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1. Introduction

Multi-leg two-loop amplitudes are of potential importance for precision measurements in the
coming years of high energy proton-proton collisions at the LHC. Improved understanding of IR
subtraction schemes has led to considerable progress in the calculations of full NNLO QCD cor-
rections for 2→ 2 processes. Recent examples of hadronic production of di-jets [1, 2], tt̄ [3, 4], and
VV [5] are reviewed in these proceedings. The double virtual corrections required at this precision
have mainly been obtained using Feynman diagrams together with integration-by-parts identities
[6], but owing to the rapid growth in complexity this approach may not be sufficient to handle
higher multiplicity processes and therefore new techniques are desirable.

Though Feynman diagram technology has been sufficient for a number of two-loop QCD am-
plitudes (those required for di-jets and Higgs plus jet production are arguably the most complicated
amplitudes achieved with this approach [7 – 11]), on-shell approaches can avoid large intermedi-
ate steps and enable an efficient calculation of more complicated processes. Unitarity [12] and
generalized unitarity [13] techniques have been successfully applied to two-loop QCD amplitudes
for massless 2→ 2 processes [14 – 20]. In super-symmetric gauge and gravity theories these tech-
niques are now a familiar technology, with the current state-of-the art computations being able to
handle four and even five loops.

Encouraged by the high levels of automation achieved at NLO, there has been recent progress
in extending unitarity, generalized unitarity and integrand reduction algorithms to allow a system-
atic algebraic approach to arbitrary loop amplitudes. The maximal unitarity approach proposed
by Kosower and Larsen [21] builds upon the direct computation, and further developments in this
direction are summarized in [22 – 29]. The integrand reduction algorithm developed by Ossola, Pa-
padopoulos and Pittau (OPP) [30] has also been the focus of multi-loop extensions. Initial attempts
to extend this method [31, 32] led to the proposal of the computational algebraic geometry method
[33, 34], generalizing the integrand reduction algorithm systematically to all loop orders. A num-
ber of different examples have been considered within this framework [35 – 41]. Investigations into
spinor integration methods at two-loops are also on-going [42].

It has been interesting to see algebraic geometry play an increasingly important role in under-
standing the details of these methods. Gröbner basis and polynomial division techniques allow the
automation of the integrand reduction process, and the tool of primary decomposition characterizes
the structure of the branches of the unitarity-cut solutions.

In these proceedings we review the D-dimensional formulation of the multi-loop integrand
reduction method and present applications to maximal non-planar cuts of the five-gluon all-plus
amplitude in QCD.

2. A D-dimensional integrand reduction algorithm

The details of our approach to D-dimensional integrand reduction have been developed during
the computation of the five-gluon all-plus helicity amplitude in QCD [41]. A summary of the
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approach has recently been presented in the proceedings of ACAT 2013 [43], so we will only give
a very schematic overview here.

A D = 4−2ε dimensional L loop amplitude depending on a set of external momenta {p} and
internal momenta {k} has the generic form:

A(L),[D]
n ({p}) =

∫ L

∏
i=1

dDki

(2π)D
N({k},{p})

∏
L(L+9)/2
l=1 Dl({k},{p})

, (2.1)

where Dl are the denominators of the loop propagators. The master numerator function N may
be obtained from Feynman diagrams or by off-shell recursive techniques. Alternatively can N be
written as the product of tree-level amplitudes when generalized unitarity cuts are applied to the
propagators. The goal of the integrand reduction procedure is to write a loop amplitude in the form:

A(L),[D]
n ({p}) =

∫ L

∏
i=1

dDki

(2π)D

L(L+9)/2

∑
c=1

∑
T∈Pc

∆c;T ({xi j,µi j})
∏l∈T Dl({k},{p})

, (2.2)

where xi j and µi j are 4 and −2ε dimensional irreducible scalar products (ISPs) that must be iden-
tified. To achieve this we use the polynomial division algorithm proposed by Zhang [33] in D-
dimensions:

1. Choose a maximal propagator topology from the list of un-computed topologies.

2. Choose a set of momenta, vi, spanning the space of external momenta.

3. Change the propagator equations into scalar product variables xi j = k̄i · v j and µi j = k[−2ε]
i ·

k[−2ε]
j using the 4×4 Gram matrix, G4(v), to give a set of equations: Pα(xi j,µi j).

4. Separate the reducible scalar products from the irreducible scalar products using the linear
parts of the propagator equations, 〈P〉= 〈Pquadratic〉∪ 〈Plinear〉.

5. Use polynomial division by the Gröbner basis of the ideal 〈Pquadratic〉 to define the integrand
parametrization ∆T = ∑i cimi(xi j,µi j) in terms of ISP monomials mi.

