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Abstract: Large-field inflation is an interesting and predictive scenario. Its non-trivial

embedding in supergravity was intensively studied in the recent literature, whereas its in-

terplay with supersymmetry breaking has been less thoroughly investigated. We consider

the minimal viable model of chaotic inflation in supergravity containing a stabilizer field,

and add a Polonyi field. Furthermore, we study two possible extensions of the minimal

setup. We show that there are various constraints: first of all, it is very hard to couple

an O’Raifeartaigh sector with the inflaton sector, the simplest viable option being to cou-

ple them only through gravity. Second, even in the simplest model the gravitino mass is

bounded from above parametrically by the inflaton mass. Therefore, high-scale supersym-

metry breaking is hard to implement in a chaotic inflation setup. As a separate comment

we analyze the simplest chaotic inflation construction without a stabilizer field, together

with a supersymmetrically stabilized Kähler modulus. Without a modulus, the potential

of such a model is unbounded from below. We show that a heavy modulus cannot solve

this problem.
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1 Introduction

Large-field chaotic inflation is an attractive scenario for explaining the initial conditions

of the early universe [1]. In addition to primordial curvature perturbations, which have

been measured with remarkable accuracy [2], it predicts sizeable tensor perturbations [3]

for which evidence has been reported recently [4].

The simplest realization of large-field inflation is achieved with a free massive scalar

field,

V = m2ϕ2 . (1.1)

The required flatness of the inflaton potential then requires trans-Planckian field values,

ϕ = O(10MP). Inflation can nevertheless be treated classically as long as the energy

density of the inflaton field does not exceed O(M4
P). This is indeed the case for the small

inflaton mass m ∼ 10−5MP that is inferred from the measured amplitude of curvature

perturbations.

For trans-Planckian field values the contributions of Planck-scale suppressed higher-

dimensional operators to the inflationary potential are generically relevant. It is therefore

important to consider large-field inflation in the context of some ultraviolet completion, for

which string theory is the leading candidate, described by supergravity in its low-energy

limit. However, the simplest supersymmetric extension of the potential eq. (1.1) defined

by the superpotential

W =
1

2
mφ2 , (1.2)

has a well-known problem. For a typical Kähler potential, K = φφ̄+ . . ., the supergravity

scalar potential, in units where the reduced Planck mass is set to 1,

V = eK
(
|∂φW + ∂φKW |2 − 3|W |2

)
, (1.3)
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is far too steep and inflation is impossible. This problem can be circumvented by choosing

a Kähler potential with shift symmetry [5],

K =
1

2
(φ+ φ̄)2 + . . . . (1.4)

The invariance with respect to φ → φ + ic, where c is a real constant, implies that eK

and ∂φK in eq. (1.3) are independent of the imaginary part of φ, denoted by ϕ =
√

2 Imφ.

Therefore, close to the origin the potential V (ϕ) is now sufficiently flat to allow for inflation.

However, the shift symmetry leads to a new problem. Due to the second term in eq. (1.3),

for large values of the inflaton field the potential becomes

V (ϕ) ∼ −3m2ϕ4 , (1.5)

and the potential is unbounded from below.

All these problems are avoided by introducing an additional ‘stabilizer field’ S, which

has no shift symmetry in the Kähler potential [5], i.e.,

K =
1

2
(φ+ φ̄)2 + SS̄ , (1.6)

together with the superpotential

Winf = mSφ , (1.7)

which breaks the shift symmetry softly. Up to higher-dimensional terms in the Kähler

potential the model is determined by an R-symmetry: R(φ) = 0, R(S) = 2, and a Z2-

symmetry: (φ, S)→ ±(φ, S). In the form defined by eq. (1.6) and eq. (1.7) chaotic inflation

predicts for the scalar spectral index ns and the tensor-to-scalar ratio r,

ns ' 0.967 , r ' 0.13 , (1.8)

for 60 e-folds of inflation. The value of the inflaton field at horizon exit is ϕ? ' 15, and

the Hubble scale during inflation is approximately

H ∼ mϕ? ∼ 1014 GeV . (1.9)

This model has been generalized to a class of chaotic inflation models by replacing the

inflaton field φ with a function f(φ) in the superpotential [6]. For recent studies of chaotic

inflation in supergravity and string theory, see [7–13] and [14–18], respectively.

