8th Topical Seminar on Innovative Particle and Radiation Detectors 21 - 24 October 2002 Siena, Italy

Progress with Particle Identification

Olav Ullaland / CERN

This talk will partly cover

dE/dX and related

Pion-Kaon separation for different PID methods. The length of the detectors needed for 3σ separation.

The same as above, but for electronpion separation.

Dolgoshein, NIM A 433 (1999)

Data from the DELPHI RICHes **p from Λ K from Φ D* π from K°**

Experiments with CsI photon detectors in RICHes

	Id. aim	Momentum		
Experiment	(Radiator	range	# CsI PCs	Status
_	type)	(GeV/c)	(total m ²)	
NA44	$\pi^{\pm}/\mathrm{K}^{\pm}$	3-8	2	Terminated
TIC	(gas)		(~0.3)	
CERN				
STAR	$\pi^{\pm}/\mathrm{K}^{\pm}$	1-3	4	Terminated
RICH	p/p	2-5	(~1)	
BNL	(liquid)			
ALICE	$\pi^{\pm}/\mathrm{K}^{\pm}$	1-3	42	in
HMPID	p/p	2-5	(~10)	preparation
CERN	(liquid)			
HADES	Hadron	<1.5	18	Running
RICH	blind		(1.5)	
GSI				
COMPASS	$\pi^{\pm}/\mathrm{K}^{\pm}$	<60	16	Running
RICH1	p/p		(~5.8)	
CERN	(gas)			
HALL-A	$\pi^{\pm}/\mathrm{K}^{\pm}$	<4	3	Starting
RICH	p/p		(~0.7)	
JLab	(liquid)			

Di Mauro, Hamburg 2001

COUNTS/CHANNEL

0⊾ 0

0.3m

HAMAMATSU Multianode Photomultiplier Tubes

2m

3m

Typical Single Photoelectron PHD per Channel

DARK= $\frac{3m}{2}_{0.3m}$ =39 s⁻¹(cps)

m

Schematic view of a lens system. CERN LHCC 2000-037, LHCb TDR 3

DIRC is a 3- D device, measuring: x, y and <u>time</u> of Cherenkov photons.

Leith, Novosibirsk 2002

Y. Enari Novosibirsk 2002

Y. Enari Novosibirsk 2002

Petersburg and Kompozit Korolev

	Hygroscopic		Hydrophobic
	Novosibirsk		Matsushita
Thickness (cm)	4.0	4.0	2.0
Clarity	72.2	69.5	96.0
$(10^{-4} \mu m^{4}/cm)$			
n (at 600 nm)	1.0306	1.0298	1.030

$$T = T_{\lambda \to \infty} \cdot e^{-CL/\lambda^4}$$

Measured and calculated saturated Cherenkov angle and resolution for single photons in mrad.

	Producer	Novosibirsk		Matsushita	
	Thickness				
	(cm)	4	8	6	8
Filter					
	$\langle \Theta_{\rm C} \rangle$	250.0	246.8	252.2	247.3
No filter	$<\Theta_{\rm C}>MC$	248.7	245.0	-	-
	$\sigma(\Theta_{\rm C})$	5.4	5.8	7.7	8.1
	$\sigma(\Theta_{\rm C}){\rm MC}$	4.0	3.9	-	-
	$\langle \Theta_{\rm C} \rangle$	247.1	245,4	248.9	248.1
D263	$<\Theta_{\rm C}>M{\rm C}$	246.8	243.7	-	-
	$\sigma(\Theta_{\rm C})$	5.0	4.8	6.2	6.8
	$\sigma(\Theta_{\rm C}){\rm MC}$	3.1	3.0	-	-
	$\langle \Theta_{\rm C} \rangle$	243.0	246.0	248.5	-
Glass	$<\Theta_{\rm C}>MC$	243.2	-	-	-
	$\sigma(\Theta_{\rm C})$	5.4	5.2	6.6	-
	$\sigma(\Theta_{\rm C}){\rm MC}$	3.9	-	-	-

Bellunato, Beaune 2002

Resistive Plate Chambers

Time-of-Flights detectors at the exit of the NA49 spectrometer.

891 scintillator tiles connected to PM: XP2972 Each tile: 8-10 cm x 3.3 cm x 2.3 cm TDC and ADC spectra read out.

