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Abstract. This paper presents a measurement of the cross-section for high transverse

momentum W and Z bosons produced in pp collisions and decaying to all-hadronic

final states. The data used in the analysis were recorded by the ATLAS detector

at the CERN Large Hadron Collider at a centre-of-mass energy of
√
s = 7 TeV and

correspond to an integrated luminosity of 4.6 fb−1. The measurement is performed

by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet

mass is used to identify the W and Z bosons, and a jet substructure method based on

energy cluster information in the jet centre-of-mass frame is used to suppress the large

multi-jet background. The cross-section for events with a hadronically decaying W

or Z boson, with transverse momentum pT > 320 GeV and pseudorapidity |η| < 1.9,

is measured to be σW+Z = 8.5 ± 1.7 pb and is compared to next-to-leading-order

calculations. The selected events are further used to study jet grooming techniques.

1. Introduction

Many theories beyond the Standard Model (SM) predict new particles with masses at

the TeV scale. Some of these heavy resonances can decay to final states with W or Z

bosons. Because the masses of theW and Z bosons are an order of magnitude below that

of their hypothetical parent states, such decays appear highly boosted in the laboratory

frame. The hadronic decay products may be so collimated that they appear as single

jets in the detector (hereafter referred to as W/Z jets). The ability to recognize and

reconstruct the W and Z bosons from such jets is important in extending the search

sensitivity for new phenomena with the ATLAS detector at the Large Hadron Collider

(LHC).

Because the W and Z masses are small compared to the centre-of-mass energy of

7 TeV at the LHC, the W and Z bosons produced in SM processes can also be highly

boosted in the detector. An important first step in the study of boosted W/Z jets is to

demonstrate that they can be measured reliably using the ATLAS detector. Jets arising

from the strong interactions of quarks and gluons (hereafter referred to as QCD jets)

have production cross-sections many orders of magnitude greater than those of W and
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Z bosons; they are the dominant background to such a measurement and constitute the

main difficulty.

In this paper, a measurement of the cross-section of hadronically decaying W or

Z bosons with transverse momentum pT > 320 GeV and pseudorapidity |η| < 1.9

produced in pp collisions at a centre-of-mass energy of 7 TeV is presented.‡ The

measurement is based on the invariant mass distribution of the reconstructed boosted

W/Z jet candidates. The decay modes considered are W → qq̄′ and Z → qq̄, where

q, q′ = u, c, d, s or b. In order to suppress the copious QCD jet background, a novel

selection method [1] based on jet substructure is implemented. Because of the limited

resolution for the jet mass, the measurement reported is for the sum of W and Z cross-

sections, denoted by the W + Z cross-section

σW+Z = σW (pT > 320 GeV, |η| < 1.9)× B(W → qq̄′)

+ σZ(pT > 320 GeV, |η| < 1.9)× B(Z → qq̄),

where σ is the production cross section and B is the decay branching fraction. Previously,

W and Z cross-sections have been measured up to pT = 300 GeV using the leptonic

decay modes [2, 3, 4]. The Z cross-section for pT > 200 GeV has also been measured in

the hadronic decay mode Z → bb̄ [5].

The jet sample enriched in W and Z bosons that decay hadronically, obtained in

this analysis, is used to study the performance of several jet grooming techniques [6, 7, 8]

designed to reduce the effects of soft QCD radiation and multiple pp interactions per

bunch crossing (pileup) on jet mass measurements.

2. The ATLAS detector

The ATLAS detector [9] at the LHC nearly covers the entire solid angle around the

interaction region. It consists of an inner tracking detector comprising a silicon pixel

detector, a silicon microstrip detector, and a transition radiation tracker, providing

tracking capability within the pseudorapidity range |η| < 2.5. The inner tracking

detector is surrounded by a thin superconducting solenoid providing a 2T axial magnetic

field and by a calorimeter system placed immediately outside the solenoid. The

electromagnetic calorimeters use liquid argon as the active detector medium with lead

absorbers, and are divided into one barrel (|η| < 1.475) and two end-cap components

(1.375 < |η| < 3.2). The technology used for the hadronic calorimeters varies with

η. In the barrel region (|η| < 1.7), the detector is made of scintillator tiles with steel

absorbers. In the end-cap region (1.5 < |η| < 3.2)), the detector uses liquid argon and

copper. A forward calorimeter consisting of liquid argon and tungsten/copper absorbers

has both electromagnetic and hadronic sections, and extends the coverage to |η| < 4.9.

‡ ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP)

in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the

centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, φ) are used in the

transverse plane, φ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in

terms of the polar angle θ as η = − ln tan(θ/2).
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The calorimeter system is surrounded by a muon spectrometer. Three layers of precision

tracking chambers, consisting of drift tubes and cathode strip chambers, enable precise

muon track measurements in the pseudorapidity range of |η| < 2.7, and resistive-plate

and thin-gap chambers provide muon triggering capability in the range of |η| < 2.4.

The ATLAS trigger system uses three consecutive levels. The Level-1 triggers

are hardware-based and use coarse detector information to identify regions of interest,

whereas the Level-2 triggers are based on fast online data reconstruction algorithms.