In the following we study chaotic inflation with a stabilizer field together with a sector

of supersymmetry breaking, represented by a Polonyi model or an O’Raifeartaigh model.

We analyze how different couplings between the two sectors affect the allowed supersym-

metry breaking scale and derive upper bounds on the gravitino mass from the requirement

of successful inflation. In particular, in none of our setups the gravitino mass can be larger

than the Hubble scale during inflation. Among other things, this implies that chaotic in-

flation is challenged when combined with KKLT moduli stabilization [19], where usually

m3/2 > H is required [20]. Finally, for the model without a stabilizer field, we consider

the possibility that the negative term in the potential eq. (1.3) is canceled by adding a

supersymmetrically stabilized modulus to the theory. As we shall see, this is not sufficient

to obtain a scalar potential bounded from below, contrary to naive expectation.

– 2 –
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2 Chaotic inflation and supersymmetry breaking

Although chaotic inflation and many of its variants have been extensively studied in the lit-

erature, its connection to supersymmetry breaking was not as closely investigated. Generic

setups to achieve F-term supersymmetry breaking are the O’Raifeartaigh model [21] and

the Polonyi model [22]. Coupling the inflaton sector to a supersymmetry breaking sector

turns out to be more difficult than expected. In the simplest working scenarios we find

that the gravitino mass is bounded from above.

2.1 Minimal chaotic inflation with a Polonyi field

A minimal way to implement supersymmetry breaking after chaotic inflation is specified

by the superpotential1

W = mSφ+ fX +W0 , (2.1)

i.e., by adding a Polonyi-like sector with a chiral superfield X to the inflation model.

Thus, the two sectors decouple except for gravitational-strength interactions. By field

redefinitions and a Kähler transformation m, f , and W0 can be chosen to be real; they

have mass dimension one, two, and three, respectively. Similar to the superpotential, a

suitable Kähler potential is obtained by adding the contributions from the inflation and

supersymmetry breaking sectors, i.e.,

K =
1

2
(φ+ φ̄)2 + SS̄ +XX̄ − ξ1(XX̄)2 − ξ2(SS̄)2 . (2.2)

In the absence of the term proportional to ξ2, the stabilizing scalar S gets no Hubble-scale

contributions to its mass. This is actually a more general result and applies to any model

with or without supersymmetry breaking and a Lagrangian of the type

K = Kab̄χaχ̄b̄ + SS̄ +K(φ+ φ̄) + . . . ,

W = W0 +W1(χa, S) +mSφ , (2.3)

where . . . denotes higher-order terms in the fields χa, and K(φ+ φ̄) has at least a quadratic

term in an expansion of its argument. On the other hand, the quartic term in the super-

symmetry breaking field X is needed to stabilize the corresponding scalar in the true

vacuum and circumvent the Polonyi problem. Thus, the terms proportional to ξ1 and ξ2

are necessary to ensure stability of all directions during inflation and in the ground state.

Both terms may result from integrating out heavy degrees of freedom at the quantum level.

Since X gets a Hubble-scale mass during inflation, we often neglect the term involving ξ1

in our discussion of inflation.

Vacuum after inflation. In this combined model, if f is small compared to all other

scales in the theory, m still corresponds to the inflaton mass, f denotes the scale of super-

symmetry breaking after inflation, and W0 is chosen such that the vacuum energy vanishes

1Notice that this form of superpotential has been studied, in slightly different contexts, in [23, 24].
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after inflation. The latter is achieved if

W0 '
f√
3
, (2.4)

at leading order in f . After inflation the vacuum of the system is found to lie at

〈φ〉 = 〈S〉 = 0 , 〈X〉 ' 1

2
√

3ξ1

. (2.5)

In this vacuum the gravitino mass is given by

m3/2 'W0 '
f√
3
. (2.6)

However, as will become clear in what follows, this vacuum structure is altered if f is

chosen to be larger than m. Starting from the full scalar potential

V = eK
{
|mS + (φ+ φ̄)W |2 +K−1

SS̄
|mφ+KSW |2 +K−1

XX̄
|f +KXW |2 − 3|W |2

}
, (2.7)

with

KX = X̄(1− 2ξ1|X|2) , KXX̄ = 1− 4ξ1|X|2 , (2.8)

