

The LHCb Silicon Tracker

Frank Lehner
University of Zurich
representing the
Silicon Tracker group
of LHCb

The LHCb Silicon Tracker

- LHCb dedicated b-physics experiment
- single forward spectrometer
- Silicon Tracker:
 - three inner tracking stations
 T1-T3 after magnet
 - one large area tracking station (TT) in front of magnet
 - total silicon area: 11 m²
 - total number of R/O channels: ~300k

The LHCb Silicon Tracker: Requirements

- provide reliable and robust tracking in charged particle environment w/ rates of $\sim 10^5$ cm⁻²/s
- achieve excellent momentum resolution of 3‰
 - keep occupancies at tolerable level of <2%</p>
 - single hit resolution: ~70 μm
 - single hit efficiencies: nearly 100%
 - minimize dead material
 - data provided for L1 trigger
 - fast shaping/readout (FWHM 35ns)
- silicon strips reliable technology however:
 - employ wide pitch (~200µm) to reduce number of R/O channels
 - long silicon modules (ladders) -> high load capacitances ⇔S/N performance?
 - goal: optimize noise and charge collection efficiency

The LHCb Silicon Tracker: station design

- three tracking stations along conical beampipe behind magnet
- four layers each with small angle stereo-view: 0°, ±5°, 0°
- up to 22 cm long silicon ladders
- conical beampipe => different layout in each station
- particle fluences higher in equatorial plane (bending plane of magnet)
- accomplished by four independent boxes arranged in cross geometry

The LHCb silicon tracker: detector design

- each station has four independent boxes
- box houses 28 Si-ladders arranged in four planes
- ladder ends are mounted to a common cooling plate where coolant circulates
- enclosure of lightweight insulation foam material + thin Al-foil
 - light tightness
 - heat insulation
 - electrical shielding
- cover plate provides mechanical rigidity, cable feed-through
- silicon sensors will be operated at ~5°C
- ladders in nitrogen atmosphere

The LHCb silicon tracker: ladder design

- two ladder types:
 - single sensor and two sensor ladders
 - √ aligned head-to-head
 - √ total active length of 22 cm
- silicon supported by U-shape carbon fiber composite shelf with high thermal conductivity
- ceramic substrate piece at ladder end
 - Kapton based printed circuit
 - three readout chips per ladder
- carbon fiber shelf mounted onto cooling balcony piece with precision holes and guide pins
- cooling balcony in direct contact with carbon support and ceramic for effective cooling

The LHCb silicon tracker: ladder design

- ladder requirements:
 - alignment 5µm, flat within 50µm
 - thermal conductivity>150 W/mK
 - mechanical stiffness
 - high radiation length
- first prototypes from Amoco K1100/Mitsubishi K13C2U composites produced
 - measured λ~200 W/mK
 - ladder flatness partially not yet satisfactory

The LHCb silicon tracker: ladder design

cooling plate

- provides mounting surface for all ladders within one box
- circulates liquid C6F14 as coolant
- cooling balconies
 - mounting & aligning of ladder support to cooling plate
- extensive R&D on lightweight materials:
 - ✓ MMC carbon fibers infiltrated with magnesium (X_0 ~17cm, λ ~430 W/mK)
 - high density graphitic foams (X₀ up to 28 cm, λ up to 250 W/mK)
 - ✓ Carbon-carbon composites
 - ✓ figure of merit: $X_0 \cdot \lambda$

The LHCb silicon tracker: silicon sensors

- 6" p⁺n single-sided silicon microstrip sensors
- dimension: 110x78 mm, 320μm
 thick
- pitch & w/p being optimized
 - multi-geometry sensor from Hamamatsu
 - two pitches: 198μm & 237.5μm
 - four different implant widths
- laboratory characteristics:
 - breakdown > 300V
 - total strip capacitances
 ~1.5 1.7 pF/cm depending
 on w/p
 - bad channels: <1%</p>

The LHCb silicon tracker: silicon sensors

- metrology measurements with optical system
- flatness/planarity:
 - sensor warp ±50μm (specified ±25μm)
 - silicon shape well fit by parabolic shape
 - can probably live with that
- sensor dicing line
 - important since we use cut line for alignment
 - dicing line parallel within 5μm, accuracy 3μm