Finally, the Event Filter triggers use offline data reconstruction algorithms. This

analysis uses a trigger that requires a jet with transverse momentum pT > 100 GeV at

Level-1. At the Event Filter level, the scalar sum of the pT of all jets with pT > 30 GeV

and |η| < 3.2 is required to be larger than either 350 GeV or 400 GeV, depending on

the data-taking period. These triggers are fully efficient for the offline event selection

used in this analysis.

3. Theoretical prediction

The cross-sections for W or Z bosons associated with jets are calculated at next-

to-leading order (NLO) using the MCFM Monte Carlo (MC) program [10]. The

calculation uses the CT10 parton distribution function (PDF) set [11]. The calculated

W production cross-section is approximately three times that of Z production. The

total W and Z production cross-sections are then multiplied by the hadronic W and Z

branching fractions [12] to obtain the prediction for the hadronic W + Z cross-section

for pT > 320 GeV and |η| < 1.9 of σW+Z = 5.1 ± 0.5 pb, where the uncertainty of the

calculation is described below.

For the theoretical prediction the renormalization and factorization scales are

dynamically set to HT/2 of the event, where HT =
∑n

i=1 pT,i is defined as the scalar

sum of the pT,i of the n particles in the final state. The systematic uncertainty in

the predicted cross-section due to higher-order corrections is estimated by independent

variation of the renormalization and factorization scales between 0.5 and 2.0 times the

nominal scale. Uncertainties in the prediction due to PDF uncertainties are computed

from the 52 CT10 eigenvectors at 68% confidence level. The contribution due to the

uncertainty in the value of the strong coupling constant αS is negligible. The total

uncertainty in the theoretical prediction is computed by summing in quadrature the

scale and the PDF uncertainties.

Although the calculation is performed at NLO, the prediction does not include

contributions from radiative emissions of the quarks that originate from the W/Z boson

decay or collinear W emission inside quark and gluon jets. The effect of a virtual photon

is not included in the Z cross-section. The process qq̄ → γ∗ → qq̄ is estimated to

constitute a negligible background. The W bosons from top-quark decays as well as the

W/Z bosons from diboson production are considered as background to the measurement.
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4. Data sample and Monte Carlo simulation

The data sample studied in this paper was recorded with the ATLAS detector at a pp

centre-of-mass energy of 7 TeV in 2011, and corresponds to an integrated luminosity of

4.6± 0.1 fb−1 [13]. Only data taken with all relevant detector sub-systems operational

are used. Following basic data-quality checks, further event cleaning is performed by

demanding that jets used in the analysis do not originate from instrumental effects, such

as large noise signals in one or several channels of the hadronic end-cap calorimeter, or

coherent noise in the electromagnetic calorimeter, or from non-collision background.

Events are also required to have a reconstructed collision vertex with at least three

associated tracks, each with a transverse momentum greater than 400 MeV.

Simulated event samples of vector-boson production and of jets with large

transverse momentum produced via strong interactions are used in the analysis. They

are simulated utilizing different event generators, parton showering and hadronization

models and various tunes of other soft model parameters, such as those of the underlying

event, in order to compare to the features of the selected events.

The default simulated W/Z signal events are generated using HERWIG 6.520 [14]

interfaced to JIMMY 4.31 [15], using the modified MRST LO** PDF set [16, 17].

HERWIG 6.520 is based on a leading-order (LO) perturbative QCD calculation. The

signal cross-sections are scaled by a K-factor of 1.25 to match the cross-section

values predicted by an NLO perturbative QCD calculation using MCFM [10] with

the CT10 PDF set [11] as quoted in section 3. For cross-checks and the study

of systematic uncertainties, additional signal samples are generated using PYTHIA

8.153 [18] and PYTHIA 6.426 [19] with ATLAS Minimum Bias Tune 1 and 2B (AMBT1

and AMBT2B) [20]. PYTHIA 8.153 uses a LO CTEQ6L1 [21] PDF set and PYTHIA

6.426 uses a modified MRST LO** PDF set. The decay modes of the vector bosons

included in the signal MC simulations are W → qq̄′ and Z → qq̄, where q, q′ = u, c, d, s

or b. The effect of virtual photon production is not included in the simulation of Z

signal events.

The default QCD jet background events are generated with PYTHIA 8.153.

Alternative background samples are also generated using HERWIG++ 2.6.3 [22],

PYTHIA 6.426 with AMBT1, AMBT2B and PERUGIA 2011 [23] tunes and POWHEG

1.0 (patch 4) [24, 25]. HERWIG++ 2.6.3 uses a different hadronization model from

HERWIG 6.520 and a modified MRST LO** PDF set. POWHEG 1.0 (patch 4) is based

on an NLO calculation that is interfaced to the PYTHIA 6.426 showering routines; the

CT10 NLO PDF set is used for the matrix element calculation and the CTEQ6L1 PDF

set is used to generate the parton shower.

Top-quark pair events and single-top events in the Wt-channel are simulated with

MC@NLO 4.03 [26] interfaced to HERWIG 6.520 and JIMMY 4.31 and using the CT10

PDF set. In addition, an alternative tt̄ MC sample is generated using POWHEG 1.0

(patch 4). The top-quark pair production cross-section is scaled to match the calculated

value from a next-to-next-to-leading-order calculation [27]. Single-top events in s- and
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t-channels are simulated with POWHEG 1.0 (patch 4). Simulation of diboson events

(W+W−, W±Z , ZZ, Wγ and Zγ ) is performed with HERWIG 6.520 with the MRST

LO** PDF.