KS = S̄(1− 2ξ2|S|2) , KSS̄ = 1− 4ξ2|S|2 , (2.9)

we expand V up to second order in all real scalars and obtain

V = f2 − 3W 2
0 − 2

√
2fW0 α+ 2mW0 ϕχ+

1

2
f2
(
2ζ2 + χ2 + ψ2

)
−W 2

0

(
α2 + β2 + ζ2 + χ2 + ψ2

)
+

1

2
m2
(
ζ2 + χ2 + ψ2 + ϕ2

)
+ 2f2ξ1

(
α2 + β2

)
, (2.10)

with

S =
ψ + iχ√

2
, X =

α+ iβ√
2

, φ =
ζ + iϕ√

2
. (2.11)

From the mass matrix of this system it is evident that assuming W0 = f√
3

leads to a

tachyonic direction close to the origin of the potential if

f > m . (2.12)

Specifically, only for f < m there is a stable vacuum at 〈φ〉 = 〈S〉 = 0 and f2 = 3W 2
0

cancels the cosmological constant. For larger f a linear combination of φ and S obtains a

vev and cosmological constant cancellation is ensured by

〈V 〉 = f2 − 3W 2
0 +

m2
(
f2 − 6W 2

0

)
256

(
f2 − 2W 2

0

)4 (
f2 −W 2

0 + 2ξ2

(
f2 − 3W 2

0

)) = 0 , (2.13)

at leading order in m. This effect, although small, is taken into account in our analysis of

the inflaton dynamics.

– 4 –
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(a) (b)

Figure 1: Evolution of the canonically normalized imaginary part of S (a) and the inflaton

ϕ (b) during inflation, for ξ1 = ξ2 = 10 and f = 10−8. In this case, since f < m, cancellation

of the cosmological constant implies W 2
0 = f2

3 . Depending on its initial value the stabilizer

field settles in its shifted minimum very early and remains stabilized for the rest of the

inflationary epoch and beyond (notice the different time scales in the plots). Due to its

inflaton-dependence, the vev of S evolves with time.

Interaction during inflation. During inflation all fields in the combined system defined

by eq. (2.1) and eq. (2.2) must be stabilized with large masses, i.e., masses larger than

the Hubble scale during inflation, so they can be integrated out. Considering the scalar

potential in eq. (2.7) it is evident that all real scalar degrees of freedom are stabilized at

the origin with large masses, except for the inflaton ϕ =
√

2 Imφ and the imaginary part

of the stabilizer field χ =
√

2 ImS. Due to the presence of the additional scale f and the

constant W0, χ is shifted from its original minimum at 〈χ〉 = 0. Assuming that χ� 1, we

can expand the potential eq. (2.7) up to second order around χ = 0. The result reads

V = f2 − 3W 2
0 +

1

2
m2ϕ2 + 2mW0ϕχ+

1

2

(
f2 − 2W 2

0 +m2 + 2m2ϕ2ξ2

)
χ2 , (2.14)

neglecting the non-zero vev of X. Minimizing this expression with respect to χ we find

χ ' − 2mW0ϕ

f2 − 2W 2
0 +m2 + 2m2ϕ2ξ2

, (2.15)

during inflation. Notice that eq. (2.15) depends on f and W0, as well as on ϕ, and that

only the imaginary part of S receives a shift. Using a numerical analysis we can verify

that S indeed remains stabilized in its new minimum for the entire inflationary epoch.

While the inflaton slowly rolls down its quadratic potential the stabilizer field trails its

inflaton-dependent minimum near-instantly, see figure 1.

Therefore, S can still be treated as a heavy degree of freedom and can be integrated

out at its shifted vev given by eq. (2.15). This yields an effective potential for the inflaton

direction which reads

V (ϕ) = f2 − 3W 2
0 +

1

2
m2ϕ2

(
1− 4W 2

0

f2 − 2W 2
0 +m2 + 2m2ϕ2ξ2

)
. (2.16)

– 5 –
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Evidently, depending on the magnitude of f and hence the gravitino mass, the correction

resulting from integrating out S may severely alter the predictions of chaotic inflation.

