

The LHCb upgrade

Burkhard Schmidt, CERN on behalf of the LHCb Collaboration

LHCb Collaboration

- Introduction to LHCb
- LHCb upgrade
 - Physics Motivation
 - Trigger upgrade
 - Detector upgrade
 - Vertexing and tracking
 - Particle Identification
- Conclusions

- ~900 physicists
- 64 universities
- 16 countries

LHCb is a high precision experiment devoted to the search for New Physics (NP) beyond the Standard Model (SM)

- Study CP violation and rare decays in the b and c-quark sectors
- Search for deviations from the SM due to virtual contributions of new heavy particles in loop diagrams
- Sensitive to new particles above the TeV scale not accessible to direct searches

Hes Some highlights of LHCb results

Head Motivation for the LHCb upgrade

Present experimental status:

- flavour changing processes are consistent with the CKM mechanism
- large sources of flavour symmetry breaking are excluded at the TeV scale
- the flavour structure of NP would be very peculiar at the TeV scale (MFV)

Why is the LHCb upgrade important:

- measurable deviations from the SM are still expected, but should be small
- need to go to high precision measurements to probe clean observables

LHCb upgrade essential to increase statistical precision significantly

- Quark flavour physics main component, but physics program includes also:
 - Lepton flavour physics
 - Electroweak physics
 - Exotic searches, proton-ion physics

→ Reinforce LHCb as general purpose forward detector

CERN-LHCC-2011-001

CERN-LHCC-2012-007

Expected luminosity evolution

LHCb up to 2018 \rightarrow ~ 8 fb⁻¹:

 find or rule-out large sources of flavour symmetry breaking at the TeV scale

LHCb upgrade $\rightarrow \ge 50 \text{ fb}^{-1}$:

- increase precision on quark flavour physics observables
- aim at experimental sensitivities comparable to theoretical uncertainties

Kack LHCb upgrade - expected precision

B_s mixing phase ϕ_s

 q_{o} from $B \rightarrow K^{*}ll$

CKM angle γ from trees

LHCb Statistical sensitivity to flavour observables

Type	Observable	Current	LHCb	Upgrade	Theory
		precision	2018	$(50{\rm fb}^{-1})$	uncertainty
B_s^0 mixing	$2\beta_s \ (B^0_s \to J/\psi \ \phi)$	0.10 [9]	0.025	0.008	~ 0.003
	$2\beta_s \ (B_s^0 \to J/\psi \ f_0(980))$	0.17 [10]	0.045	0.014	~ 0.01
	$A_{ m fs}(B^0_s)$	6.4×10^{-3} [18]	$0.6 imes 10^{-3}$	$0.2 imes 10^{-3}$	$0.03 imes 10^{-3}$
Gluonic	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\phi)$	_	0.17	0.03	0.02
penguin	$2\beta_s^{\text{eff}}(B_s^0 \to K^{*0}\bar{K}^{*0})$	_	0.13	0.02	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K^0_S)$	0.17 [18]	0.30	0.05	0.02
Right-handed	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\gamma)$	_	0.09	0.02	< 0.01
currents	$ au^{\mathrm{eff}}(B^0_s o \phi \gamma) / au_{B^0_s}$	_	5%	1 %	0.2%
Electroweak	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.08[14]	0.025	0.008	0.02
penguin	$s_0 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	25% [14]	6%	2%	7%
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 { m GeV}^2/c^4)$	0.25 [15]	0.08	0.025	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	25% [16]	8%	2.5%	$\sim 10\%$
Higgs	$\mathcal{B}(B^0_s o \mu^+ \mu^-)$	$1.5 \times 10^{-9} [2]$	0.5×10^{-9}	0.15×10^{-9}	0.3×10^{-9}
penguin	$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	_	$\sim 100\%$	$\sim 35\%$	$\sim 5\%$
Unitarity	$\gamma \ (B \to D^{(*)} K^{(*)})$	$\sim 10 12^{\circ} [19, 20]$	4°	0.9°	negligible
triangle	$\gamma \ (B_s^0 \to D_s K)$	_	11°	2.0°	negligible
angles	$\beta \ (B^0 \to J/\psi \ K_S^0)$	0.8° [18]	0.6°	0.2°	negligible
Charm	A_{Γ}	2.3×10^{-3} [18]	0.40×10^{-3}	0.07×10^{-3}	—
$C\!P$ violation	ΔA_{CP}	$2.1 \times 10^{-3} [5]$	0.65×10^{-3}	0.12×10^{-3}	_

Getting close to the theoretical uncertainties

8 fb⁻¹ up to 2018 ≥ 50 fb⁻¹ for the upgrade

 Limitations of the present trigger

Trigger upgrade

CERN-LHCC-2014-016

LHCb Trigger – Limitations

- Final states with muons
- → Linear gain
- Hadronic final states
- → Yield flattens out
- Must raise p_T cut to stay within 1 MHz readout limit

 To profit of a luminosity of 10³³cm⁻²s⁻¹, information has to be introduced that is more discriminating than E_T.