All simulation samples are generated with pileup by overlaying simulated minimum

bias events on each generated signal and background event. The number of overlaid

events is simulated such that the distribution of the average number of interactions per

pp bunch crossing in the simulation matches that observed in the data. This average

varies with data-taking period and ranges typically between 4 and 16. The generated

samples are processed through the GEANT4 [28] simulation of the ATLAS detector [29]

and the standard ATLAS reconstruction software.

5. Jet reconstruction and selection

Jets are reconstructed using the anti-kt algorithm [30] with a jet radius parameter R =

0.6. Topological clusters [31] of energy deposits in the calorimeters are used as input to

the clustering algorithm. The topological clusters are calibrated to the hadronic energy

scale [32, 33]. Selected jets are required to have transverse momentum pT > 320 GeV,

pseudorapidity |η| < 1.9 and reconstructed jet mass 50 GeV < mjet < 140 GeV.

Studies [7] show that for a hadronically decaying W/Z boson with pT > 320 GeV,

the angular separation of their decaying products tends to less than R = 0.6. The

jet mass is calculated from the energies and momenta of the jet constituents as

mjet =
√

(
∑

i Ei)2 − |
∑

i ~pi|2 where Ei and ~pi are the energy and three-momentum

of the ith constituent. At detector level, the jet constituents are the topological clusters

that are considered massless.

In this measurement, hadronically decaying boosted W and Z bosons are identified

using their reconstructed jet mass. TheW (Z) jet mass distribution peaks around theW

(Z) mass value, while the jet mass distribution from QCD jet events has a much broader

spectrum. However, the QCD jet production cross-section is several orders of magnitude

larger than the SM W + Z production cross-section. According to MC simulation, the

data after the preselection consist almost entirely of QCD jets with a tiny fraction of

signal events, and the jet mass alone does not provide sufficient discriminating power to

distinguish W/Z jets from the large QCD jet background. A jet substructure method [1]

based on cluster information evaluated in the jet centre-of-mass frame is used to suppress

the QCD jet background while keeping most of the W/Z jets. The centre-of-mass frame

(rest frame) of a jet is defined as the frame where the four-momentum of the jet is equal

to prest ≡ (mjet, 0, 0, 0).

The topology of a W or Z jet in its centre-of-mass frame is expected to be different

from that of a typical QCD jet. In the rest frame of a hadronically decaying W or

Z boson, the constituent particles in most of the cases look like a back-to-back dijet

event. On the other hand, a QCD jet acquires its mass through gluon (g) radiation

and g → qq̄ splitting. In this case, the constituent particle distribution in the jet rest

frame does not correspond to a physical state with a well-defined mass. Three jet-shape
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variables, all calculated using the energy clusters of a jet in its centre-of-mass frame,

are studied: thrust minor [34, 35], sphericity [36] and aplanarity [36]. A value of thrust

minor Tmin = 0.5 corresponds to an isotropic distribution of energies while Tmin = 0

indicates a highly collimated energy deposits. The sphericity is defined such that it is

bounded to be between 0 and 1 and the most isotropic events have values close to 1.0.

The aplanarity takes values between 0 and 0.5 and isotropic events yield values near

0.5. The definitions of these shape variables are given in Appendix A.

The distributions of the jet-shape variables are shown in figure 1 for the W/Z

jet signal, QCD jet background and data. The distributions of the W/Z jet signal

exhibit the characteristics of a back-to-back two-body topology, while those of the QCD

jet background indicate a more isotropic distribution. The comparison of aplanarity

and sphericity in data with simulated QCD jet events shows excellent agreement while

there are small discrepancies between the thrust minor distributions. The comparison

of data with different event generators and sets of generator parameters has also been

performed. Although none of the MC generators and tunes studied show full agreement

with the data for all the shape variables, the data are always within the variations of

the distributions between different MC samples.

To exploit the power of these variables to discriminate between W/Z jets and

QCD jet background, a likelihood discriminant (L) is derived using the three jet-shape

variables as inputs, where the correlations between the variables are ignored. The

likelihood ratio L(i) for jet i is defined by

L(i) = − ln
Ls(i)

Ls(i) + Lb(i)
, (1)

with

Ls(b)(i) =
3
∏

k=1

ps(b),k(xk(i)), (2)

where ps(b),k is the normalized signal (background) probability density function (pdf)

based on the default MC samples for the kth input variable xk. The distributions of the

likelihood discriminant are shown in figure 1 for W/Z jet signal, QCD jet background

and data. For the final event selection, a cut on the likelihood discriminant is made:

the optimal cut value is found by maximizing the statistical significance, S/
√
S +B,

where S and B are respectively the numbers of W/Z jet signal candidates and QCD jet

background candidates predicted by the simulation. Candidate jets are required to have

L > 0.15, which corresponds to 56% signal efficiency and 89% background rejection

rate. In 2.5% of the events in data, more than one jet candidate is found. After all

the event selection criteria are applied, the final data sample consists of 590617 selected

jets.
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Figure 1: Unit area normalized distributions of the jet-shape variables and of the

likelihood discriminant (L) for W/Z jet signal (blue solid, produced using HERWIG

6.520) and QCD jet background (dashed red, produced using PYTHIA 8.153) in the

MC samples and data (black dots).