Bounds on the gravitino mass. Considering the effective inflaton potential eq. (2.16),

alteration of the CMB observables, in particular the scalar spectral index ns and the tensor-

to-scalar ratio r, is to be expected at f & m. We expect that increasing f even further will

make inflation unfeasible at a value which satisfies

3m2 . f2 . 2m2ϕ2ξ2 , (2.17)

neglecting the correction to W0 in eq. (2.13). Since m is fixed by observations to be

m ' 6× 10−6 in Planck units, it is necessary to specify realistic values of ξ2 to obtain a

meaningful upper bound on the gravitino mass. We assume that the Kähler potential terms

involving ξ1 and ξ2 stem from couplings of heavy modes to S and X, i.e., from

Wheavy ⊃ λ1Sψ
2
1 + λ2Xψ

2
2 + mass terms , (2.18)

where ψi denotes heavy modes of mass Mi. Then a quartic term for S in K is generated

by one-loop quantum corrections of the Coleman-Weinberg type,

K1-loop ' SS̄
[
1− λ2

16π2
log

(
1 +

λ2SS̄

M2

)]
' SS̄ − λ4

16π2M2
(SS̄)2 , (2.19)

and similarly for X, cf. the discussion in [25]. Thus, in the generic case λi ∼ O(1) the ξi
are related to the mass scales Mi as follows,

ξi ∼
1

16π2M2
i

. (2.20)

Since the heavy degrees of freedom should be integrated out above the energy scale during

inflation, Mi & ρinf ∼MGUT ' 0.01, but below the Planck scale, we assume

ξ1 ' ξ2 ' 10 (2.21)

to be reasonable values for the coefficients.2

Using these estimates, the spectral index and tensor-to-scalar ratio resulting from the

corrected potential eq. (2.16) are displayed in figure 2, as a function of f . Evidently, above

a value of f ' 8 × 10−5 the tensor-to-scalar ratio increases above 0.2 and ns drops below

0.94, a point at which the model is essentially ruled out by observation. This translates

into a bound on the gravitino mass,

m3/2 . 1014 GeV . (2.22)

Therefore, the most minimal way of achieving supersymmetry breaking in chaotic inflation

excludes the possibility m3/2 & H. This may have interesting implications for setups

with string-inspired supersymmetry breaking in which the supersymmetry breaking scale

is usually very high, as recently investigated in [14, 15, 17].

2Note that quartic terms in the Kähler potential could also arise from α′ corrections in string theory. In

such a setup the coefficients would rather be ξ ∼ 1
M2

s
, where Ms denotes the string scale. In order for string

modes to decouple, Ms would have to be larger than the energy scale during inflation, but smaller than

the Planck scale. Due to the absence of the loop suppression factor 16π2, this could result in substantially

larger coefficients.

– 6 –
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(a) (b)

Figure 2: ns and r as a function of the supersymmetry breaking scale f . Clearly, the

model is ruled out by observation at values of f quite below 10−4.

2.2 Effects of additional interactions

As an attempt to relax the gravitino mass bound (2.22) it is possible to extend the previous

minimal model by a coupling between X and φ in the superpotential which preserves the

R-symmetry,

W = mSφ+MXφ+ fX +W0 . (2.23)

The new mass scale M contributes, together with m, to the mass of the inflaton, i.e.,

V =
1

2
m2ϕ2 −→ V =

1

2
(m2 +M2)ϕ2 , (2.24)

in the absence of supersymmetry breaking. The associated Kähler potential can be writ-

ten as

K =
1

2
(φ+ φ̄)2 + SS̄ +XX̄ − ξ1(XX̄)2 . (2.25)

Notice that no quartic term in S is needed to stabilize the corresponding scalars in this

setup. As before, we can always choose W0, f , and m to be real, but the mass M is

generically complex. For simplicity, we take it to be real in what follows.

Vacuum after inflation. In this framework, the fields are stabilized at different vevs in

the vacuum, and the constant W0 consequently takes a different value to cancel the cosmo-

logical constant. Specifically, writing the complex scalars in terms of their real components

S =
ψ + iχ√

2
, X =

α+ iβ√
2

, φ =
ζ + iϕ√

2
, (2.26)

the associated vacuum expectation values after inflation are given by

〈ϕ〉 = 〈χ〉 = 〈β〉 = 0 , 〈ζ〉 ' −
√

2
Mf

m2 +M2
, 〈α〉 ' 1√

6 ξ1

m√
m2 +M2

, (2.27)

– 7 –
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and

〈ψ〉 ' M

(m2 +M2)3/2

f2
(
m2 + 3M2

)
− 3m2

(
m2 +M2

)
3
√

6 ξ1 m2
, (2.28)

at leading order in f and 1/ξ1. The gravitino mass in the true vacuum is given by

m3/2 'W0 '
m√

m2 +M2

f√
3
. (2.29)

Notice that, as in the model discussed in section 2.1, this vacuum will be corrected for large

values of f . The corrections will, however, not alter our conclusions about the allowed

gravitino mass by much. Therefore, in what follows we use the value of W0 stated in

eq. (2.29) as a leading-order approximation.

