

Calorimeter and Muon System

Lepton Identification

Pittsburgh, October 14 – 18, 2003 On Behalf of the LHCb Collaboration

Frédéric MACHEFERT

The LHCb experiment

LHCb is dedicated to the Study of CP violation in the B meson system

recent reoptimisation

- VELO, RICH1, Tracking
- Less material before Calorimeter (~ 70%X₀)

LHCb Calorimeters

Requirements :

- Identification of hadrons, electrons, γ , π^0
- Energy/ Position measurement
- L0 Trigger input : \rightarrow see talk by O. Callot
 - High sensitivity
 - Fast response (40MHz)

Scintillator Pad Detector (SPD) Preshower (PRS) \rightarrow L0

- γ / MIP separation (SPD)
- Electron, γ / π (PRS)
- Charged Multiplicity (SPD)
- **ECAL** \rightarrow L0
 - Et of electron, γ
 - \mathbf{I} π^0 offline reconstruction
- **HCAL** \rightarrow L0
 - Et of hadrons
 - Particle ID

Scintillating detector

 2.5 X₀ lead converter sandwiched between two scintillator planes (pads)

3 zones : granularity depends on the occupancy

- Cell size : 40.4 / 60.6 / 121.2 mm
- ~ 6000 channels
 - Notice : 3 same zones for ECAL (HCAL : 2 zones)
- Projective Calorimeters

L0:

- ECAL finds local Et maxima
- SPD/PRS determines electromagnetic nature of energy deposit
- Signal read with MAPMT
- Dynamic range : 0 100 Mips
 - 10 bits (PRS) + 1 bit (SPD)

ECAL

Shashlik technology

- Radiation resistance
- Fast response
- 66 layers of 2mm Pb / 4mm scintillator
 - 25 X₀, 1.1 λ₁
- WLS fibres transport signal to PMT

90% of the modules delivered to CERN

ECAL front-end/L0 electronics

- Installed on top of sub-detectors (200rad/y)
- Low noise front-end integrator
- Et range : 0 10GeV (12 bits)

Longitudinal tiles

- Iron and scintillator tiles
 - 6mm master, 4mm spacer / 3mm scintillator
 - 5.6 λ₁
- 2 zones (1468 channels)
- Signal propagates with WLS fibres to PMT

HCAL

Same front-end electronics as ECAL

30% of the modules already delivered

Beauty 2003 - Pittsburgh, October 14 - 18, 2003 - Carnegie Mellon University

Scintillator + WLS fibre : fast system

Try to measure every bunch crossing : no pileup effect (residue after 25 ns : < 1%)</p>

Digital electronics based on Actel anti-fuse technology

- FPGA configuration insensitive to Single Event Effects
- Protection by Parity code and Triple Voting

All components have been tested in proton and ion beams

Energy Resolution

Energy Resolution of series modules (test beam measurements)

Calorimeter Performances : π^0 **reconstruction**

9

Requirements

- Muon triggering (L0)
 - Fast measurement / Bunch crossing id.
 - High efficiency (down to p=5GeV/c)
 - Pt resolution ~ 20%
- Muon offline identification
 - Tagging + reconstruction

MWPC

MWPC

- Wire/cathode reading
- 2mm wire pitch ε=99% (20ns-2 gaps)

Central Part M1 (0.6m²) : Triple-Gem ?

Pre-series MWPC

Muon system electronics

- **MWPC pre-series production started**
- Several sites are ready (tooling and clean room) for production
- **Electronic Architecture has been reviewed and approved**
 - Final version of most chips has been received

Lepton identification : Tracking

Tracking performance

ε=94 % - Ρ>10GeV

F. MACHEFERT

Electron Identification (I)

Require impact of a track near a calorimeter cluster

Build 4 parameters :

Electron Identification (II) : combined analysis

15

F. MACHEFERT

Muon Identification (I)