6. W + Z cross-section measurement

6.1. Modelling of jet mass distributions

The W/Z jet signal yield is extracted using a binned maximum likelihood fit to the jet

mass distribution of the selected jets in the data. The probability density functions for

the W/Z signal and the background are modelled as follows.

The W jet and Z jet signal pdfs are each modelled as a Breit–Wigner

function convolved with a Gaussian function in order to take into account detector

resolution effects. Due to additional contributions from pileup, underlying event and
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Figure 2: Jet mass distribution in simulation for (a) hadronically decaying W and Z

bosons, (b) QCD jet background and (c) hadronically decaying W bosons from top-

quark pair events. The QCD jet background and W/Z signal distributions are fitted

with the pdfs described in the text. The fit results are shown as solid lines. For the

signal, the contributions from W (dotted line) and Z (dashed line) jets are shown. The

distributions are normalized to the number of events expected in the dataset used and

the uncertainties are statistical only.

hadronization, the peak positions of the reconstructed W and Z signal jets are higher

than the masses of the W and Z bosons. The parameters of the signal pdfs: the peak

positions, widths and relative fractions of the W and Z rates, are obtained from a

fit to the selected W/Z jets in the simulated events. In the fit to the data, the only

free parameter affecting the signal is the combined total rate of W and Z bosons. In

figure 2(a) the jet mass distribution for W/Z jets in simulation overlaid with the signal
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pdfs is shown.

The dominant background component in the jet mass distribution comes from the

QCD jets. The QCD jet mass distributions in the default MC sample and the alternative

samples using different MC generators and tunes described in section 4 are similar and

can all be described by the same analytic function. The same function is used to describe

the data. However, the values of the parameters of the function differ slightly between

the various MC samples and can also be different for the data, and therefore left free

in the fit to the data. The jet mass distributions are parameterized by the sum of

two exponential decay functions and a sigmoid function: S(m̄) = m̄/
√
1 + m̄2, where

m̄ = (mjet −m0)/σm; the parameters m0 and σm represent the position of the inflection

point of the sigmoid function and the slope at the inflection point respectively. In

Figure 2(b) the jet mass distribution for simulated QCD jet background and the fit result

obtained using the background pdf are shown. The jet mass distribution of the QCD jet

background displays a shoulder structure that is described by the sigmoid function. This

feature is related to the pT and L requirements, the kinematics and internal structure of

the selected jets, and to the distance parameter of the jet reconstruction algorithm. The

variations of the shoulder structure observed in data with respect to different kinematic

selection requirements and the distance parameter of the jet reconstruction algorithm

are well reproduced in the MC simulation of QCD jet production.

To determine the direct W + Z production cross-section, background from top-

quark decays to W bosons must be subtracted. The top-quark pair (tt̄) component

is modelled using a one-dimensional histogram based on the simulation, as shown in

figure 2(c). After all the event selection criteria are applied, 2700 jets are predicted

from the tt̄ MC sample in the range of 50 GeV < mjet < 140 GeV. About half of these

jets populate a peak near the signal region with some additional enhancement at higher

jet mass, which is due to partial overlap of the W jet with a nearby b-jet. Since the

peaking component of this background is small comparing to the expected signal yield,

its yield and shape are fixed to the ones predicted by the simulation.

The contributions from other background sources such as single-top production

and diboson (WW , WZ, ZZ, Wγ and Zγ) production are expected to be very small

according to the simulation, but they also produce peaks similar to the signal. The

simulation predicts 190 and 180W/Z candidates from single-top production and diboson

production respectively. These background components are not explicitly considered in

the fit. Instead, their expected contributions are subtracted from the fitted signal yield.

6.2. Fit to the W/Z jet mass distribution

The observed jet mass distribution is fitted to the sum of W/Z signal and background

pdfs. In addition to the combined W/Z signal yield, all the parameters of the QCD

background pdf are allowed to float in the fit. They are: m0 and σm of the sigmoid

function S(m̄); the slope parameters of the two exponential functions and the relative

fractions of the QCD background components. The fit result is shown in figure 3.
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The χ2 per degree of freedom of the fit is χ2/ndf = 41.4/38, which corresponds to

a χ2-probability of 32%. The total number of W/Z jet signal events in the range

50 GeV < mjet < 140 GeV obtained from the fit, after subtracting the diboson and

single-top contributions, isNW+Z = 14200±1300, where the uncertainty is the statistical

uncertainty in the fitted signal yield.

The cross-section is calculated using

σW+Z = NW+Z/(L · ε), (3)

where L is the integrated luminosity. The efficiency ε is estimated from simulation

using the HERWIG generator and is defined as ε = NW+Z
reco /NW+Z

gen where NW+Z
reco is

the number of W and Z jets in simulation passing the selection cuts and NW+Z
gen is

the number of generated W and Z bosons with transverse momentum pT > 320 GeV

and pseudorapidity |η| < 1.9 at the generator level. The efficiency is estimated to be

0.36 ± 0.02, where the uncertainty is due to the jet energy scale, jet energy resolution,

and the variation between the efficiencies provided by the different MC generators and

settings of generator parameters; these uncertainties are discussed later. The sum of

the W and Z hadronic cross-sections is measured to be

σW+Z = 8.5± 0.8 (stat.) pb,

for W and Z bosons with pT > 320 GeV and |η| < 1.9, where the uncertainty here is

statistical only.