Interaction during inflation. As in the decoupled model discussed in section 2.1, the

supersymmetry breaking scale f induces a shift of the imaginary part of S during inflation.

In fact, some of the other real scalars are shifted as well, but their vevs are suppressed

compared to that of χ and will therefore be neglected in what follows. A numerical analysis

once more confirms that all vevs are reached quickly and that all fields, except the inflaton

ϕ, remain stabilized during inflation. In the same manner as in the previous section,

expanding up to second order in χ and integrating out the field gives a leading-order

effective potential for the inflaton. The result reads

V (ϕ) =
1

2
(1 + δ2)m2ϕ2

(
1− 8f2

f2(2 + 8δ2 + 6δ4) + 3m2(1 + δ2)2(2 + δ2ϕ2)

)
+ f2

(
1− 1

1 + δ2

)
, (2.30)

where we have introduced the dimensionless parameter

δ =
M

m
. (2.31)

Notice that, in the limit δ → 0, eq. (2.30) reduces to the effective potential of the minimal

model in section 2.1, given by eq. (2.16). The only difference is that in the present setup

ξ2 = 0. Again, it appears that in this model chaotic inflation is not possible for arbitrarily

large values of f .

Bounds on the gravitino mass. In fact, it turns out there is a more stringent upper

bound on the gravitino mass. The region of parameter space where the model reduces to

a single-field inflation model is δ > O(1). In this case, there is again a bound stemming

from the alteration of the CMB observables due to the presence of f .

To visualize this bound, and how it scales with δ, the observables ns and r are depicted

in figure 3 as functions of f . For small values of δ, there is a bound from demanding that r

does not surpass 0.2 and ns does not drop below 0.94, analogous to section 2.1. For larger

values of δ, however, these requirements are always fulfilled and a bound on f arises from

demanding that ns does not surpass ∼ 0.98. Although increasing δ pushes the bound to

– 8 –
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Figure 3: CMB observables as functions of the supersymmetry breaking scale f , for

different values of δ and m = 6× 10−6, ξ1 = 10 in Planck units.

slightly higher values of f , this effect saturates at roughly δ ∼ 10. However, since for δ � 1

the gravitino mass can be written as

m3/2 =
1√

1 + δ2

f√
3
' 1

δ

f√
3
, (2.32)

increasing δ will, at a certain point, actually make the upper bound on m3/2 more stringent.

It turns out that the least severe upper bound on m3/2 is obtained for δ ' 4, in which case

f . 3× 10−5 ⇒ m3/2 . 8× 1012 GeV . (2.33)

Clearly the attempt to relax the bound obtained in the decoupled model of section 2.1 was

not successful, since now m3/2 . 0.1H. One may suspect that this is due to the absence

of the large stabilizing term proportional to ξ2. Indeed, including this term in the present

setup trivially reproduces the mass bound eq. (2.22) in the limit δ → 0. Whenever M , and

thus δ, is non-zero, however, the additional coupling will make the bound more severe. In

particular, in the regime δ ∼ O(1) the upper bound on m3/2 is very close to the bound

obtained using ξ2 = 0.

2.3 Supersymmetry breaking in the O’Raifeartaigh model

A minimal way to incorporate chaotic inflation and supersymmetry breaking seems to be

contained in the O’Raifeartaigh model, without the addition of extra fields or couplings.

