# Status of the Kitch LHCb Experiment LHCb Experiment





Introduction
 Detector Status
 VELO

- RICH
- ECAL
- Trigger
- PhysicsConclusions



Beauty 2000 Sea of Galilee 13. 9. 2000

Franz Muheim University of Edinburgh



#### Dedication



Tom Ypsilantis 1928 - 2000



- conceived RICH detectors in 1977 (with J. Seguinot)
- a founding member of LHCb, totally dedicated to the RICH project
- a colleague always eager to discuss new ideas
- was a good friend for many of us
- He will be missed

## Introduction



- Only observed in neutral kaon system
  - theoretical uncertainties
- Standard Model
  - 3 generation CKM matrix allows for  $\mathcal{P}$  if  $\eta \neq 0$
  - predicts large  $\mathcal{P}$ asymmetries for **B** mesons
- No real understanding
  - Baryogenesis: additional source of *P* needed
  - why is strong *LP* small?
  - → New physics around the corner?

### UnitarityTriangles

#### $Vud Vub^* + Vcd Vcb^* + Vtd Vtb^* = 0$



 $Vud^* Vtd + Vus^* Vts + Vub^* Vtb = 0$ 



Sea of Galilee, 13. 9. 2000

### **CP** in B Meson System

- Ideal to search for new physics
- SM makes accurate predictions
  - precision tests
- In many decays
  - consistency
- Examples
  - Vub & BB-mixing
  - sin 2 $\beta$  & sin 2 $\alpha$
  - $-\gamma$  &  $\delta\gamma$  with B<sub>s</sub> mesons
  - compare to kaon sector  $\epsilon_{K} \& K \rightarrow \pi v \overline{v}$
- Can extract parameters of SM and new physics

Sea of Galilee, 13. 9. 2000





## Large Hadron Collider

- By 2005: BABAR, BELLE, CLEO-III, CDF, D0, HERA-B
  - → 1st test of CKM matrix  $(\overline{\rho}, \overline{\eta})$  vs sin 2 $\beta$
- □ LHCb is a 2nd generation experiment
  - → precision measurements of overconstrain CKM elements
  - $\rightarrow$  large statistics, B<sub>s</sub> mesons
- LHC is the most intensive source of B mesons (B<sub>d</sub>, B<sub>u</sub>, B<sub>s</sub>, B<sub>c</sub>)
  - $-\sigma_{bb} = 500 \,\mu b \qquad \sigma_{inelastic} = 80 \,\text{mb} \\ \text{Luminosity} \qquad <L>_{LHCb} = 2 \,\times 10^{32} \,\text{cm}^{-2} \,\text{s}^{-1} \\ <L>_{LHC} = 10^{34} \,\text{cm}^{-2} \,\text{s}^{-1}$





→ 10<sup>12</sup> bb / 10<sup>7</sup> s

Sea of Galilee, 13. 9. 2000



## LHCb Experiment



- Forward single arm
  - spectrometer
- □ Challenges
  - Trigger: leptonic and hadronic final states (eg  $B_d \rightarrow \pi\pi$ )
  - Particle Identification:
     π-K separation
     1 GeV
  - Vertexing:

proper time resolution 43 fs  $B_s \rightarrow D_s \pi(K)$ 30 fs  $B_s \rightarrow J/\psi \phi$ 





Sea of Galilee, 13. 9. 2000



## LHCb Experiment







## LHCb Experiment



- Vertex
- Inner Tracker
- Outer Tracker
- RICH1
- RICH2
- Calorimeters
   ECAL
   HCAL
- Muon Detector





## LHCb Subsystems



| System                     | Technology                                                                |
|----------------------------|---------------------------------------------------------------------------|
| Magnet                     | warm                                                                      |
| Vertex Locator             | r-phi Si strip detectos                                                   |
| Inner Tracker              | All Si strips or Si / Triple GEM                                          |
| Outer Tracker <sup>1</sup> | Straw tube drift chambers                                                 |
| □ RICH                     | HPD baseline/ MaPMT backup                                                |
| Calorimeters               | Preshower: Scintillator/Pb/scint.<br>ECAL: Shashlik, HCAL: Fe-scint. tile |
| □ Muons <sup>2</sup>       | MWPC & RPC - single or double gap                                         |
| Trigger                    | L0 (hardware), L1 (vertex), L2, L3                                        |
| Computing <sup>3</sup>     | OO & GAUDI, LHC GRID                                                      |
| See separate talks by 1) B | Hommels 2) E Santovetti 3) G Corti                                        |

