

The LHCb Trigger

Trigger¹ (trigo1). Forms: a. 7-8 (9 dial.) tricker, (7 trycker); β . 8 triger, 7- trigger. [In form tricker, ad. Du. trekker a trigger, f. trekken to pull: see TREK. The form trigger occurs in 1660, but tricker remained the usual form down to c 1750, and is still in dialect use from Scotland to the English Midlands.]

1. A movable catch or lever the pulling or pressing of which releases a detent or spring, and sets some force or mechanism in action, e.g. springs a trap.

The Compact Edition of the Oxford English Dictionary Oxford University Press, Twenty-Third edition, January 1984

- LHCb&Trigger Overview
- First Level Trigger (L0)
- Single interaction/x-ing selection by Pile-up Veto
- Highest $p_T \mu$'s reconstruction by Muon Trigger
- Highest $E_T e, \gamma, \pi^0$ or h reconstruction by Calorimeter Trigger
- Second Level Trigger (L1)
- Full track reconstruction in Si Vertex Locator
- Matching of tracks with L0 leptons and hadrons
- Rough momentum measurement of selected tracks
- Higher Trigger Levels (L2,L3)
- Confirmation of L1 with better dp/p
- Full reconstruction

LHCb Trigger Detectors Overview

L0 Input rate 40 MHz

- Pile-up Veto: 2 Si-discs, 2048 binary channels.
- Scintillating Pad Detector: 5952 cells, 1-bit/cell.
- Preshower: scintillator, 5952 cells, 1-bit/cell.
- Electromagnetic Cal.: shashlik, 5952 cells, 8-bit E_T .
- Hadron Cal.: iron/scintillating tiles, 1468 cells, 8-bit E_T .
- Muon Chambers: MWPC&RPC, 120k physical channels \rightarrow 26k "trigger" channels.

L1 Input rate 1 MHz

- L0 summary info.
- VELO: 220 μ m thick Si, 170k binary channels.
- TT1 : 400-500 μ m thick Si, \sim 150k binary channels.

LHCb Trigger Rates Overview

Trigger level

- 30 MHz of x-ings have both bunches filled
- Wanted: single interactions: run at $L=2\times 10^{32}$ cm⁻¹s⁻¹.
- Of 80 mb non-elastic cross-section, \sim 60 mb is "visible" $\rightarrow \sim$ 10 MHz of x-ings with "visible" interactions.
- 8 (1.6) MHz of single (double) interactions/x-ing
- Pile-up Veto reduces rate to \sim 8 MHz
- L0 highest $E_T \mu$,e, γ , π^0 and h triggers reduce rate to 1 MHz
- L1 Trigger reduces rate to 40 kHz
- L2(3) Trigger reduces rate to 5 (0.2) kHz

Front End Electronics Overview

L0 Pile-up Veto Detector

- two Si discs upstream of interaction cigar
- coverage -4.2< η <-2.9
- same sensors as used for VELO (see talk Ulrich Parzefall)
- .OR. of 4 neighbouring strips (performed in Beetle chip)
- Re-group data in 90° sectors reduces total number of 8192 strips to 1280 channels.

L0 Pile-up Veto Algorithm

The whole algorithm fits into 4 large FPGAs.

L0 Pile-up Veto Algorithm

If multiplicty of two interactions is comparible "easy".

To be able to indentify small multiplicity vertex in "noise" of large multiplicity vertex: apply masking scheme.

- Project diagonals
- Identify largest peak above threshold
- Remove all hits contributing to this peak
- Project diagonals of remaining hits
- Look for peak over threshold

Pile-up Veto Performance

Height of peak after masking:

Some typical numbers on performance:

- Does not veto 95% of single interactions in signal events.
- Vetoes 60% of double interactions with the highest multiplicity.

L0: μ Trigger

Look for straight lines in pads in the μ -chambers

- MWPC (54%) and RPC (if rate $< 1 \text{ kHz/cm}^2$).
- 120k pads and strips. Eff> 99% by .OR. 2 layers per station.
- Combined strips \rightarrow 26k pads. Size: 1×2.5 cm² (M1-inner) to 16×20 cm² (M5-outer)
- All pads are projective in Y

L0: μ Trigger schematic

- Optical patch-panel to collect matching pads together.
- Routing nightmare: 14500 pins/VME board.
- One VME crate per quarter.
- Two largest $p_T \mu$'s per quarter.
- Fully synchronous.
- Latency ${\sim}1~\mu$ s.

The net list between the processing board components

L0: μ **Trigger Performance**

- Efficiency $B_d \rightarrow \psi K_S \sim 85\%$.
- Efficiency $B \rightarrow \mu X \sim 55\%$
- Algorithm very robust against increased background or chamber inefficiency.
- LHC μ -halo: negligible loss under normal condition.