6.3. Systematic uncertainties

The systematic uncertainty in the measured cross-section has contributions from the

various sources listed in table 1.

The uncertainty in the selection efficiency due to the choice of generator and setting

of generator parameters for the simulation is estimated by using the alternative MC

samples described in section 4. The RMS spread in the efficiencies obtained from various

generators and configurations with respect to the default ones is taken as the uncertainty.

In order to estimate the systematic uncertainty due to the choice of QCD

background pdf, the fit to the data is repeated with different background models that

include: adding an exponential term to the default background pdf; removing one of the

two exponential terms from the default background pdf; replacing S(m̄) in the default

background pdf with a different sigmoid function, such as the complementary error

function erfc(m̄), the hyperbolic tangent tanh(m̄), or the arctangent arctan(m̄). All the

fits including alternative background models describe the data reasonably well and have

a χ2-probability larger than 1%. The largest deviation of the fitted signal yield using

different background pdfs with respect to the nominal fit is taken as the corresponding

systematic uncertainty.

The uncertainty in the fitted signal yield due to the choice of the signal pdf is

obtained by repeating the fit using one-dimensional histograms based on alternative
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Figure 3: Jet mass distribution of the selected W/Z jets overlaid with the fit result (for

illustration, the jets with mjet > 140 GeV are also shown). The fit range is limited to

50 GeV < mjet < 140 GeV. The background pdf component (dashed line), the signal

pdf component (dotted line) and the total pdf (solid line) are shown. The data minus

the fitted background component is shown in the inset.

MC simulations to model the signal pdf. The largest deviation of the signal yield with

respect to the nominal fit is assigned as systematic uncertainty.

The robustness of the fit has been studied with ensembles of pseudo-datasets

composed of background and signal events obtained from the MC simulation. The

number of background events is set to the value predicted by the simulation. The number

of signal events is varied in the ensembles between zero and the signal yield observed in

data. Fits to each of the pseudo-datasets with the default signal and background model
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are performed. No bias in the fitted signal yields with respect to the number of signal

events present in the pseudo-datasets is observed.

Uncertainties in the simulation of the detector response are taken into account using

dedicated studies of the reconstructed jets. The uncertainties considered are associated

with (a) the jet energy scale, (b) the jet energy resolution, (c) the jet mass scale and (d)

the jet mass resolution. The uncertainties in the measured cross-section due to (a) the

jet energy scale [37] and (b) the jet energy resolution [38] are evaluated by computing

the signal selection efficiency when varying the corresponding parameters within their

uncertainties. The uncertainty in the measured cross-section due to (c) the jet mass scale

is obtained from data through the introduction of a common offset ∆m to the W and Z

signal pdf models (offset to the means of the Breit–Wigner functions) as a free parameter

in the fit. The fitted value of the offset is ∆m = −0.45±0.86 GeV, compatible with zero

within the statistical uncertainty. The fit to the data is repeated with the value of ∆m

fixed to −1.31 GeV or 0.41 GeV. The larger deviation of the fitted signal yield with

respect to the nominal fit is taken as the corresponding systematic uncertainty. This

estimate of the systematic uncertainty has been cross-checked with a different technique

using jets composed from tracks geometrically matched to calorimeter jets [6]. The

uncertainty in the measured cross-section due to (d) the jet mass resolution uncertainty

is obtained by studying the jet mass resolution in simulation. The generators and

setting of generator parameters described in section 4 are used to study the effect of

the parton shower and the hadronization model on the mass resolution. Instrumental

effects are considered using a simulation of the ATLAS detector with a different amount

of passive material. The detector response is also studied in a simulation where a

Sources σW+Z

MC modelling 4.4%

Background pdf 8.8%

Signal pdf 5%

Jet energy scale 3.7%

Jet energy resolution < 1%

Jet mass scale 2.2%

Jet mass resolution 12.6%

tt̄ contribution 2.8%

Single-top and diboson contribution < 1%

W and Z relative yield 2.9%

Luminosity 1.8%

Total 18%

Table 1: Summary of the relative systematic uncertainties in the W +Z jet cross-section

from different sources.
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different modelling of interactions of high-energy hadrons is implemented [39, 40, 41].

The total systematic uncertainty due to the jet mass resolution is obtained by adding

in quadrature the uncertainties from the above-mentioned sources, and the fit to the

data is repeated with an increased and decreased value of the peak resolution. The

larger deviation of the fitted signal yield with respect to the nominal fit is taken as the

corresponding systematic uncertainty.

Uncertainties in the fitted signal yield due to the tt̄ contribution are assessed by

changing the expected tt̄ contribution within the theoretical uncertainty in the inclusive

top-quark pair production cross-section [27] in the fit, and by repeating the fit using

alternative tt̄ MC samples generated with different initial/final state radiation settings

or with a different algorithm (POWHEG 1.0 (patch 4)). The deviations in the fitted

signal yield with respect to the nominal fit result are added in quadrature and taken

as the corresponding systematic uncertainty. Similarly, the small expected single-top

and diboson yields are varied by ±50%. The shifts in the signal yield are assigned as

systematic uncertainties.