See separate talks by 1) B. Hommels, 2) E. Santovetti, 3) G. CortiSea of Galilee, 13. 9. 2000Beauty 20009



## LHCb Milestones



- Aug 1995: LHCb Letter of Intent
- Feb 1998: Technical Proposal
- □ Sep 1998: Approval of TP
- □ 1999 2001: Technology choices
- Jan 2000: 1st Technical Design Report (TDR) - Magnet
- 2000 2002 remaining TDRs
- now July 2004: Construction phase
- July 2005: 1st beam





- Magnet
- Vertex Locator
- Inner Tracker
- Outer Tracker
- RICH
- Calorimeters
- Muons
- Trigger
- Computing

TDR approved April 2000 TDR April 2001 TDR Sept 2001 TDR March 2001 TDR submitted 7. Sep 2000 TDR submitted 6. Sep 2000 TDR Jan 2001 TDR Jan 2002 TDR July 2002



## Magnet





#### Properties:

- Normal conducting (AI)
- ∫Bdl = 4Tm
- Power 4.2 MW
- Yoke 1450 t

#### **D** TDR

- submitted: Jan 2000
- recommended (LHCC) approved: April 2000 (Research Board)

#### Call for tender

– now

Sea of Galilee, 13. 9. 2000



#### **Vertex Locator**







- Si strip detectors p-n, n-n, single sided, double metal read-out 220 µm thick, 180<sup>o</sup> wedges
- Optimized for Level 1 trigger (L1)
- Alternate r and phi strip detectors varying strip pitch 20 - 40 μm in r
- Detector halves retracted by ± 30 mm in y during injection
- → 8 mm from beam during physics
- Radiation damage
- may replace detectors after a few years





## **VELO Design**



#### Optimisation

- Use Liverpool MAP farm (300 Linux PCs)
  - 3.5 Million events
  - optimize # of stations, positions, outer & inner radii
- 25 stations, mounted in "toblerone" RF shields
  - 220 k channels
  - 9.5 hits/ track
- Proper time resolution

$$\sigma_t = 43 \text{ fs}$$
  $B_s \rightarrow D_s \pi$   
- sensitive up to  $X_s \sim 75$   
(1 year)







#### **Electronics & Mechanics**



- Analogue read-out
- Front-end chip design
  - sub micron BEETLE
  - DMILL SCTA128\_VELO
- ODE prototype
  - Testbeam



Sea of Galilee, 13. 9. 2000









## **VELO Tests**



#### Testbeam

- irradiated prototypes
- cluster finding efficiency
- resolution
- signal shape







Sea of Galilee, 13. 9. 2000



## **VELO Summary**



#### Geometry



- smallest pitch where most important for impact parameter resolution, at inner radius: "pixels" of 20 x 6300 μm<sup>2</sup>
- optimum for L1 trigger
- constant occupancy  $< 5 \times 10^{-3}$
- Thin detectors
  - read out at outer rim
  - minimize multiple scattering
  - $S/N \sim 15$  sufficient for L1 trigger
- Number of readout channels
  - 220 k reflects in cost



optimum for vertexing in LHCb



□ Large momentum range 1 < p < 150 GeV



#### RICH



#### **Ring Imaging Cherenkov Detectors**



Acceptance - 300 mrad RICH 1

- 120 mrad RICH 2
- Radiators / thresholds
  - Aerogel C4F10 CF4
  - π 0.6 2.6 4.4 GeV
  - K 2.0 9.3 15.6 GeV



Sea of Galilee, 13. 9. 2000



#### **Photo Detectors**



- Photo detector area: 2.9 m<sup>2</sup>
- Single photon sensitivity: 200 \* 600 nm, quantum efficiency>20% 20
- □ Good granularity: ~ 2.5 x 2.5 mm<sup>2</sup>.
- □ Large active area fraction:  $\geq$  73% ∞
- LHC speed read-out electronics: ----40 MHz
- environment: magnetic fields, charged particles