Klempt, NIM A 433 (1999)

NIM A 479 (2002)

CDF-II Time-of-Flight system

216 Scintillator bars 279 cm x 4 cm x4 cm) with phototubes attached to both ends (432).

Custom-made Hamamatsu R7766 19 dynode (High gain) Fine mesh (Increased tolerance to magnetic field) Small size 1.5 x 2.5 inches Operated with a positive HV up to 2500V. Gain reduction factor at B=1.4 T in the range of ~500

Target performance:

- 100ps resolution over length bar using both PMTS
- Comparison between the time difference for east and west
- pmt with 100ps resolution Montecarlo $(\sigma_{\Delta t}{pprox} 2\sigma_{ ext{TOF}})$
- From this "systematic-free" time diference resolution
- preliminary $\sigma_{\text{TOF}} \approx$ 125ps
- Working on the improvement

Vila, Novosibirsk 2002

The standard gas mixture

- 0.6% C_4H_6 1,3-Butadiene 2.5% C_2H_4 Ethylene 20.4% C_4H_{10} i-Butane
- 76.5% Ar

Schmidt, Nucl. Phys. B 78 (1999)

Time resolution (FWHM/2.35) as function of overvoltage applied to the counter. The graph compares experiments done at GSI and at BNIP. At BNIP gas mixtures with different fractions of ²¹ butadiene were used. Tails extend beyond the gaussian distribution.

10³

Gain

Iglesias, PhD thesis 1997

ALICE TOF with RPC

Standard unit detector for ALICE detector (ALICE TOF will be constructed with ~ 1,600 such strips)

Typical time spectra from readout pad of 1.2 m strip

Williams, Vienna 2001

- 0.6 mm glass ~9×10^{12} Ωcm
- Three fishing lines with spacing of 35 mm between them.
- Four fishing line with 40 mm space between them were in chambers made of $130 \times 200 \text{ cm}^2$ plates.
- High voltage was applied to each of double-gap RPCs through electrodes made of high resistive (~1 $M\Omega/[])$ carbon film.
- Two 200 μm mylar sheets one at the top and one at the bottom provide with an isolation between high voltage electrodes and walls of boxes.

 $- C_2 H_2 F_4 / C_4 H_{10} / SF_6 90 / 5 / 5\%$

$\frac{dE}{dx} \propto \frac{1}{\beta^2} \ln(\beta^2 \gamma^2)$							
det.	n	x(cm)	P	exp.	meas.		
CLEO2	51	1.4	1 atm	6.4%	5.7%	(µ)	
Belle	52	1.5	1 atm	6.6%	5.1%	(µ)	
MKII/SLC	72	0.833	1 atm	6.9%	7.0%	(e)	
OPAL	159	0.5	4 atm	3.0%	3.1%	(µ)	
TPC/PEP	180	0.5	8.5 atm	2.8%	2.5%		
Aleph	344	0.36	1 atm	4.6%	4.5%	(e)	

 $p = m\beta\gamma$

Yamamoto, UH-511-943-99

Simultaneous measurement of p and dE/dx defines *m*.

and combined

NA49

Particle identification by simultaneous dE/dX and TOF measurement in the momentum range 5 to 6 GeV/c for central Pb+Pb collision

NA49, CERN-EP/99-001

Particle identification @ CDF

During CDF I particle ID based on dE/dx method using the central drift chamber

For CDF II a TOF complement dE/dx.

- 2σ K/ π separation p<1.6 GeV/c
- 2σ K/p separation p<2.7 GeV/c
- $2\sigma p/\pi$ separation p<3.2 GeV/c
- 1.2σ K/p separation over all p

Pion misidentification probability versus electron efficiency at 5 GeV for pseudo-tracks constructed from test beam data. The results are shown for the standard cluster counting technique and for the combined method using also the time-over-threshold information.

NIM A 474 (2001) 172-187

Conclusion

Particle Identification has proven to be a very fertile ground for novel ideas. In particular the progress in photon detection and in combined systems has evolved very rapidly.

Copyright © United Feature Syndicate, Inc. Redistribution in whole or in part prohibited.

Further information on PID and related techniques at this conference can be found in the following talks:

- A. Tonazzo/Milano, The laser calibration system of the Harp tof
- G. Prior/Geneve, The HARP Time Projection Chamber
- J.-L. Faure/Saclay, Progress with photodectors
- R. Pani/Roma, Flat Panel PMT: advances in position sensitive photodetection
- P. Antonioli/Bologna, MRPC for the ALICE-tof system
- M. Capeans/CERN, ATLAS straw tube TRD
- G. Osteria/Napoli, The tof system of the Pamela experiment
- R. Pegna/Siena, The HPD: new UV detector for IACT (Imaging Air Cerenkov Telescopes)
- D. Casadei/Bologna, Design and test results of the AMS RICH detector
- G. Passaleva/Firenze, New results from an extensive aging test on bakelite RPCs