L0: Calorimeter Trigger Detectors

- Scintillating Pad Detector: 5952 cells, 1-bit/cell.
- Preshower: scintillator, 5952 cells, 1-bit/cell, 2X₀
- Electromagnetic-Cal.: shashlik, 5952 cells, 8-bit E_T, 25X₀
- Hadron-Cal.: iron/scintillating tiles, 1468 cells, 8-bit E_T , 5.6 λ_I

L0: Calorimeter Trigger

- Add E_T of 2×2 clusters
- Collect largest (&second largest for h) clusters
- Distinguish between γ and e with SPD
- Distinguish between MIP and e with PreShower
- Add ECAL E_T to largest HCAL clusters behind it
- Add up all E_T of all clusters
- Count number of SPD cells with a hit

Fully synchronous architecture.

L0: Calorimeter Trigger Performance

- Use ΣE_T to reject diffractive/elastic (μ-halo) events, typical threshold 5 GeV.
- Highest
 E_T hadron for hadronic channels, typical threshold
 3-4 GeV

• π^0 trigger

L0: Calorimeter Trigger Performance

- Eff hadron channels 40-70% for 60% of L0-BW.
- Eff $B_d \rightarrow \psi(ee) K_S^0$ around 50% for 10% of L0-BW.

• Optionally reject "large" events at the earliest (L0) trigger using SPD information.

L1-Trigger: L0 summary data & VELO data

L0 summary information:

- From cal: e, $\gamma, \pi^0_G, \pi^0_L, h_1, h_2$ and ΣE_T
- ΣE_T of previous and next two crossings.
- Three largest $p_T \mu$'s from μ -trigger
- From Pile-up Veto: height of second peak, z-primary vertex.

- VELO: 220 μ m thick Si, 170k binary channels for Trigger.
- Each station is a sandwidch of a R and Φ -sensor.
- Φ -sensors have a 10-20° stereo angle.
- Sensitive Si-area starts 8 mm from the centre of the beam
- Whole detector mounted on XY-table to centre whole VELO on beam-line.
- Roughly 1200 clusters per event.

L1: TT1 data and dp/p

New: RICH1 arrangement

New: 4-layer Silicon station (TT1) 400-500 μm thick Si, ${\sim}150k$ binary channels. 350 cluster per event

L1: implementation

- Data size \sim 3-4 kbyte/event
- L0-rate: 1 MHz
- Use scheduler for event building traffic
- 2D-torus of CPUs with Scalable Coherent Interface
- Reached >1.2 MHz in prototype set-up.

L1-algorithm: track reconstruction

- 2D tracking in VELO: $\sim 95\%$ eff for B-tracks
- 1.7 ms on 2001 CPU \rightarrow need ${\sim}300$ CPUs in 2007.

Primary vertex

- Find primary vertex.
- Note: most of impact parameter info in rz-projection.

L1-algorithm: VELO \rightarrow L0

- VELO-tracks \rightarrow L0 e,h, μ
- ~90% eff for $p_T > 1$ GeV.

L0: L1-algorithm: VELO \rightarrow TT1

 Momentum of VELO tracks with significant impact parameter using TT1.

L1 Preliminary Performance

• L0- μ linked to VELO track with significant impact parameter provides excellent signature.

 Momentum information (from L0&TT1) for hadronic channels

Higher Level Triggers

Boundary conditions:

- Read all event data into CPU farm with 40kHz
- About 900 CPUs, hence: about ${\sim}20$ ms/event.
- Aim: roughly 200 Hz output rate.

No definitive algorithm yet, work in progress:

- Confirm L1, but with dp/p=1% using ST1-3.
- Investigating fast tracking algorithm(s) to connect VELO tracks to ST1-3, example: Hough transform.
- Use only wire position (not TDC) of straw chambers
- Reached $\sim 95\%$ efficiency for tracks $>5~{\rm GeV}$
- Time/track \sim 1 ms on 2001 CPU
- Use parametrized momentum determination, not Kalman filter

Summary

L0 Based on largest E_T leptons and hadron. Additional information on number of primary vertices, event multiplicity and total energy in calorimeter.

Implementation fully synchronous, protoype work in progress.

- L1 Partial event building at 1 MHz, uses information of L0, and does tracking in VELO and TT1 on small CPU farm. A 10% prototype in operation.
- L2/3 Full reconstruction on farm. Fast algorithms under development.

LHCb Trigger TDR forseen for January 2003.

Trigger ² (trigger). [f. TRIG $v.^1 + -EB^1$.] 1. A device or appliance to retard or stop the motion of a vehicle descending a slope.

The Compact Edition of the Oxford English Dictionary Oxford University Press, Twenty-Third edition, January 1984