Sea of Galilee, 13. 9. 2000

## Hybrid Photo Diodes



#### Pixel HPD (baseline)





□ Quartz window, thin S20 photo cathode  $\int QE dE = 0.77 eV$ 

- **32 x 32 Si pixel array:** 500 μm
- Cross-focusing optics
  - demagnification ~ 5
  - 50 μm point-spread function
  - 20 kV operating voltage
- Encapsulated binary electronics
- Tube, encapsulation: DEP
- Pixel sensor: CERN

#### 61 pixel HPD

 Existing prototype external read-out

```
\Phi = 80 mm
```



#### HPD R&D Results





Sea of Galilee, 13. 9. 2000



## **HPD Electronics**







Occupancy ~3 % RICH 1 < 1% RICH 2

#### ALICE / LHCb

- pixel size 50 µm x 425 µm
- 8 pixels = 1 LHCb unit
- 40 MHz read-out clock
- in production (IBM)
- **Bump bonding: chip-sensor**

Sea of Galilee, 13. 9. 2000

## MAPMT (backup)



#### Multianode Photo Multiplier Tube



- 8x8 dynode chains, pixel 2x2 mm<sup>2</sup>
- □ Gain: 3·10<sup>5</sup> at 800 V
- UV glass window
   Bialkali photo cathode,
   OF 2004 at 2 200 m
  - QE = 22% at  $\lambda$  = 380 nm







#### Beam test

- RICH 1 Prototype
- CF4 @ 700 mbar
- 40 MHz Read-out: APVm chip Sea of Galilee, 13. 9. 2000

 Observe in data 6.51 ± 0.34 p.e.
 Expect from simulation 6.21 p.e.





#### Simulation

- based on measured test beam HPD data
- global pattern recognition
- background photons included
- # of detected photons

| - 7 | Aerogel |
|-----|---------|
| 33  | C4F10   |
| 18  | CF4     |

Angular resolution [mrad]

| - 2.00 | Aerogel |
|--------|---------|
| 1.45   | C4F10   |
| 0.58   | CF4     |

#### $\pi$ -K separation



Sea of Galilee, 13. 9. 2000



#### $B_d \rightarrow \pi^- \pi^+$





Tree T





Sea of Galilee, 13. 9. 2000

- $\Box$  sensitive to  $\swarrow$  angle  $\alpha$
- □ s<sub>a</sub> ~ 2<sup>0</sup> 5<sup>0</sup> in 1 year
  - $-\alpha$  dependent
  - if |P/T| from elsewhere
- Backgrounds have *P*





- Rate asymmetries measure angle  $\gamma - 2\delta \gamma$
- Expect 2400 events in 1 year of data taking
- → s(g-2dg) = 6<sup>0</sup>..14<sup>0</sup>



1000

800

600

With RICH

5.4

5.5

5.6

28

Sea of Galilee, 13. 9. 2000







#### **Calorimeters**



- **L**0 trigger high  $p_T$  hadrons, electrons, photons,  $\pi^0$
- electron, photon,  $\pi^0$  particle identification



Shashlik Pb/scintillator tiles, Fe/ scintillator tiles,  $\lambda$  shifting fibres, PMT, 25 X<sub>0</sub>





 $\lambda$ -shifting fibres, PMT, 5.6  $\lambda$ 



Sea of Galilee, 13. 9. 2000



#### Scintillator / $\lambda$ -Shifter



#### Radiation

- Inner most module 0.25 Mrad/year
- Extensive R&D
  - irradiation up to 5 Mrad
  - annealing for 175 h

Scintillator

#### $\lambda$ - shifter



Longitudinal dose in the LHCb ECAL



Resolution



Sea of Galilee, 13. 9. 2000



### **SPD / Preshower**



- Scintillator Pads/ Pb 2X0 / **PS** Scintillator
- improved ECAL E resolution
- $\lambda$ -shifting fibres read-out by MAPMTS

#### Fibre/MAPMT optical coupling

Events/5 c

10<sup>3</sup>

 $10^{2}$ 

10

1

0

200

400

600

800

10

10

Ο

200







10

10

Ω

200

400

electron - photon separation, L0 trigger

400

Sea of Galilee, 13. 9. 2000



## **ECAL Performance**



#### Joint Calorimeter Test



HERA-B ECAL with similar design works well: π<sup>0</sup> and η peak

$$\frac{\boldsymbol{s}(E)}{E} = \frac{10\%}{\sqrt{E}} \oplus 1.5\%$$

#### **Energy resolution**



Sea of Galilee, 13. 9. 2000



## Calorimeter Construction





Sea of Galilee, 13. 9. 2000

Beauty 2000

36









## Trigger System



#### Luminosity

- bunch crossings with one pp interaction
- radiation damage, occupancy, pile-up
- $<L_{\rm LHCb} = 2 \ {\rm x10^{32} \ cm^{-2} \ s^{-1}},$ low, 1st year LHC, tunable