Definition of Fields of Interest Estimator to further reject pions around track extrapolation Require hits in # stations in FOI muons background 0.3 **Muon Stations** Momentum (GeV) 3 < P < 6 M2 + M30.2 6 < P < 10 M2 + M3 + (M4 or M5) M2 + M3 + M4 + M5P > 10 0.1 $\mu ightarrow \mu$ 12 0 0.1 0.2 0.3 100 Difference in slope Muon efficiency (%)10 Pion misid rate (%) 80 8 60 0.12 $\pi \rightarrow \mu$ 0.08 2 20 0.04 0 50 75 100 25 125 150 0 Momentum (GeV/c) 800 1 400 n Average track-hit distance ε(μ)=94.3% - ε(π→μ)=2.9%

Beauty 2003 - Pittsburgh, October 14 - 18, 2003 - Carnegie Mellon University

F. MACHEFERT

Muon Identification (II)

Combine Muon+Rich+Calo

Further improves selection wrt FOI only

J/ $\Psi \rightarrow \mu^{+} \mu^{-}$ (**B**⁰_s \rightarrow **J**/ Ψ **Φ**) **ε**(µ)=93% - ε(π \rightarrow µ)=1%

Conclusion

Calorimeter

- Complementary systems
 - SPD / PRS / ECAL / HCAL
- L0
- Fast / sensitive / efficient / robust

Muon system

- Simple (all MWPC) / robust
 - L0
- Logical channel : no geometrical ambiguity

Lepton Identification ($B_s^0 \rightarrow J/\Psi \Phi$)

- Electrons : $\varepsilon(e) = 95\% \varepsilon(\pi \rightarrow e) = 0.7\%$
- Muons : $\epsilon(\mu) = 93\% \epsilon(\pi \rightarrow \mu) = 1\%$

LHCb will be ready for data taking in 2007 at LHC start-up

- Detector production is on schedule
- Detector installation starts at the end of next year (magnet installation ongoing)

Backup Slides

Beauty 2003 – Pittsburgh, October 14 – 18, 2003 – Carnegie Mellon University

The LHCb experiment

LHCb is dedicated to the Study of CP violation in the B meson system

pp collisions at $\sqrt{s} = 14 \text{ TeV}$ forward bb production correlated $\sigma_{total} \sim 100 \text{ mb} \rightarrow \text{Int. Rate} : 2x10^7\text{Hz}$ $\sigma_{bb} \sim 500 \text{ µb}, \sigma_{inel} \sim 80 \text{ mb}$ $S/B\sim1\%$ $10^{12} \text{ bb} \text{ pairs per year}$

LHCb

- Mostly single interactions (PileUp Veto)
 - L_{nom.}=2x10³²cm⁻².s⁻¹
- 12 mrad < θ < 300 mrad</p>
- efficient trigger (L0~1MHz, L1~40kHz)
- recent Re-optimisation
 - VELO, RICH1, Tracking
 - Less material before Calorimeter

Lepton identification : Tracking

Tracking performance

F. MACHEFERT LABORATOIRE DEL'ACCÉLÉRATEUR

Lepton Identification Robustness

Electrons (Calo effects)

- Coherent / incoherent noise increase
 - +50 up to +100%
- Dead channels
 - 1%(PRS/SPD) 0.2% (ECAL/HCAL)
- Channel gain error
 - +50%
- No re-tuning (nominal reference histo)

ε(e) loss of 2.5% ε(π→e) = 0.7% → 1%

Electrons (ex. of track multi. Effect)

Increase track multiplicity by x2

ε(e) unaffected ε(π→e) = 0.7% → 1%

Muons (Muon system effects)

- Increase low energy background by x5
- No re-tuning

$$\epsilon(\pi{\rightarrow}\mu)$$
 = 2.9 % \rightarrow 11.7 %

After algorithm re-tuning

ε(μ) loss of 7%

$$\epsilon(\pi \rightarrow \mu)$$
 back to 2.9 %

F. MACHEFER