The LHCb silicon tracker: hybrid

- 4 layer kapton flex circuit laminated to ceramic (AIN) substrate
- careful design to avoid crossing of analog and digital signals
- two separate flexible tails for analog & digital lines
 - allows routing through cooling plate
 - 2nd tail can be folded over 1st tail to minimize feed-thru space
- pitch adapter necessary to match ~200 μ m wide pitch of sensors to 40 μ m pitch FE-Beetle bonding pad

The LHCb silicon tracker: Beetle chip

- Beetle (v1.2) readout chip
 - 0,25 µm CMOS, radiation hard, 40MHz clock
 - 128 channel preamplifier device with 160 BC deep pipeline
 - 32x multiplexed analog output for fast readout within 900ns
 - irradiated up to 45MRad (!), fully functional, no significant degradation observed
 - noise: 450e + 47e × C[pF] measured in three labs

The LHCb silicon tracker: R/O chain

- Beetle analog data are sent to 8-bit FADC located outside the tracking volume
- CERN GOL capable of serializing 32-bit wide date at 40MHz
- 1.6 Gbit/s optical link over
 100m to L1 electronics in hut
- one digital optical link:
 12 x 4 x 8 bits =
 48 analog channels (4 hybrids)
- will use COTS devices wherever possible
 - optical transmitter modules w/ VCSEL diodes
 - optical ribbon cable
- first prototype link lab setup ready
- eye pattern at receiving end
- bit error rate tests underway

The LHCb silicon tracker: CERN testbeam

- May/June 2002 testbeam at CERN X7
 - Hamamatsu multi-geometry sensors
 - ✓ Region C: 198µm pitch w/p=0.35
 - ✓ Regions D & E: 240 µm pitch, w/p=0.3 & w/p 0.35
 - Beetle v1.1 R/O chip + hybrid
 - HERA-B silicon telescope + VDS DAQ
 - short ladder: 11cm strips, long ladder 22cm strips
 - fast shaping ~35ns FWHM

The LHCb silicon tracker: CERN testbeam cont'd

pitch 200 µm

- achieved spatial resolution based on telescope track residuals ~52 (58) μm @ 200 (240) μm pitch is perfect for our purposes
- measured pulse height distributions for tracks 'on strips'
 & 'in between strips'
 - fit w/ landau ⊗ gaussian
 - most probable value as expected for tracks on strips
 - however, in between strips 7-20% charge loss
- S/N values of 10:1 for tracks on strips for long ladder is in good agreement w/ expected noise performance of Beetle 1.1

pitch 240 µm

20 25 30 35

cluster charge [ADC counts]

Region C of long ladder 200V bias

5

10 15

15 20 25 30 35 40

cluster charge [ADC counts]

5 10

The LHCb silicon tracker: CERN testbeam cont'd

- hit efficiencies determined w/ adjusted clustering algorithm to give noise rate of 0.1% per strip and event (compare to 0.6% per strip and event for physics)
- efficiency 98-99% for tracks on strips, but 97% for tracks in between
- efficiencies slightly improve towards higher bias, indicating a ballistic deficit
- efficiency loss in regions D & E (with larger pitch) is more pronounced => prefer 200 μm pitch over 240 μm

The LHCb silicon tracker: CERN testbeam cont'd

- further improvement if shaping time of Beetle is increased from FWHM~35ns to ~50ns
- efficiency loss in between strips gone
- however: slower shaping means more signal remainder after next BC
- tradeoff between occupancy and efficiency
- studies on tracking performance underway

closed circles: fast (standard) shaping open circles: slow shaping

The LHCb silicon detector: Summary

- the LHCb tracking system employs wide pitch silicon strip detectors due to their robustness and good performance in a charged particle environment
- the silicon ladder and station design has rapidly evolved
- testbeam results on prototype ladders look promising, although some fine-tuning is needed
- the subcomponent TDR for the silicon tracker of LHCb will be submitted to the LHCC these days

