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Jet grooming techniques are designed to 
improve the mass resolution of hadronically 
decaying boosted objects. Jet Trimming 
divides large-R jets into N subjets, removing 
soft components. Jet Pruning is similar to 
trimming in that it removes constituents with 
a small relative pT, but it additionally applies 
a veto on wide-angle radiation. 

At the LHC, √s >> electroweak scale, therefore massive 
particles like top, W, Z and Higgs are often produced with a 
significant boost with the decay products reconstructed as a 
single jet. Jet substructure techniques mitigate pile-up and 
probe inside the jet to identify the boosted objects. Important 
for exploring the boosted kinematic regime, extending 
understanding of the SM and searching for new physics.

Jet Grooming

Trimming in combination with a jet-area-based jet 4-momentum 
correction are expected to be performant at the high luminosity and 
pile-up conditions expected during the 14 TeV running of the LHC. 

Boosted W Boson Identification
Boosted Boson 
Identification 
combines jet 
grooming techniques 
with jet substructure 
variables, improving 
the boosted object 
tagging efficiency and 
QCD background 
rejection. Data/MC 
agreement for tagging 
variables is verified 
using a high purity 
sample of W bosons 
from top decays. f
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Quark/Gluon Tagging

Tracking information is used to discriminate between quark and gluon initiated jets. A 
likelihood-based Quark-Gluon Tagger has been implemented and validated using 4.7 fb-1 of   
7 TeV data. For data, a ~45% gluon-jet efficiency is achieved for a 70% quark-jet efficiency. 
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Pure Track-based Trimming places a requirement on track-
based variables of reclustered subjets. One such variable is 
the pile-up corrected Jet Vertex Fraction (corrJVF). 
Simulated W′ → WZ → qqqq events are used for 
performance evaluation.
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The Q-Jets technique interprets jets through multiple sets of possible 
showering histories. Jet observables are evaluated as distributions 
and not simply as single quantities. The volatility provides powerful 
discrimination between boosted particles and QCD backgrounds. 
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Shower 
Deconstruction 
categorizes a jet into 
N sub-jets, 
representing a 
possible showering 
history. The 
probability that a 
given history was 
realized is used to 
distinguish jets 
originating from 
boosted heavy 
particles from QCD 
backgrounds.

AT
LA

S-
C

O
N

F-
20

14
-0

03

Jet Charge is a quark-charge 
sensitive observable which 
can be used for identifying the 
charge of hadronically-
decaying heavy particles.
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