

Olivier Callot

30 June 2000

International Symposium "LHC Physics and Detectors" 28-30 June 2000

JINR, Dubna, Russian Federation

The LHCb Calorimeter Triggers

- Overview of the LHCb triggers
- ◆ General principles
- Hardware implementation
- Performances
- Conclusions

Overview of the LHCb triggers

◆Two hardware levels

- Level 0 reduces the rate to 1 MHz in 4 μs
 - ★ Select high P_T particles
 - * Reject multiple interactions
- Level 1 reduces the rate to 40 kHz in 1000 μs
 - * Identification of a secondary vertex
- DAQ input at 40 kHz

◆ Software filtering

 Two software filtering stages to reduce the rate to 200 Hz

◆Level 0 Trigger parameters

- LHC repetition rate 40 MHz
 - * But only ~76 % have colliding bunches at LHCb
- LHCb works at 'low' luminosity, to have a single interaction per crossing
 - * Nominally 2 x10³² cm⁻²s⁻¹
 - * Double and multiple interactions are rejected as soon as possible, using a pile-up VETO at Level 0
- Rate of interaction:

* Single: 9.4 MHz* Multiple: 3.0 MHz

- Accepted rate 1 MHz
 - * Factor 10 reduction on single interactions
 - * In fact a bit more as multiple interactions are not all vetoed.

◆Level O Architecture

- Selection of high P_T particles
 - * Electrons, photons, hadrons, $\pi 0$

This is the subject of this talk.

* Muons

See Andrei Tsaregorodtsev talk later this morning

- * Total (transverse) energy may also be used.
- Detection of multiple interactions : Pile up-veto
 - * Two dedicated VELO detectors upstream the interaction point
 - * Histogram the Z impact of all radial hit combinations
 - Search for a second peak.
 - * Rejects ~80% of the double interactions, >95% when 3 or more interactions.
- Combination and decision: the L0 Decision Unit
 - * Mainly E_T cuts on the various particle types
 - Adjusted during the fill to keep the output rate at 1 MHz
 - * It can combine several particle types if useful.
 - It can also ignore the pile-up veto for rare cases like B $\rightarrow \mu\mu$
 - * Sends decision to the Readout Supervisor
 - Accept two consecutive BX, but no more than 15 events in 900 ns due to the size of the de-randomisation buffer in the front-end cards.

Calorimeter Triggers General principles

◆Identify hot spots

- A shower has a 'small' size
 - * Detect a high energy in a small surface
 - * Use a square of 2 x 2 cells area
 - 8 x 8 cm² in the central region of ECAL (may loose a few % of the energy)
 - more than 50 x 50 cm² in the outer region of HCAL

\bullet Select the particles with the highest E_T

- Due to its high mass, a B particle decays into high P_T particles
 - * 'High P_T' is a few GeV
 - ★ For the Level 0 decision, we need only the particle with the highest P_T.
 - Maybe also the second highest in HCAL, see later

- One can then select locally the highest candidate
 - * Process further only these candidates
 - Reduced complexity and cabling
 - Only ~200 for ECAL and ~50 for HCAL starting from 6000 and 1500 cells.

◆Validate the candidates

- Electron, photon, π^0 :
 - * Electromagnetic nature using the PreShower, charge using the SPD
 - * Same granularity, projective
 - Look only at the cells with the same number in the other detectors
- Hadron
 - * Would like to add the energy lost in ECAL, in front of the candidate
 - Complex connectivity, expensive
 - * Useful only if the ECAL contribution is important
 - If small, it can be ignored without too much harm
 - * Look only at ECAL candidates!
 - Manageable number of connections

Select the highest validated candidate

- One wants simple decisions at this early level
- Using the second highest hadron was shown to improve marginally the efficiency in some cases.
 - * The studied implementation allows to produce this second highest.
 - * No need for a second highest electron or photon.
- The number of links, and consequently the cost is by far smaller if one reduces locally the number of candidates...

Processing entirely synchronous

- No dependence on occupancy and on history
 - * Easier to understand and to debug
- Pipeline processing at all stages.