6. Use primary decomposition of the algebraic variety Z(P) to reduce the unitarity-cut solu-
tions to irreducible branches. Solve the on-shell equations at each branch using an explicit
parametrization of k(s)i (τα).

7. Use ∆T (k(s)) = ∑d jm′j(τα) = N(k(s))−∑T ∆T (k(s)) = ∏A(0)(k(s))−∑T ∆T (k(s)) to compute
the residues d j from the input (e.g. tree-level amplitudes, diagrams, etc). The sum runs over
all (previously computed) topologies with higher number of propagators

8. Solve the master system M ·~c = ~d for the coefficients ci where,

∑
j

d jm′j(τα) = ∑
i

cimi(xi j(τα),µi j(τα)) = ∑
i, j

M jicim′j(τα) (2.3)

9. Go back to 1 until all topologies are computed.
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Steps 2-5 above are implemented in Zhang’s BASISDET Mathematica package [33].

There are a few important comments to make about this approach. Firstly there is an ambiguity
as to which spanning basis vectors vi to choose and we notice in a number of examples that a good
choice can result in a considerably more compact integrand representation. Secondly, step 6 can
be efficiently performed using the primary decomposition algorithm implemented in MACAULAY2
[44]. In D-dimensions it is possible to prove that all propagator ideals are radical ideals and there-
fore admit exactly one on-shell solution branch. Thirdly, in step 5 we must provide an ISP ordering
to define the polynomial division. Any choice will result in a valid integrand representation but also
here the choice will affect the analytic form considerably. A feature of D-dimensional systems is
that we may elect to remove monomials of the extra dimensional ISPs µi j in terms of monomials of
the four dimensional ones xi j. In certain circumstances this can result in a D-dimensional integrand
basis which does not a have a smooth limit onto the four dimensional case, and this is a feature
which is highly undesirable and may require some additional manipulation after the polynomial
division has been performed.

3. Simplifying kinematics with momentum twistors

The four-component momentum twistors, first introduced by Hodges [45], is Z(pi) = Zi =

(λi,a,µi,a) for a massless momentum pi, where λi,a are the two-component holomorphic Weyl
spinors (a = 1,2). µi are the dual variables which are used to construct the anti-holomorphic
spinors:

Wi,ȧ = (µ̃i,ȧ, λ̃i,ȧ) =
εȧ,b,c,dZi−1,bZi,cZi+1,d

〈i−1, i〉〈i, i+1〉
. (3.1)

While for four-point kinematics the minimal set of variables can be written in terms of Mandelstam
invariants, the five-point case is complicated by a non-trivial Gram matrix identity relating the
square of the trace operator including γ5 to the invariants,

tr5(1234)2 = 16detG

(
p1 p2 p3 p4

p1 p2 p3 p4

)
. (3.2)

This relation is satisfied explicitly after a transformation to the momentum twistor variables, xi:

Z =


1 0 1

x1

1
x1
+ 1

x1x2

1
x1
+ 1

x1x2
+ 1

x1x2x3

0 1 1 1 1
0 0 0 x4

x2
1

0 0 1 1 1− x5
x4

 . (3.3)

The variables xi can be expressed in terms of the usual spinor products and kinematic invariants as:

x1 = s12 , x4 =
s23

s12
, x5 =

s123

s12
,

x2 =−
〈23〉〈41〉
〈12〉〈34〉

, x3 =−
〈34〉〈51〉
〈13〉〈45〉

. (3.4)

By converting expressions to these variables during step 7 of the algorithm, we can automatically
express the Feynman diagram input as compact analytic expressions for the d j coefficients.
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(a) The topology (332).
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(b) The topology (422).

Figure 1: Maximal cut non-planar topologies for five-point amplitudes.

4. Example: non-planar maximal cuts of five-gluon all-plus helicity amplitude

There are two independent non-planar topologies for massless five-point amplitudes as de-
picted in figure 1. We label each topology by the number of propagators along each of the three
loop momentum branches k1, k2 and k1 + k2 so topology (a) is 332 and (b) is 422.

