$

#### Main contributions

- Jets faking leptons
- Electrons from conversions
- Non-prompt muons from heavy flavor decays

#### Data driven estimate

- Relax isolation and ID criteria ("Loose")
- Measure efficiencies for true and fake "Loose" leptons to pass "Tight" criteria
- Input into matrix method to extract background estimate

#### Cross-checks

- Check efficiencies in single lepton (W+jets) data
- Closure test of the matrix method in simulated samples
- Investigate same-sign charge control region

### SAME SIGN CONTROL REGION



### Likelihood fit and cross-sections

• Binned likelihood fit to the  $E_{\rm T}^{\rm miss}$  vs  $N_{\rm jets}$  phase space to determine signal yields  $N_{\rm fit}$ .

Fiducial cross section

$$\sigma_{
m fiducial}(pp 
ightarrow X) = rac{N_{
m fit}}{\mathcal{C} \cdot \mathcal{L}}$$

Total cross section

$$\sigma_{\rm tot}(pp \to X) = \frac{N_{\rm fit}}{\mathcal{A} \cdot \mathcal{B} \cdot \mathcal{C} \cdot \mathcal{L}}$$

- C is the ratio of the number of events passing the full event selection to the number of events in the fiducial region
- A is the kinematic and geometric acceptance of the fiducial region as a fraction of the complete phase space
- ${\cal B}$  is the branching fraction for  $X o e \mu + {
  m anything}$
- $\mathcal{L}$  is the integrated luminosity.

### Fit results

- $N_{\rm jets} = 0, \geq 1$ , where jets with  $p_T > 30 \; {
  m GeV}$
- $E_{
  m T}^{
  m miss}$  (20 bins, 0 to 200 $^+$  GeV, with last bin also containing overflow,  $E_{
  m T}^{
  m miss}$  > 200 GeV)
- Fit region 2 × 20 bins



### Summary of main systematic uncertainties

|                                          | Systematic Uncertainties (%) |                |            |           |                |            |                            |                |            |
|------------------------------------------|------------------------------|----------------|------------|-----------|----------------|------------|----------------------------|----------------|------------|
| Sauraa                                   |                              | t              | Ŧ          |           | W              | W          | $Z/\gamma^* \to \tau \tau$ |                |            |
| Source                                   | $\mathcal{C}$                | $\mathcal{AC}$ | Shape      | C         | $\mathcal{AC}$ | Shape      | C                          | $\mathcal{AC}$ | Shape      |
| ISR/FSR+Scale                            | $\pm 1.1$                    | $\pm 0.4$      | +1.0(-1.5) | ±1.0      | ±0.8           | +4.7(-3.5) | $\pm 1.1$                  | $\pm 0.4$      | +0.7(-1.0) |
| Generator                                | ±0.7                         | $\pm 0.8$      | +0.2(-0.0) | ±0.6      | $\pm 0.5$      | +4.5(-0.4) |                            |                | +0.0(-0.7) |
| Parton Shower                            | ±0.9                         | $\pm 0.6$      | +0.0(-0.5) | ±0.5      | $\pm 1.0$      | +3.5(-0.6) | ±1.8                       | $\pm 3.3$      | +0.5(-0.6) |
| PDF                                      | ±0.6                         | $\pm 1.7$      | $\pm 0.5$  | $\pm 0.1$ | $\pm 0.7$      | $\pm 1.6$  | ±0.2                       | $\pm 1.3$      | $\pm 0.8$  |
| $E_{\rm T}^{\rm miss}$ soft terms        | ±0.0                         |                | +0.4(-0.2) | ±0.0      |                | +8.1(-9.9) | ±0.0                       |                | +2.3(-0.2) |
| $E_{\mathrm{T}}^{\mathrm{miss}}$ pile-up | ±0.0                         |                | +0.1(-0.1) | ±0.0      |                | +3.7(-4.5) | ±0.0                       |                | +1.0(-1.7) |
| e reco., ID, isol.                       | ±3.2                         |                | +0.0(-0.1) | ±3.2      |                | +0.3(-0.3) | ±3.3                       |                | +0.0(-0.8) |
| $\mu$ reconstruction                     | ±0.8                         |                | +0.0(-0.0) | ±0.8      |                | +0.0(-0.0) | ±0.8                       |                | +0.0(-0.0) |
| Jet energy scale                         | ±0.8                         |                | +1.4(-1.4) | ±0.6      |                | +0.5(-4.8) | ±0.5                       |                | +1.4(-3.1) |
| Jet E resolution                         | ±0.2                         |                | +0.3(-0.0) | ±0.2      |                | +0.0(-2.6) | ±0.2                       |                | +0.0(-0.1) |
| JVF                                      | ±0.8                         |                | +0.1(-0.0) | ±0.3      |                | +0.0(-1.7) | ±0.2                       |                | +0.0(-0.3) |
|                                          |                              | tī             |            | WW        |                |            | $Z/\gamma^* \to \tau \tau$ |                |            |
| Fake or Non-P                            | ±0.8                         |                |            | $\pm 5.6$ |                |            | ±0.7                       |                |            |
| Luminosity                               | ±1.8                         |                |            | $\pm 1.8$ |                |            | $\pm 1.8$                  |                |            |
| Beam energy                              | ±1.8                         |                |            | $\pm 1.0$ |                |            | $\pm 0.8$                  |                |            |