Theoretical uncertainties in the fitted signal yield arise from fixing the ratio of the

W to Z event yield in the fit. The fit is repeated varying the relative signal yield of W

and Z bosons within its theoretical uncertainty of 2% [10] and the fitted yield variation

with respect to the nominal fit result is assigned as a systematic uncertainty.

The uncertainty in the luminosity is 1.8% [13]. Other systematic sources considered

in the measurement include the finite size of the MC sample, and pileup effects. All

of them are found to have negligible effects on the measurement (< 1%). The total

systematic uncertainty in the cross-section measurement is calculated to be 18% by

adding all the systematic uncertainties in quadrature. The total systematic uncertainty

is dominated by the uncertainty in the jet mass resolution.

6.4. W + Z cross-section result

The sum of the cross-sections of W and Z bosons decaying hadronically is measured to

be

σW+Z = 8.5± 0.8 (stat.)± 1.5 (syst.) pb,

for W and Z bosons with pT > 320 GeV and |η| < 1.9.

The measured cross-section is found to be in agreement with the theoretical

prediction, based on an NLO MCFM calculation for W/Z production in association

with jets, of σW+Z = 5.1 ± 0.5 pb within 2 standard deviations. The uncertainty in

the theoretical cross-section represents missing higher-order contributions estimated by

varying the factorization and renormalization scales and uncertainties in the PDF of the

proton, as detailed in section 3.



14

7. Study of the effects of various jet grooming techniques

The event sample, selected as described in section 5, constitutes a sample of jets

containing a relatively high fraction of boosted W and Z bosons decaying hadronically.

It is interesting to use such a sample to study the performance of various proposed

jet grooming techniques. The grooming techniques studied here are pruning [42] and

trimming [43], designed to suppress soft QCD radiation in jets, and area subtraction

[44] designed to correct for the effects of pileup. The grooming techniques and their

implementation are described in detail in Appendix B.

7.1. Methodology

The grooming algorithms are applied to jets that pass the selection for the cross-section

measurement except for the likelihood ratio requirement. The pruning and trimming

algorithms reduce the jet constituents used in the calculation of the likelihood ratio and

jet mass. For these grooming algorithms, likelihood ratios (Lpruned and Ltrimmed) are

calculated after grooming. The cut values after pruning or trimming (Lpruned > 0.16

and Ltrimmed > 0.16) are chosen to obtain the same background rejection (89%) as the

cut on L for the ungroomed jets. The cuts on Lpruned and Ltrimmed are applied to the

pruned and trimmed jets respectively, and the jet mass distributions are studied. For the

area subtraction algorithm, the default jet selection including the L requirement is used,

but the jet mass is recalculated after the estimated pileup contribution is subtracted

from the jet. No attempt is made to optimize the analysis for the grooming techniques

studied.

7.2. Jet mass distributions

The jet mass distributions obtained after cutting on the new likelihood ratios (for

trimming and pruning) or pileup subtraction (for area subtraction) are shown in

figure 4(a). Jet grooming causes an average shift to lower jet masses. A reduction

in the number of selected jets with masses above 50 GeV by about 50% compared

to the ungroomed case is observed after trimming and pruning and by 15% after area

subtraction. The shoulder structure in the mass distribution of the QCD jet background

is still present after jet grooming.

Figure 4(b) shows the mass distribution for simulated W/Z jet signal events after

jet grooming. For area subtraction, the mean of the jet mass distribution is shifted

lower by about 6 GeV and the number of selected jets is unchanged. After trimming

and pruning, the mean is shifted lower by 8 GeV and 9 GeV respectively, and the number

of selected jets is reduced by about 30%. The ratio of the width to the mean of the

W/Z jet mass distribution does not change significantly with grooming.

The shapes of the mass distributions of the selected jets in data are compared with

simulation in figure 4(a). For the simulated jets, the predicted mass distributions of the

W/Z jets and the QCD jets are added. The normalization of theW/Z jets sample is kept
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fixed to the NLO prediction described in section 3, while the normalization of the QCD

jets sample is adjusted such that the total number of selected jets in the simulation and

the data agree. The normalized PYTHIA 8.153 QCD jet Monte Carlo and HERWIG

6.520 W/Z signal Monte Carlo provide reasonable descriptions of the groomed mass

distributions while the ungroomed distribution is well described.

The statistical significance of theW+Z signal (assuming the theoretically predicted

cross-section) remains about the same before and after grooming. For trimming and

pruning, the reduction of background is offset by a loss in signal efficiency, while for

area subtraction, the jet mass distributions remain similar, in the signal region, to the

ungroomed sample. While systematic uncertainties have not been evaluated, the W +Z

cross-section determined from the groomed jet samples, using the technique described

in section 6, gives results compatible with that given in section 6.4 within statistical

uncertainties.
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Figure 4: The jet mass distributions (a) in the MC samples (PYTHIA 8.153 for

background plus HERWIG 6.520 for signal) and data and (b) for signal only, after

cuts on the likelihood ratios calculated from the ungroomed, pruned, trimmed and area

subtracted jet-shape variables are applied.