In particular, writing the superpotential of [21] as

W = X(f +
1

2
hS2) +mSφ+W0 , (2.34)

where the stabilizer S and the inflaton φ take up the roles of the two - usually heavy -

“O’Raifeartons” and the F-term of X breaks supersymmetry. If φ is protected by a shift

symmetry, as in the cases studied before, the tree-level Kähler potential takes the form

K =
1

2
(φ+ φ̄)2 + SS̄ +XX̄ . (2.35)

– 9 –
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Again we can choose W0, f , and m to be real, in which case the Yukawa coupling h can be

complex. For simplicity, we take it to be real in what follows. In this setup, inflation should

be possible in the direction of the imaginary part of φ. After inflation, φ is stabilized at

the origin and supersymmetry is broken by X as in the Polonyi model.

However, upon closer inspection the model turns out to be problematic due to tachyonic

instabilities during inflation. The F-term of S induces contributions in the scalar potential

of the form

V ⊃ mϕXS̄ + c.c. , (2.36)

i.e., there are mass eigenstates with squared mass

m2
tach ∼ −mϕ ∼ −H . (2.37)

Considering the original O’Raifeartaigh model and the discussion involving eq. (2.19) one

may hope that quantum corrections from integrating out S can lift these tachyonic direc-

tions, but they can not. In order to induce a loop-generated mass term of a size comparable

to
√
H ∼ MGUT, heavy modes would have to be integrated out far below the GUT scale.

In other words, the coefficient ξ in eq. (2.20) would have to be larger than allowed by

the effective field theory if the new states are heavy enough to not perturb the single-field

inflation dynamics.

There are two notable ways out to make an O’Raifeartaigh model interacting with

the inflaton viable. The first one is invoking microscopic (string theory) contributions to

the Kähler potential of the form (1/Λ2
UV)|S|4, with a UV cut-off ΛUV . MGUT. During

inflation, these would generate large mass terms for S which would cure the tachyonic

contributions. A string theory with Ms ∼MGUT and α′-corrections to the Kähler potential,

plus some additional assumptions on the origin of S, could be responsible for the existence

of such terms.

A second solution could be to add a term of the type ξ1|X|4 with a very large coef-

ficient ξ1. This would decouple the sgoldstino scalar and again could cure the problem.

Technically, this is equivalent to working with a constrained goldstino superfield X2 = 0.

The solution is

X =
ψXψX
2FX

+
√

2θψX + θ2FX , (2.38)

and leads to a non-linearly realized supersymmetry which was discussed in other inflation-

ary contexts in [9, 26–29]. In our case, the effective action is described by

K =
1

2
(φ+ φ̄)2 + SS̄ +XX̄ − ξ|S|4 ,

W = X

(
f +

1

2
hS2

)
+mSφ+W0 , and X2 = 0 . (2.39)

Since the superfield X contains no scalar, the dynamics simplifies. As in the previous

examples, the only relevant fields during inflation are the inflaton ϕ and ImS = χ/
√

2. At

all orders in the inflaton and quadratic order in S, the scalar potential is

V ' f2 − 3W 2
0 +

1

2
m2ϕ2 + 2mW0ϕχ+

1

2

(
f2 − 2W 2

0 − hf +m2 + 2m2ϕ2ξ
)
χ2 . (2.40)

– 10 –
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As in the simpler models before, the field χ will track the inflaton trajectory, with a value

given by

χ = − 2mW0ϕ

f2 − 2W 2
0 − hf +m2 + 2m2ϕ2ξ

. (2.41)

Since the tracking is very fast, we can write down an effective inflaton potential by inserting

eq. (2.41) into the scalar potential eq. (2.40). The result reads

V (ϕ) = f2 − 3W 2
0 +

1

2
m2ϕ2

(
1− 4W 2

0

f2 − 2W 2
0 − hf +m2 + 2ξm2ϕ2

)
. (2.42)

Notice that, as in section 2.2, we neglect the sub-leading correction stemming from the

modified cosmological constant cancellation condition for large f .

As is well-known, the O’Raifeartaigh model has two vacua, depending on the values of

the parameters:

• |hf | > m2

In this case, either the imaginary or the real part of S has a non-zero vev in the ground

state in the rigid supersymmetric limit, equal to
√

2(|hf | −m2)/h. Cancellation of

the cosmological constant at leading order is in this case ensured by

m2(2|hf | −m2) ' 3h2|W0|2 . (2.43)

The gravitino mass in the ground state is given by

m3/2 '
m√
3h

√
2|hf | −m2 , (2.44)

which, for h ∼ O(1), is bounded by

m3/2 < m . (2.45)

However, even if h is chosen to be very small to avoid this bound, we expect the

CMB observables to receive similar corrections as in the model discussed in section

2.1, as soon as f & m.