• Experimental uncertainties on electron reco., ID, isol. are largest on  $t\bar{t}$  and  $Z/\gamma^* \rightarrow \tau \tau$ .

E<sub>T</sub><sup>miss</sup> soft terms and fakes and non-prompt are dominant uncertainties on WW

Pile-up refers to modeling of additional pp interactions in the same and neighboring bunch crossing

JVF (Jet Vertex fraction) is defined as the ratio of the sum of the p<sub>T</sub> of charged particle tracks that are associated with both the jet and the primary vertex, to the sum of the p<sub>T</sub> of all tracks belonging to the jet

### Cross-section results

| Process                      | tī          | WW            | $Z/\gamma^* \to \tau \tau$ |  |
|------------------------------|-------------|---------------|----------------------------|--|
| Fitted Yield $N_{\rm fit}$   | 6049        | 1479          | 3844                       |  |
| $\mathcal{C}$                | 0.482       | 0.505         | 0.496                      |  |
| $\mathcal{AC}$               | 0.224       | 0.197         | 0.0115                     |  |
| Branching Ratio $B$          | 0.0324      | 0.0324        | 0.0621                     |  |
| $\sigma_{\rm fiducial}$ [fb] | 2730        | 638           | 1690                       |  |
| Statistical                  | 1.5%        | 5.0%          | 2.0%                       |  |
| Systematic                   | 5.1%        | +13.7(-14.9)% | +5.5(-7.0)%                |  |
| $\sigma_{ m tot}$ [pb]       | 181.2       | 53.3          | 1174                       |  |
| Statistical                  | 1.5%        | 5.0%          | 2.1%                       |  |
| Systematic                   | +5.4(-5.3)% | +13.8(-14.9)% | +6.1(-7.5)%                |  |
| Luminosity                   | 1.8%        | 1.8%          | 1.8%                       |  |
| LHC beam energy              | 1.8%        | 1.0%          | 0.8%                       |  |

- C consistent across signal processes
- low  $\mathcal{AC}$  on  $Z/\gamma^* \to \tau \tau$  reflects high  $E_T$  requirements on leptons
- Systematic uncertainties dominate
- Overall uncertainties are smaller for fiducial cross-sections

# Fiducial cross-sections (MCFM NLO predictions)



- Cross-sections calculated using a specific PDF with error bars depicting the uncertainty due to the choice of renormalization and factorization scales, and contour represents intra-PDF uncertainty
- NLO predictions underestimate  $Z/\gamma^* \rightarrow \tau \tau$ versus  $t\bar{t}$ , irrespective of the PDF model.
- *WW* fiducial measurement is consistent with predictions from each PDF model considered.

# $Z/\gamma^* \rightarrow \tau \tau$ and $t\bar{t}$ total cross-sections (NLO & NNLO)



• Good overlap with most of the NNLO theoretical predictions and corresponding PDF sets.