Hardware implementation

◆Inputs

- About 6000 ECAL cells (same number for PreShower and SPD)
- Front-end electronics located on top of the detector
 - * Order of 100 rads / 10 years
- We want to minimise cabling complexity
 - * Integrate the first selection in the front-end card.
- Quantity to manipulate: E_T, converted from the ADC by a dedicated LUT.
 - * 8 bits are OK, with full scale around 5 GeV.
- Use a dedicated backplane for as many connections as possible
 - * Use LVDS levels, multiplexed signals, as soon as there are several bits

30 June 2000

First selection

◆Build the 2x2 sums

- Work inside a 32 channels (8x4) front-end card
 - * To obtain the 32 2x2 sums, one needs to get the 8 + 1 + 4 neighbours
 - * Via the backplane (9) or dedicated point-to-point cables(4)

: 8 bits LVDS multiplexed link

: 8 bits on the backplane

◆Select the local maximum in the card

- Simple comparison of the summed E_T.
- Currently implemented in 4 ALTERA FPGA's, could be simplified when bigger FPGA's are available.

The 32 2*2 sums are compared and the highest one selected by 4 FPGAs. This is performed in 10 clock cycles, without taking into account the time. to get the neighbour information

L.A.L Orsay - Feb 2000

Validate

◆ECAL validation

- For each candidate, one needs to access the PSD+PreShower information, i.e. 2 times 4 bits.
 - * The address of the candidate is sent from the ECAL to the PreShower FE card
 - One PreShower card handles 64 channels, exactly 2 ECAL cards.
 - * The 2x4 bits are extracted synchronously at each BX and sent to the Validation Card

- A decision is then taken to validate the ECAL candidate as photon, electron or nothing.
 - * PreShower + SPD => electron
 - * PreShower alone => photon
 - * Possible VETO on dirty cases, to reject splashes
 - * Validation by a LUT (8 bits input, 2 outputs) => flexibility
- Only the highest electron and the highest photon are kept.

$\bullet \pi^0$ trigger

- Combine two photons from neighbouring ECAL cards
- Not very efficient, but selects easy-to-reconstruct π^0 s
- This idea is still under study.

ECAL Validation Card number

HCAL Number of links to ECAL

LABORATOIRE DEL'ACCÉLÉRATEUR LINÉAIRE

♦HCAL validation

- One wants to add the ECAL candidate in front of the HCAL one
- It was found easier to bring the HCAL candidates to a place where the ECAL candidates are available! Even if some have to be duplicated
 - * About 200 ECAL candidates
 - * About 50 HCAL candidates
 - * Including the needed duplication, one has 80 links HCAL to ECAL, instead of 200 links ECAL to HCAL
- The ECAL and HCAL addresses are matched (LUT) and the E_T of the highest matching ECAL candidate is added to the HCAL one.
- All candidates are sent to the barracks, for later processing.

Selection crate

◆Select the final candidates

- **Easy** for electron, photon, π^0 : Only the one with highest E_T is kept.
- For HCAL: The highest is also easy.
- The second highest implies to remove 'ghosts'
 - * 1- The same HCAL candidate may go to two Validation Cards.
 - * 2- The same cell can be used by two candidates in neighbouring FE cards

 Removing ghosts is just checking if the addresses differs by no more than ±1 in row and column.

- We want the total E_T and the seeds for 'super-L1', where the first type of ghosts (from the same HCAL card) have to be always removed
 - * We know where are the two candidates coming from the same HCAL card.
 - Just select the one with highest E_T.

Performances

◆Latency is OK

The number of clock cycles needed is sensibly below the allowed budget.

◆Compare to minimum bias retention

- The constraint is to keep the Level 0 rate to 1 MHz
 - * This defines the rejection factor on minimum bias
 - * The sharing between the various types of particles is being optimised.
 - lacktriangle The rejection should be about 15 for hadron, 100 for electron and 200 for photon / π^0
- The plots show the minimum bias rejection and the signal acceptance versus the E_T cut.
 - * 'Signal' is normalised to events which can be reconstructed in LHCb
- This is only the Level 0 acceptance.

◆From right to left on the figure:

- For a given rejection, read the E_T threshold
- For this threshold, read the signal efficiency

Hadron trigger

Electron trigger

 $B_d \rightarrow \pi\pi$

 $B_d \rightarrow J/\Psi(e^+e^-) K_S^0$

Conclusions

◆We have a powerful Calorimeter Trigger

- It minimises the number of connections.
 - * Less that 1000 LVDS links between cards on the same Calorimeter platform
 - * About 150 optical links to the barracks.
- Many connections on the backplane
 - * Same crates for ECAL, HCAL and PreShower electronics.
- It could be built almost now
 - * But no need to hurry, we need it in 2004 only
 - * New FPGA's may simplify the design, and gain some speed, even if this doesn't seem to be needed
- It performs very well.