> Upgrade strategy: 40MHz readout rate Fully software trigger 20kHz output rate

LHCb 2012

HCb Trigger Upgrade

/fb Effect on luminosity and signal yields

run an efficient and selective software trigger with access to the full detector information at every 25 ns bunch crossing increase luminosity and signal yields

Hich Detector upgrade to 40 MHz R/O

- upgrade ALL sub-systems to 40 MHz Front-End (FE) electronics
- replace complete sub-systems with embedded FE electronics
- adapt sub-systems to increased occupancies due to higher luminosity
- keep excellent performance of sub-systems with 5 times higher luminosity

Vertex Detector Upgrade

- Present detector and its performance
- Detector upgrade
- Expected Performance

CERN-LHCC-2013-021

Current VErtex LOcator

Two retractable halves

- 5.5 mm from beam when closed
- 30 mm during injection
 Operates in secondary vacuum
- 300 μm Al-foils separate detector from beam
- 21 R/ Φ modules per half
- Silicon micro-strip sensors
- Pitch 38-101 μm

LHCb **VELO upgrade**

Upgrade challenge:

- withstand increased radiation
 - (highly non-uniform radiation of up to 8.10¹⁵ n_{eq}/cm² for 50 fb⁻¹)
- handle high data volume
- keep (improve) current performance
 - lower materiel budget
 - enlarge acceptance

Technical choices :

- 55x55 μm² pixel sensors with micro channel CO₂ cooling
- 40 MHz VELOPIX (evolution of TIMEPIX 3, Medipix)
 - 130 nm technology to sustain ~400 MRad in 10 years
- replace RF-foil between detector and beam vacuum
 - reduce thickness from 300 μ m \rightarrow \leq 250 μ m
- move closer to the beam
 - reduce inner aperture from 5.5 mm → 3.5 mm

tracks/chip/event at L=2·10³³ cm⁻²s⁻¹

LHCb VELO upgrade

Upgrade challenge:

- withstand increased radiation
 - (highly non-uniform radiation of up to 8·10¹⁵ n_{eq}/cm² for 50 fb⁻¹)
- handle high data volume
- keep (improve) current performance
 - lower materiel budget
 - enlarge acceptance

Technical choices :

- 55x55 μm² pixel sensors with micro channel CO₂ cooling
- 40 MHz VELOPIX (evolution of TIMEPIX 3, Medipix)
 - 130 nm technology to sustain ~400 MRad in 10 years
- replace RF-foil between detector and beam vacuum
 - reduce thickness from 300 μ m \rightarrow \leq 250 μ m
- move closer to the beam
 - reduce inner aperture from 5.5 mm \rightarrow 3.5 mm

Si cooling

VELO upgrade performance

- better impact parameter resolution due to reduced material budget
- reduced ghost rate

Efficiency

0.9

0.8L

1000

2000

improved efficiency over p_T , ϕ , η

3D IP resolution at $L = 2 \cdot 10^{33} \text{ cm}^{-2} \text{s}^{-1}$

3

current VELO

Upgrade VELO

LHCb simulation

note: full GEANT Monte Carlo with standard LHCb simulation framework

- Upstream Tracker
- Scintillating Fibre Tracker

CERN-LHCC-2014-001

Hick Present Tracking System

- excellent mass resolution
- very low background, comparable to e⁺e⁻ machines
- world's best mass
 measurements [PLB 708 (2012) 241]

Heb TT upgrade: Upstream Tracker (UT)

Heb T-stations upgrade: Fibre Tracker

- 3 stations of X-U-V-X (±5° stereo angle) scintillating fibre planes
- every plane made of 5 layers of Ø=250 μm fibres, 2.5 m long
- 40 MHz readout and Silicon PMs at periphery

R/O by dedicated 128 ch. 40 MHz PACIFIC chip

- 3 thresholds (2 bits)
- sum threshold (FPGA)

Challenges: radiation environment

- ionization damage to fibres → tested ok
- neutron damage to SiPM → operate at -40°C
- large size high precision, O(10'000 km) of fibres

Benefits of SciFi concept:

- a single technology to operate
- uniform material budget
- SiPM + infrastructure outside accept.
- x-position resolution of 50 75 μm
- fast pattern recognition for HLT 22

LHCb Tracking performance

→ improve tracking performance at upgrade luminosity with Fibre Tracker → reduce significantly the ghost rate using the Upstream Tracker information