7.3. Pileup dependence

Figure 5(a) shows the effect of pileup on the mass distributions of the ungroomed jets

in data and simulation. Events with fewer than five reconstructed collision vertices are

defined as low-pileup (Nvtx < 5), events with more than ten as high-pileup (Nvtx > 10).

The low- and high-pileup distributions differ significantly. The effect of pileup in data

is well described by the simulation.

Figure 5(b)– 5(d) show the same distributions for the pruned, trimmed and area

subtracted jet samples. The mass distributions after grooming are significantly less

sensitive to pileup. The low- and high-pileup distributions for groomed jets are nearly

identical both in data and simulation.
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Figure 5: The jet mass distributions for low-pileup (Nvtx < 5) and high-pileup

(Nvtx > 10) conditions in MC (PYTHIA 8.153 for background plus HERWIG 6.520

for signal) and data, where Nvtx is defined as the number of reconstructed collision

vertices in an event. The cases without grooming, after applying pruning, trimming

and area subtraction are shown. Here, Nvtx is defined as the number of reconstructed

primary vertices in the event. The uncertainties are statistical only.

8. Conclusion

This paper presents a measurement of the production cross-section of a hadronically

decaying boosted W or Z boson with transverse momentum pT > 320 GeV and

pseudorapidity |η| < 1.9 in pp collisions at a centre-of-mass energy of 7 TeV with the

ATLAS detector at the LHC. The measurement is performed by reconstructing boosted

W and Z bosons in single jets. The reconstructed jet mass is used to identify the W and

Z bosons and a jet substructure method based on energy cluster information in the jet

centre-of-mass frame is used to suppress the large multi-jet background. The measured

cross-section is:

σW+Z = 8.5± 0.8 (stat.)± 1.5 (syst.) pb.

The measured value is found to be in agreement with the theoretical prediction for the

same kinematic range of σW+Z = 5.1±0.5 pb, obtained from the NLO QCD calculation,

within 2 σ. The total uncertainty in the measured cross-section is of the same order of

magnitude as the uncertainties in measurements performed with leptonic decay channels

for a similar kinematic region [2, 3, 4].



17

The performance of jet grooming techniques has been studied in the context of this

analysis. With comparable cuts on the likelihood ratio and no attempt to optimize the

analysis for groomed jets, the signal significance is similar for groomed and ungroomed

jets. Jet grooming significantly reduces the sensitivity to pileup, which will be important

in later data taking at the LHC, where much higher pileup is expected. In general, the

effects of grooming are reasonably well described with PYTHIA 8.153 QCD jet Monte

Carlo simulation and HERWIG 6.520 W/Z signal Monte Carlo simulation.
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Appendix A. Definitions of jet-shape variables

In the following the definitions of the jet-shape variables used in the W +Z cross-section

measurement are given.

• Thrust minor: the thrust axis [34, 35] of a jet in its centre-of-mass frame, T̂ , is

defined as the direction which maximizes the sum of the longitudinal momenta of

the energy clusters. The thrust minor [34, 35], Tmin, is related to this direction and

is defined as

Tmin =

∑

i |~pi × T̂ |
∑

i |~pi|
, (A.1)

where ~pi are the momenta of the energy clusters in the jet rest frame. Tmin = 0

corresponds to a highly directional distribution of the energy clusters, and Tmin =

0.5 corresponds to an isotropic distribution.

• Sphericity: the sphericity tensor [36] is defined as

Sαβ =

∑

i p
α
i p

β
i

∑

i |~pi|2
, (A.2)

where α and β correspond to the x, y and z components of the momenta of the

energy clusters in the jet rest frame. By standard diagonalization of Sαβ one may

find three eigenvalues λ1 ≥ λ2 ≥ λ3, with λ1 + λ2 + λ3 = 1. The sphericity is then

defined as

S =
3

2
(λ2 + λ3). (A.3)

Sphericity is a measure of the summed squares of transverse momenta of all the

energy clusters with respect to the jet axis. By construction 0 ≤ S ≤ 1. A jet

with two back-to-back subjets in its rest frame has S = 0, and S = 1 indicates an

isotropic distribution of the energy clusters.

• Aplanarity: the aplanarity [36] is defined as

A =
3λ3

2
, (A.4)

and is constrained to the range 0 ≤ A ≤ 1
2
. A highly directional distribution of the

energy clusters has A = 0, and A = 0.5 corresponds to an isotropic distribution.
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Appendix B. Jet grooming algorithms

The three algorithms studied in this paper behave in different ways with respect to

the treatment of the constituents of the W/Z jet candidates. The pruning [42] and

trimming [43] algorithms start from the constituents of the anti-kt jets and remove

those with kinematic characteristics compatible with coming from soft radiation. These

modified lists of jet constituents are used to recalculate the jet-shape variables. In

the trimming algorithm the jet is clustered in subjets, and those with small transverse

energies are removed. Its main parameters are Rsub, defined as the radius parameter

of the subjets obtained after reclustering the jet constituents (using the kt algorithm),

and fcut, corresponding to the minimum fraction of the initial jet transverse momentum

carried by the subjets that are retained. The pruning algorithm uses an iterative jet

reclustering method with parameter Rcut, defined as the maximum allowed separation

between the subjet and the jet, in order to remove large-angle radiation. Denoting by

pi the transverse momentum of a subjet, and p that of the jet, only the subjets with

fractional transverse momentum pi/p larger than a parameter zcut are retained. Several

possible choices of parameters were tested in this study; among them the values {Rsub

= 0.2, fcut = 0.03} for trimming, and {Rcut = 0.3 and zcut = 0.02} for pruning were

selected, since they give good discrimination between W/Z jet signal and background

with minimal modification of the jet mass distribution for the background.