- Difference in the uncertainties in theoretical predictions: in the NLO case scale uncertainties are dominant, while in the NNLO case the PDF model provides the dominant uncertainty.
- ABM11 employes lower value of  $\alpha_s$  employed. At NNLO  $\alpha_s = 0.113$ , c.f.  $\alpha_s = 0.117 0.118$  other PDF models.
- For JR09, the 5% difference in the  $Z/\gamma^* \rightarrow \tau \tau$  cross-section is consistent with what is reported elsewhere (PhysRevD.80.114011).

- First simultaneous extraction of the cross-sections for  $t\bar{t}$ , WW and  $Z/\gamma^* \to \tau \tau$  processes at the LHC
- NLO predictions for  $t\bar{t}$  and  $Z/\gamma^*\to\tau\tau$  fiducial cross-sections underestimate measurements
- Comparisons of total cross-sections with NNLO calculations indicate that MSTW2008, CT10, HERAPDF, NNPDF, and epWZ describe the data well.
- Measurements are consistent with the previously published dedicated ATLAS cross-section measurements

Backup slides

## Comparison with other ATLAS measurements

| Process                   | Source          | $\sigma_{\chi}^{ m tot}$ Uncertainties |       |       | $\int \mathcal{L} dt$ | Reference |       |                      |                                    |
|---------------------------|-----------------|----------------------------------------|-------|-------|-----------------------|-----------|-------|----------------------|------------------------------------|
|                           |                 | [pb]                                   | Stat. | Syst. | Lumi.                 | Beam      | Total | $[\mathrm{fb}^{-1}]$ |                                    |
| +Ŧ                        | Simultaneous    | 181                                    | 3     | 10    | 3                     | 3         | 11    | 4.6                  | arXiv:1407.0573                    |
|                           | ATLAS Dedicated | 177                                    | 7     | 15    | 8                     |           | 18    | 0.7                  | JHEP05(2012)059                    |
|                           | ATLAS Dedicated | 183                                    | 3     | 4     | 4                     | 3         | 7     | 4.6                  | arXiv:1406.5375 [hep-ex]           |
|                           | NNLO QCD        | 177                                    |       |       |                       |           | 11    |                      | PhysRevLett.110.252004             |
|                           |                 |                                        |       |       |                       |           |       |                      |                                    |
| W/W/                      | Simultaneous    | 53.3                                   | 2.7   | 7.7   | 1.0                   | 0.5       | 8.5   | 4.6                  | arXiv:1407.0573                    |
|                           | ATLAS Dedicated | 51.9                                   | 2.0   | 3.9   | 2.0                   |           | 4.9   | 4.6                  | PhysRevD.87.112001                 |
|                           | NLO QCD         | 49.2                                   |       |       |                       |           | 2.3   |                      | PhysRevD.80.054023                 |
|                           |                 |                                        |       |       |                       |           |       |                      |                                    |
| $Z/\gamma^* \to \tau\tau$ | Simultaneous    | 1174                                   | 24    | 80    | 21                    | 9         | 87    | 4.6                  | arXiv:1407.0573                    |
|                           | ATLAS Dedicated | 1170                                   | 150   | 90    | 40                    |           | 170   | 0.036                | PhysRevD.84.112006                 |
|                           | NNLO QCD        | 1070                                   |       |       |                       |           | 54    |                      | J.CPC.2011.06.008, EPJC 63 189-285 |

### Total cross-sections (MCFM NLO predictions)



Antonio Limosani (University of Sydney)

### The matrix method for dileptons

- "Tight" leptons candidates (T)
- "Loose" and "Not Tight" lepton candidates (L)
- Decompose into events from two real prompt dileptons (R) and everything else (F)

$$\begin{pmatrix} W_{RR} \\ W_{RF} \\ W_{FR} \\ W_{FF} \end{pmatrix} = \mathcal{M}^{-1} \begin{pmatrix} \delta_{TT} \\ \delta_{TL} \\ \delta_{LT} \\ \delta_{LL} \end{pmatrix}$$
(1)

$$\mathcal{M}^{-1} = \frac{1}{(r_e - f_e)(r_\mu - f_\mu)} \begin{pmatrix} (1 - f_e)(1 - f_\mu) & -(1 - f_e)f_\mu & -f_e(1 - f_\mu) & f_ef_\mu \\ -(1 - f_e)(1 - r_\mu) & (1 - f_e)r_\mu & f_e(1 - r_\mu) & -f_er_\mu \\ -(1 - r_e)(1 - f_\mu) & (1 - r_e)f_\mu & r_e(1 - f_\mu) & -r_ef_\mu \\ (1 - r_e)(1 - r_\mu) & -(1 - r_e)r_\mu & -r_e(1 - r_\mu) & r_er_\mu \end{pmatrix}$$
(2)