Heb **Tracking algorithm for the Trigger**

Expected CPU budget with upgraded Event Filter Farm: ~13 ms (10 x current CPU farm)

Performance of HLT tracking with upgraded VELO, UT and FT:

	CPU time[ms]		
Tracking Algorithm	No GEC	GEC = 1200	
VELO tracking	2.3	2.0	
VELO-UT tracking	1.4	1.3	
Forward tracking	2.5	1.9	
PV finding	0.40	0.38	
Total $@29\mathrm{MHz}$		5.6	
Total	6.6	5.4 ms	

\rightarrow leaves ~ 6-7 ms for a trigger decision

	no GEC	GEC < 1200	relative
Ghost rate	10.9%	5.9%	-
long	42.7%	42.9%	50.4%
long, from B	72.5%	72.8%	80.3%
long, $p_T > 0.5 \mathrm{GeV}/c$	86.9%	87.4%	97.2%
long, from $B, p_T > 0.5 \text{GeV}/c$	92.3%	92.5%	98.7%

\rightarrow high efficiency (even with GEC)

GEC (Global Event Cut) → multiplicity cut to remove pathological events (e.g. hit multiplicity of sub-detector)

CERN-LHCC-2013-001

RICH

- Calorimeter
- Muon System

Particle ID with RICH

LHCb **Present RICH 1**

Particles traversing radiator produce Cherenkov light rings on an array of HPDs located outside the acceptance

RICH 1

Spherical Mirror

Luminosity of $2 \cdot 10^{33}$ cm⁻²s⁻¹ \rightarrow adapt to high occupancies

- aerogel radiator removed
 - modify optics of RICH1 to spread out Cherenkov rings
 (optimise gas enclosure without modifying B-shield)

40 MHz readout \rightarrow replace HPDs due to embedded FE

- 64 ch. multi-anode PMTs (baseline)
- 40 MHz Front-End: CLARO chip (or MAROC)

upgrade

optimise RICH1 optics

Focal Plane Quartz window

Flat Mirror

current

Hcp Performance RICH upgrade

Particle ID with Calorimeters

- Calorimeters allow to reconstruct neutral hadrons
- They provide an E_T measurement used in the LO trigger

Typical π^o mass resolution: ~7-10 MeV/c² (depending on number of converted photons)

Radiative $b \rightarrow s \gamma$ transitions: Invariant mass resolution ~ 94 MeV/c² dominated by ECAL energy resolution.

Hick Calorimeter upgrade

40 MHz readout electronics:

- reduce photomultiplier gain
- adopt electronics

Radiation damage on detectors:

- Preshower and SPD removed
- HCAL modules ok up to ~50 fb⁻¹
- irradiation tests show that most exposed ECAL modules resist up to ~20 fb⁻¹ \rightarrow LS₃

Innermost ECAL modules around beampipe can be replaced

Impact of pile-up on the energy / position measurement: Change the reconstruction and define smaller clusters

~	6	1	
		-	

Photon Energy Resolution (Inner, \geq 11 PV, [3,4]GeV)

Particle ID with the Muon System

High detection efficiency: $\epsilon(\mu) = (97.3 \pm 1.2)\%$ Low misidentification rates:

 $\begin{aligned} \epsilon(p \to \mu) &= (0.21 \pm 0.05)\% \\ \epsilon(\pi \to \mu) &= (2.38 \pm 0.02)\% \\ \epsilon(K \to \mu) &= (1.67 \pm 0.06)\% \end{aligned}$

Muon System upgrade

Modifications due to higher luminosity and 40 MHz readout:

- remove M1 due to too high occupancies
- additional shielding behind HCAL to reduce the rate in the inner region of M2
- keep on-detector electronics (CARIOCA); already at 40 MHz readout
- new off-detector electronics for an efficient readout via PCIe40 R/O boards

LHCD Summary and Conclusions

- LHCb is producing world best measurements in the b- and c-quark sector due to its excellent detector performance.
- By 2018 with ~8 fb⁻¹ LHCb will find or rule-out large sources of flavour symmetry breaking at the TeV scale.
- The LHCb upgrade is mandatory to reach experimental precisions of the order of the theoretical uncertainties.
- An efficient and selective software trigger with access to the full detector information at every 25 ns bunch crossing will allow to collect the necessary ≥50 fb⁻¹ within ~10 years.
- The LHCb upgrade is fully approved, with the last TDR under review.
- The detector upgrade to 40 MHz readout sustaining a levelled luminosity of 2 x 10³³ cm⁻²s⁻¹ at 25 ns bunch spacing is under preparation, to be operational at the beginning of 2020.