• |hf | < m2

In this case, all fields are stabilized at the origin in the true vacuum and W0 = f√
3

cancels the cosmological constant. Again, as can be deduced from the similarity of the

effective inflaton potentials, the analysis of section 2.1 applies to good approximation.

Therefore, we expect a bound on the gravitino mass of

m3/2 . H . (2.46)

In summary, in the O’Raifeartaigh model with non-linear supersymmetry, imposed by

the constraint X2 = 0, the outcome is again an upper bound on the gravitino mass which

is similar to the ones obtained in the previously discussed models.
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We have proposed two solutions to make an O’Raifeartaigh model coupled non-trivially

to the inflaton viable from the chaotic inflation perspective. The simplest option, however,

is clearly to decouple the supersymmetry breaking sector containing the fields χi from the

inflaton sector containing the inflaton φ and the stabilizer S, like for example in models

with a superpotential

W = WO’R(χi) +mSφ . (2.47)

The model of section 2.1 is probably the simplest example of this type.

3 Chaotic inflaton with stabilized moduli

As a separate point, we study in the following the simplest chaotic inflation model in

supergravity without the stabilizer field S, including the effect of supersymmetry breaking.

The simplest model of this type is described by

K =
1

2
(φ+ φ̄)2 +XX̄ − ξ1(XX̄)2 ,

Winf =
1

2
mφ2 + fX +W0 . (3.1)

However, this model suffers from the same instability problem as in the absence of super-

symmetry breaking, as mentioned in the Introduction. This becomes evident by inspecting

the scalar potential,

V = eK

{∣∣∣∣mφ [1 +
1

2
φ(φ+ φ̄)

]
+ (fX +W0)(φ+ φ̄)

∣∣∣∣2
+K−1

XX̄

∣∣∣∣f +KX

(
1

2
mφ2 + fX +W0

)∣∣∣∣2 − 3

∣∣∣∣mφ2

2
+ fX +W0

∣∣∣∣2
}
. (3.2)

Indeed, we recover a potential unbounded from below for large φ. Since the origin of

the problem is the negative supergravity contribution to the potential, at first sight, the

presence of a supersymmetrically stabilized modulus ρ can solve the problem via a no-scale

cancellation. Note that the effects of stabilized Kähler moduli on similar models of chaotic

inflation have been previously studied in [23, 30, 31]. Starting from the Kähler potential3

K = −3 log (ρ+ ρ̄) +
1

2
(φ+ φ̄)2 +XX̄ − ξ1(XX̄)2 , (3.3)

3Throughout this paper we consider the simplest viable Kähler potentials. In a microscopic setup like

string theory they are usually more involved, depending on the precise origin of the inflaton multiplet and

its couplings to the heavy stabilized and lighter moduli. For example, if in type IIB orientifolds with D3

and D7 branes the inflaton is the position of a D3 (D7) brane, at lowest order its Kähler potential will

mix (will not mix) with T . While our analysis assumes the absence of mixing, the final result is expected

to hold in the presence of mixing as well, provided the modulus is stabilized in a supersymmetric way. A

detailed analysis of all these cases would be interesting but is beyond the scope of our paper.
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and superpotential

W = Wmod(ρ) +Winf(φ,X) , (3.4)

Winf(φ,X) =
1

2
mφ2 + fX +W0 , (3.5)

the scalar potential reads

V = eK
{

(ρ+ ρ̄)2

3
|∂ρW |2 − (ρ+ ρ̄)(∂ρWW + ∂ρWW ) +KαᾱDαWDᾱW

}
, (3.6)

where α = φ,X. Thus, the dangerous negative term indeed seems to be canceled due to

the no-scale structure of the model.