The contributions to jet energies from the underlying event and pileup have large

fluctuations from event to event. The jet area subtraction technique [44] is based on the

idea that these contributions can be determined on an event-by-event basis from all jets

in the event. For each event, the distribution of transverse energy densities is calculated

from all jets with |η| < 2.1. The transverse energy density of a jet is defined as the

ratio of its transverse energy to its area. The median of this distribution is taken as an

estimate of the energy density of the pileup and the underlying event. For each jet, the

jet transverse energy is corrected by subtracting the product of the transverse energy

density and the jet area from it. The technique results in a modification of the jet four-

momentum, including the jet mass. The jet area is determined with the “active” area

calculation technique [44], where a large number of infinitely soft particles, so-called

ghosts, distributed evenly in the (η, φ) plane are included in the jet clustering.§ The

jet area is determined from the number of ghosts that are clustered in the jet.

§ A second method known as the “Voronoi” area technique was found to yield very similar results.
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D. Costanzo140, D. Côté8, G. Cottin28, G. Cowan76, B.E. Cox83, K. Cranmer109,
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J. Goncalves Pinto Firmino Da Costa42, L. Gonella21, S. González de la Hoz168,
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C. Rudolph44, M.S. Rudolph159, F. Rühr7, A. Ruiz-Martinez63, Z. Rurikova48,

N.A. Rusakovich64, A. Ruschke99, J.P. Rutherfoord7, N. Ruthmann48, P. Ruzicka126,

Y.F. Ryabov122, M. Rybar128, G. Rybkin116, N.C. Ryder119, A.F. Saavedra151,

S. Sacerdoti27, A. Saddique3, I. Sadeh154, H.F-W. Sadrozinski138, R. Sadykov64,

F. Safai Tehrani133a, H. Sakamoto156, Y. Sakurai172, G. Salamanna75, A. Salamon134a,



32

M. Saleem112, D. Salek106, P.H. Sales De Bruin139, D. Salihagic100, A. Salnikov144,

J. Salt168, B.M. Salvachua Ferrando6, D. Salvatore37a,37b, F. Salvatore150,

A. Salvucci105, A. Salzburger30, D. Sampsonidis155, A. Sanchez103a,103b, J. Sánchez168,

V. Sanchez Martinez168, H. Sandaker14, H.G. Sander82, M.P. Sanders99, M. Sandhoff176,

T. Sandoval28, C. Sandoval165a,165b, R. Sandstroem100, D.P.C. Sankey130, A. Sansoni47,

C. Santoni34, R. Santonico134a,134b, H. Santos125a, I. Santoyo Castillo150, K. Sapp124,

A. Sapronov64, J.G. Saraiva125a,125d, B. Sarrazin21, G. Sartisohn176, O. Sasaki65,

Y. Sasaki156, G. Sauvage5,∗, E. Sauvan5, J.B. Sauvan116, P. Savard159,d, D.O. Savu30,

C. Sawyer119, L. Sawyer78 ,o, D.H. Saxon53, J. Saxon121, C. Sbarra20a, A. Sbrizzi3,

T. Scanlon30, D.A. Scannicchio164, M. Scarcella151, J. Schaarschmidt173, P. Schacht100,

D. Schaefer121, A. Schaelicke46, S. Schaepe21, S. Schaetzel58b, U. Schäfer82,
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Bologna, Bologna, Italy
21 Physikalisches Institut, University of Bonn, Bonn, Germany
22 Department of Physics, Boston University, Boston MA, United States of America
23 Department of Physics, Brandeis University, Waltham MA, United States of

America
24 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b)

Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao

Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Fisica, Universidade de Sao

Paulo, Sao Paulo, Brazil
25 Physics Department, Brookhaven National Laboratory, Upton NY, United States of

America
26 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) National

Institute for Research and Development of Isotopic and Molecular Technologies,

Physics Department, Cluj Napoca; (c) University Politehnica Bucharest, Bucharest; (d)

West University in Timisoara, Timisoara, Romania
27 Departamento de F́ısica, Universidad de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
29 Department of Physics, Carleton University, Ottawa ON, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
32 (a) Departamento de F́ısica, Pontificia Universidad Católica de Chile, Santiago; (b)
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Genova, Italy
51 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University,

Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United

Kingdom
54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes,
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Paris-Diderot and CNRS/IN2P3, Paris, France
80 Fysiska institutionen, Lunds universitet, Lund, Sweden
81 Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid,

Spain
82 Institut für Physik, Universität Mainz, Mainz, Germany
83 School of Physics and Astronomy, University of Manchester, Manchester, United

Kingdom
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