4.1 The 332 topology

This topology is defined by the propagators:

{k1, k1− p1, k1− p1− p2, k2, k2− p4, k2− p3− p4, k1 + k2, k1 + k2 + p5}. (4.1)

A good choice for the spanning basis turns out to be v = {5,1,4,2} which, using a lexicographic
ordering, gives a generic basis of 82 monomials under the renormalization constraints {5,5,6}.
The BASISDET code is rather simple and reads:

L=2;
Dim=4-2\[Epsilon];
n=5;
ExternalMomentaBasis = {p5, p1, p4, p2};
Kinematics = {

p1^2 -> 0, p2^2 -> 0, p4^2 -> 0, p5^2 -> 0,
p1*p2 -> s12/2, p1*p3 -> (s45-s12-s23)/2, p1*p4 -> (s23-s15-s45)/2, p1*p5 -> s15/2,
p2*p3 -> s23/2, p2*p4 -> (s15-s23-s34)/2, p2*p5 -> (s34-s12-s15)/2,
p3*p4 -> s34/2, p3*p5 -> (s12-s34-s45)/2,
p4*p5 -> s45/2

};
numeric = {s12 -> 11, s23 -> 17, s34 -> 7, s45 -> 3, s15 -> 29};
Props = {l1, l1 - p1, l1 - p1 - p2, l2, l2 - p4, l2 - p3 - p4, l1 + l2 + p5 , l1 + l2};
RenormalizationCondition = {{{1, 0}, 5}, {{0, 1}, 5}, {{1, 1}, 6}};
GenerateBasis[0]

The on-shell loop momenta are conveniently parametrized in terms of 3 free variables:

k̄µ

1 = pµ

1 + τ1
[13]
2[23]

〈1|γµ |2]+ τ2
〈13〉
2〈23〉

〈2|γµ |1] , (4.2)

k̄µ

2 = pµ

4 + τ3
〈14〉
2〈13〉

〈3|γµ |4]+β
〈13〉
2〈14〉

〈4|γµ |3] , (4.3)

where

β =
−s14

tr−(1354)

(
s15 + s45 +

1
s23

(
τ1 tr−(1523)+ τ2 tr+(1523)

)
+

1
s13

τ3 tr−(1453)
)
. (4.4)
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We can then construct a linear system of 82×83 to fit the integrand coefficients. In the case of the
5-gluon all-plus amplitude the situation is much simpler than this general parametrization suggests,
and we find that only three independent ISP monomials are present with a structure similar to that
of the planar case [41]. The result is:

∆8;332(1+,2+,3+,4+,5+) =
2iF1 s12s34

〈12〉〈23〉〈34〉〈45〉〈51〉 tr5
(c1k1 · p4 + c2k2 · p1 + c3k1 · p5) , (4.5)

c1 =−s15 tr−(2345), (4.6)

c2 = s45 tr−(2351), (4.7)

c3 = s23s45s15− s15 tr−(2345)− s45 tr−(2351), (4.8)

F1 = (Ds−2)(µ11µ22 +µ22µ33 +µ33µ11)+4(µ2
12−4µ11µ22), (4.9)

where µ33 = µ11 +µ12 +µ22, and Ds = gµ

µ is the spin dimension.

4.2 The 422 topology

This topology is defined by the propagators:

{k1, k1− p1, k1− p1− p2, k1− p1− p2− p3, k2, k2− p4, k1 + k2, k1 + k2 + p5}, (4.10)

and again in this case we use v = {5,1,4,2}. To make the four-dimensional limit of the integrand
representation manifest we must make some replacements to the monomial list. One possible
change is:

x4
22→ x4

22µ22, x3
22→ x3

22µ22, x2
22→ x2

22µ11,

x24x3
22→ x24x3

22µ22, x24x2
22→ x24x2

22µ22, x24x22→ x24x22µ11,

x21x22→ x21x22µ
2
22. (4.11)

The on-shell solution can be parametrized as:

k̄µ

1 = pµ

1 + τ1
〈23〉
2〈13〉

〈1|γµ |2]+ (1− τ1)
[23]
2[13]

〈2|γµ |1] , (4.12)

k̄µ

2 = β pµ

4 + τ2
〈15〉
2〈14〉

〈4|γµ |5]+ τ3
[15]

2[14]
〈5|γµ |4] , (4.13)

where

β =− 1
s45s13

(s13s15 + τ1 tr−(1523)+(1− τ1) tr+(1523)) . (4.14)

Inverting the resulting 65×76 linear system gives a simple representation for the all-plus helicity
configuration:

∆8;422 =
iF1 s12s23s45

〈12〉〈23〉〈34〉〈45〉〈51〉 tr5
(c0 +2c1k2 · p5) , (4.15)

c0 = s15s34s45, (4.16)

c1 =− tr+(1345). (4.17)
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where F1 refers to eq. (4.9).

As observed in the case of the planar topologies [41], these non-planar contributions also
have compact representations for the all-plus configuration. Though more general QCD helicity
amplitudes will be significantly more complicated, we hope that the techniques presented here will
help make these computations possible in the near future.
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