ICHEP Poster Session - 4 July 2014

Performance of Jet Substructure Techniques and Boosted Object Identification in ATLAS

Introduction

At the LHC, \sqrt{s} >> electroweak scale, therefore massive particles like top, W, Z and Higgs are often produced with a significant boost with the decay products reconstructed as a single jet. Jet substructure techniques mitigate pile-up and probe inside the jet to identify the boosted objects. Important for exploring the boosted kinematic regime, extending understanding of the SM and searching for new physics.

Jet Grooming

Top Tagging

Shower Deconstruction categorizes a jet into N sub-jets,

Jet grooming techniques are designed to improve the mass resolution of hadronically decaying boosted objects. Jet Trimming divides large-*R* jets into N subjets, removing soft components. *Jet Pruning* is similar to trimming in that it removes constituents with a small relative pT, but it additionally applies a veto on wide-angle radiation.

representing a possible showering history. The probability that a given history was realized is used to distinguish jets originating from boosted heavy particles from QCD backgrounds.

C

Entrie:

 $p_T^{j^2}/p_T^{j^{1+j^2}} <_{z_{cut}} \text{ or } \Delta R_{j^{1,j^2}} < R_{cut}$

Pure *Track-based Trimming* places a requirement on trackbased variables of reclustered subjets. One such variable is the *pile-up corrected Jet Vertex Fraction* (corrJVF). Simulated $W' \rightarrow WZ \rightarrow qqqq$ events are used for performance evaluation.

Trimming in combination with a jet-area-based jet 4-momentum correction are expected to be performant at the high luminosity and pile-up conditions expected during the 14 TeV running of the LHC.

Jet Charge

Quantum Jets

The *Q-Jets* technique interprets jets through multiple sets of possible showering histories. Jet observables are evaluated as distributions and not simply as single quantities. The *volatility* provides powerful discrimination between boosted particles and QCD backgrounds.

Boosted Boson

Boosted W Boson Identification

Quark/Gluon Tagging

Identification combines jet grooming techniques with jet substructure variables, improving the boosted object tagging efficiency and QCD background rejection. Data/MC agreement for tagging variables is verified using a high purity sample of *W* bosons from top decays.

🖄 EXPERIMENT

Jim Lacey (Carleton University), for the ATLAS Collaboration