- Trigger is very challenging
  - 40 MHz interaction rate,  $\sigma_{inel} / \sigma_{b\bar{b}} = 160$
  - bb rate 10<sup>5</sup> s<sup>-1</sup>, low interesting branching fractions, eg. B(B $\rightarrow \pi\pi$ ) = 5 x 10<sup>-6</sup>
- Multilevel

#### L0: Hardware L1: Vertex L2 & L3: Full event

| EP212 Tr                                                                                                                                                                                           | Triggers                     |                         |                                    |                                       |                        |                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------|------------------------------------|---------------------------------------|------------------------|----------------|
| Level 0                                                                                                                                                                                            |                              |                         |                                    |                                       |                        | 1 MHz          |
| <ul> <li>suppression x 40</li> <li>high p<sub>T</sub> muons</li> <li>high p<sub>T</sub> electrons, photons,</li> <li>high p<sub>T</sub> hadrons</li> <li>Pile-up veto, Interaction rate</li> </ul> | π <sup>0</sup><br>te 12.3 MH | late<br>Mu<br>EC<br>E&I | ency: 4<br>on<br>AL<br>HCAL        | μs                                    | ł                      | Hardware       |
| L1 Vertex trigger                                                                                                                                                                                  | 40 kHz                       | L                       | evel                               | 2 &                                   | 3                      |                |
| <ul> <li>suppression x 25, laten</li> <li>1) track finding with r strip</li> <li>2) primary vertex</li> <li>3) secondary tracks</li> </ul>                                                         | cy: 500 μs<br>os             | •                       | L2: v<br>track<br>L3: fu<br>inforr | ertexi<br>ing sy<br>ull eve<br>natior | ng<br>vste<br>ent<br>n | with all<br>ms |
| <ul><li>4) use phi strips - 3d verti</li><li>5) secondary vertices</li></ul>                                                                                                                       | ces                          |                         |                                    | DA                                    | AQ:                    | 200 Hz         |
| Sea of Galilee, 13. 9. 2000                                                                                                                                                                        | Beauty 2000                  | )                       |                                    |                                       |                        | 39             |





|                                           |    |    | L0(%) |           | L1(%) | L2(%) | Total(%)  |  |
|-------------------------------------------|----|----|-------|-----------|-------|-------|-----------|--|
|                                           | m  | e  | h     | all       |       |       |           |  |
| $B_d \rightarrow J/\psi(ee)K_s + tag$     | 17 | 63 | 17    | 72        | 42    | 81    | 24        |  |
| $B_d \rightarrow J/\psi(\mu\mu)K_s + tag$ | 87 | 6  | 16    | <b>88</b> | 50    | 81    | 36        |  |
| $B_s \rightarrow D_s K + tag$             | 15 | 9  | (45)  | 54        | 56    | 92    | <b>28</b> |  |
| $B_d \rightarrow DK^* + tag$              | 8  | 3  | (31)  | 37        | 59    | 95    | 21        |  |
| $B_d \rightarrow \pi^+ \pi^- + tag$       | 14 | 8  | 70    | 76        | 48    | 83    | 30        |  |

- □ Trigger efficiencies are ~ 30 %
- hadron trigger is important
- **Tagging:** efficiency 40 %, mistag rate: 30 %
  - muon or electron from other B
  - charge kaon from other B



## **Trigger Strategy**



- Multi level, Flexibility
  - not rely on single detector
- Stability, Robustness
  - running conditions

#### Event Generator

- Updated Pythia model and structure functions
- Large change for charged multiplicities compared to TP



Sea of Galilee, 13. 9. 2000

Beauty 2000





#### $B_d \rightarrow D^{*\mu} \pi^{\pm}$



- Sensitive to angle -2β-γ theoretically clean
- Asymmetry tiny, but large BR
- hadron trigger
- 80 k exclusive events
   260 k inclusive D\*π events