- r(f) Probability of a true prompt ("fake") lepton to belong to the "Tight" category given it's in the "Loose" category
  - $\delta_{ij}$  equal to 1 or 0, depending on where an accepted event falls

$$w_{fakes}^{TT} = r_e f_\mu w_{RF} + f_e r_\mu w_{FR} + f_e f_\mu w_{FF}$$
(3)

#### Main contributions

- Jets faking leptons
- Electrons from conversions
- Non-prompt muons from heavy quark decays

#### Data driven estimate

- Relax isolation and ID criteria ("Loose")
- Measure efficiencies for true and fake "Loose" leptons to pass "Tight" criteria
- Input into matrix method to extract background estimate

#### **Cross-checks**

- Check efficiencies in single lepton (W+jets) data
- Closure test of the matrix method in MC samples
- Investigate same-sign charge control region

### SAME SIGN CONTROL REGION



### Expected yields and pre-fit MET distribution

Signal processes normalised to predictions from theory

| Process                  | Total         |
|--------------------------|---------------|
| tī                       | $5900\pm500$  |
| WW                       | $1400\pm100$  |
| $Z \rightarrow 	au 	au$  | $3500\pm250$  |
| Prompt bkgd.             | $680\pm60$    |
| Fake or non-prompt bkgd. | $210\pm170$   |
| Predicted                | $11700\pm600$ |
| Observed                 | 12224         |



# Pre-fit $N_{\rm jets}$ distribution



Monte Carlo "pseudo-experiments" are performed to estimate uncertainties on event yields due to systematic uncertainties affecting template shapes.

- For a given source of systematic uncertainty, S, sets of modified E<sup>miss</sup><sub>T</sub>-N<sub>jets</sub> signal and background templates are produced in which S is varied up and down by its expected uncertainty, while the template normalization remains fixed to its assumed standard model expectation.
- Pseudo-experiments are performed by fitting these modified templates to "pseudo-data" randomly drawn according to the nominal (i.e., no systematic effects applied) templates.
- Pseudo-data are constructed for each pseudo-experiment using the expected number of events, N<sub>X</sub>, and E<sub>T</sub><sup>miss</sup>-N<sub>jets</sub> shape for each process X. For each pseudo-experiment the following procedure is carried out.
- The expected number of events for process X is sampled from a Gaussian distribution of mean N<sub>X</sub> and width determined by the uncertainty on N<sub>X</sub>. This number is then Poisson fluctuated to determine the number of events, N<sub>X</sub>, for process X.
- The shape of process X in the E<sup>miss</sup><sub>T</sub>-N<sub>jets</sub> parameter space is then used to define a probability distribution function from which to sample the N<sub>X</sub> events contributing to the pseudo-data for the pseudo-experiment.
- This is repeated for all processes to construct the pseudo-data in the E<sup>miss</sup><sub>T</sub>-N<sub>jets</sub> parameter space as the input to the pseudo-experiment.
- The pseudo-experiment is then performed by fitting the pseudo-data to the modified templates and extracting the number of events for each signal process, N<sub>sig</sub>. This procedure is repeated one thousand times to obtain a well-defined distribution of M<sub>sig</sub> values.
- The difference, ΔN<sub>sig</sub>, between the mean value of this distribution and N
  <sub>X</sub> is taken as the error due to template shape effects.
- To obtain the final template shape uncertainty, each positive ΔN<sub>sig</sub>/N<sub>sig</sub> value is added in quadrature to obtain the total positive error, and each negative value is added likewise to obtain the total negative error.