However, upon closer inspection this cancellation does not occur. During inflation,

there is a non-trivial interaction between the inflaton and the modulus field. The modulus

vev is shifted by an amount δρ, which can be evaluated in an inverse expansion of the

modulus mass [31], assuming it is heavy enough. Similar setups with heavy Kähler moduli

have been previously studied in [20, 32–34]. We assume that Wmod is such that the scalar

potential has a local minimum at ρ0 = ρ̄0 ≡ σ0 which is supersymmetric and Minkowski,

DρWmod(σ0) = Wmod(σ0) = 0 . (3.7)

The mass of the modulus in the ground state is given by

mρ =

√
2σ0

3
W ′′mod(σ0) , (3.8)

where primes denote derivatives with respect to ρ. Notice that this stabilization scheme

differs from the original proposal by KKLT, in the sense that mρ and m3/2 are uncorrelated

and the modulus can be much heavier than the gravitino.

For mρ > H, in order to guarantee single-field inflation, the shift of the modulus vev

δρ can be expanded in powers of H/mρ and is given, at leading order, by

δρ ' Winf√
2σ0mρ

, (3.9)

which is small, δρ ≤ σ0, if mρ >
Winf

(2σ0)3/2
.

As demonstrated in [31], once the modulus is integrated out at its shifted vev the

inflaton potential is corrected by terms which can be expanded in powers of H/mρ. The

modified inflaton potential reads

V =
Vinf(φα)

(2σ0)3
− 3

2(2σ0)9/2mρ

{
Winf

[
Vinf(φα) + eKKαᾱ∂αWinfDᾱW inf

]
+ c.c.

}
, (3.10)

at leading order in H/mρ. Here Vinf(φα) denotes the inflationary potential in the absence

of a modulus sector. But this is precisely the potential before the addition of the modulus,

eq. (3.2), which is unbounded from below. The leading order correction in eq. (3.10)

may be sizeable, depending on mρ, but cannot solve the problem of unboundedness from
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below. Therefore, after integrating out ρ at its true minimum the no-scale cancellation is

not effective since the modulus minimizes its F-term, including the contribution from the

inflaton sector.

This is actually to be expected: if the modulus does not break supersymmetry and

is heavy enough to not perturb the single-field chaotic inflation, it will decouple from the

inflationary dynamics at leading order. Then the leading-order scalar potential can be

obtained in the limit mρ →∞ which results in the original model defined by eq. (3.1). A

lighter modulus can certainly change the situation, but for mρ < H the model turns into

a much more complicated multi-field inflation model. Another solution to this problem

could be to stabilize the modulus non-supersymmetrically. If ρ has a non-vanishing F-

term during inflation, it may indeed cancel the dangerous −3|W |2 term by virtue of the

no-scale structure. A similar setup has recently been discussed in [17], where the modulus

is stabilized non-supersymmetrically in a Large Volume Scenario.

4 Conclusion

The motivation of this work is twofold. On the one hand, the main subject of study was the

interplay between large-field inflation and supersymmetry breaking. Our findings reinforce

the models with small value of the superpotential during inflation, among which we studied

models with a ‘stabilizer’ field coupled to the inflaton and a supersymmetry breaking sector.

We found that models with renormalizable couplings of non-gravitational origin between

the inflaton and the supersymmetry breaking sector are very constrained and difficult to

construct. Therefore, the simplest viable models turn out to be the ones in which the

coupling between the two sectors is purely gravitational. In all cases we studied, we found

an upper bound on the supersymmetry breaking scale and consequently on the gravitino

mass. The precise bound is model-dependent but parametrically of the order of the inflaton

mass. Therefore, chaotic inflation is challenged in scenarios like KKLT moduli stabiliza-

tion, where usually m3/2 > H is required. Let us stress that models with “strong moduli

stabilization” [20, 32–34] with a light gravitino, m3/2 � m, were constructed some time ago

and are perfectly viable from our perspective, in particular with regard to low-energy su-

persymmetry or mini-split models. Our results merely emphasize that the complementary

high-mass region m3/2 > m, interesting in some string constructions, is more problematic

for chaotic inflation, even in such models.

On the other hand, removing the stabilizer field (re)introduces the problem that the

scalar potential is unbounded from below. We found that coupling the inflaton to a su-

persymmetrically stabilized modulus does not help in this respect, if the modulus is heavy

enough to not perturb the chaotic inflationary dynamics.

While we do not claim the existence of a no-go theorem, our results imply non-trivial

constraints on high-scale supersymmetry breaking scenarios, if the inflationary dynamics is

of large-field, chaotic type. Models with moderately small (compared to the inflaton mass)

scale of supersymmetry breaking [20, 32–34] are therefore preferable from this viewpoint.
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