 $\begin{array}{l} \text{Sensitivity} \\ \sigma_{2\beta+\gamma} \end{array}$ 

Will add  $B_d \rightarrow D^{*\mu} a_1^{\pm}$  360 k events







#### New Methods



44

- New strategies for measuring CKM angles - direct *CP*
- combine  $B_d \rightarrow \pi K$  charged and neutral B to extract  $\gamma$ 
  - $-s_g \sim 2^0 7^0$  ambiguous solutions
- combine  $B_s \rightarrow KK$  and  $B_d \rightarrow \pi\pi$ 
  - s<sub>g</sub> ~ 4<sup>0</sup> β known, U-spin
  - **Lifeb** RICH at its best
- combine  $B_{d,s} \rightarrow D^+_{d,s} D^-_{d,s}$ 
  - O(100k) events per year
  - $-\mathbf{s_g} \sim \mathbf{a} \ \mathbf{few}^{0}$
- Overconstrain  $\swarrow$  angles  $\alpha$ ,  $\beta$ ,  $\gamma$ , and  $\delta\gamma$ Sea of Galilee, 13. 9. 2000 Beauty 2000





#### Rare Decays



#### $\square$ $B_s \rightarrow \mu^+\mu^-$

- Standard Model branching ratio: 3.7 x 10<sup>-9</sup> ideal to search for new physics - FCNC
- Expected signal (bkgd): (3.3) 1 year
- $\Box$   $B_d -> K^* \mu^+ \mu^-$ 
  - Standard Model branching ratio: 1.5 x 10<sup>-6</sup> dimuon mass spectrum, forward-backward asymmetry
  - combine with  $B_d \rightarrow \rho \mu^+ \mu^ |V_{ts}/V_{td}|$
  - Expected signal (bkgd): 22400 (1400) 1 year
- $\Box B_d \rightarrow K^* \gamma$ 
  - Standard Model branching ratio: 5 x 10<sup>-5</sup> search for new physics in  $\mathcal{P}$  asymmetry O(1%) in SM
  - Expected signal:

- - 1 year 26000



## LHCb CP Sensitivities



| Parameter       | Channels                                 | Evts/year | $\sigma(1 \text{ year})$ | LHCb feature                    |
|-----------------|------------------------------------------|-----------|--------------------------|---------------------------------|
| 2(β+γ)          | $B_d \rightarrow \pi \pi$                | 4900      |                          |                                 |
|                 | $\Delta  \mathbf{P}/\mathbf{T}  = 0$     |           | 2°-5°                    | PID, hadron trigger             |
|                 | $B_d \rightarrow \rho \pi$               | ~1300     | 3°-6°                    | PID, hadron trigger             |
| 2β+γ            | $B_d \rightarrow D^* \pi$                | 340000    | >11°                     | PID, hadron trigger             |
| β               | $B_d \rightarrow J/\psi K_s$             | 37000     | 0.6°                     |                                 |
| γ-2δγ           | $B_s \rightarrow D_s K$                  | 2400      | 6°-14°                   | PID, hadron trigger, $\sigma_t$ |
| γ               | $B_d \rightarrow DK^*$                   | 400       | 10°                      | PID, hadron trigger             |
| δγ              | ${ m B}_{_{ m S}}  ightarrow J/\psi\phi$ | 44000     | 0.6°                     | $\sigma_{t}$                    |
| Bs oscillations |                                          |           |                          |                                 |
| X <sub>s</sub>  | $B_s \rightarrow D_s \pi$                | 120000    | up to 75                 | hadron trigger, $\sigma_t$      |
| Rare Decays     |                                          |           |                          |                                 |
| BR              | $B_s \rightarrow \mu\mu$                 |           | <2×10-9                  | $\sigma_{t}$                    |
|                 | $B_d \rightarrow K^* \mu \mu$            | 22400     |                          | PID                             |
| Sea of Galilee  | , 13. 9. 2000                            | Bea       | uty 2000                 | 46                              |





LHCb is progressing rapidly since Technical Proposal

- Major technology choices made, e.g.
- Magnet normal conductive coil
- RICH pixel HPD baseline
- Technical Design Reports
  - Magnet approved, RICH & ECAL submitted
  - other subsystems on track
     in this talk: Vertex
- **Trigger** 
  - robustness demonstrated, optimum luminosity, tuneable
  - → take data from start of LHC & long physics programme
- Physics performance studies extended
- Construction phase starts now