Dark matter searches in ATLAS

Fuquan Wang University of Wisconsin-Madison

On behalf of ATLAS collaboration June 26th, 2014 PPC 2014 at León, Mexico

Outline

- ATLA Detector and collaboration
- Motivation, strategy and models
- Search channels:
 - Mono-jet
 - Mono-γ
 - Mono-Z (leptonic)
 - Mono-W/Z (hadronic)
 - Mono-W (leptonic)
 - Higgs invisible decays
- Summary

ATLAS collaboration

2014/6/26, León, Mexico

ATLAS detector

ATLAS Run-I dataset

Introduction

- Dark matter (DM) search at colliders has a better sensitivity compared to direct-detection experiments
 - at low mass with very large production rate.
 - in spin-dependent operators.
- The pair of weakly interacting massive particles (WIMPs) are studied as DM candidates in ATLAS with the signature of
 - Large missing transverse momentum ($\vec{p}_T^{
 m miss}$) and energy ($E_T^{
 m miss}$)
 - An energetic object (jet, W/Z boson or γ)

 Higgs boson invisible decays provide a portal for DM production at colliders.

One mono- γ example event

2014/6/26, León, Mexico

General analysis strategies

- The standard model (SM) processes are treated as background and compared with the number of data events.
- The signal region (SR) is usually defined with
 - Large E_T^{miss} , an energetic object, veto on additional objects
- The control regions (CRs) are defined to evaluate the background expectation in SR with similar kinematics but
 - Additional object(s)
 - Different E_T^{miss} selection in some cases
 - Orthogonal to SR
- One example:
 - $Z \rightarrow \nu\nu + \gamma$ background (calorimeter-based E_T^{miss} , lepton veto)
 - CR: 2 additional muons, dominated by $Z \rightarrow \mu \mu + \gamma$ process
 - Transfer factor (TF) from CR: $N_{\rm data}/N_{\rm MC}$
 - Apply TF to $Z \rightarrow \nu\nu + \gamma$ MC in signal region

SUSY WIMP search

- Good: Supersymmetry (SUSY) provides 2 excellent possible WIMPs: the neutralino and the gravitino assuming R-parity conservation.
- Bad: SUSY introduces 128 new parameters. Assumptions and constraints can reduce parameters.
- Ugly: SUSY DM produced via long decay chains through heavier SUSY (strongly/EM interacting) intermediaries which are the first to search for. Limits SUSY DM highly model-dependent.

Example of production of SUSY particles and long decay chain producing neutralinos (assumed stable due to Rparity conservation), jets, leptons, and MET

SUSY limits

ATLAC

 Many SUSY searches undertaken, mainly for gluinos, squarks with indirect limits on WIMPs. Wide range of SUSY variants and final states covered. Limits on SUSY WIMPs indirectly and highly model-dependent. Not covered in this talk

St	atus: Moriond 2014						$\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1}$	\sqrt{s} = 7, 8 TeV
_	Model	e, μ, τ, γ	Jets	$E_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt fb	Mass limit		Reference
Inclusive Searches	$ \begin{array}{l} \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \tilde{q}_{0}, \tilde{q} \rightarrow q \tilde{t}_{1}^{0} \\ \tilde{g}_{0}, \tilde{g} \rightarrow q \tilde{t}_{1}^{0} \\ \tilde{g}_{0}, \tilde{g} \rightarrow q \tilde{t}_{1}^{0} \\ \tilde{g}_{0}, \tilde{g} \rightarrow q q \tilde{t}_{1}^{0} \\ \tilde{g} \rightarrow$	$\begin{matrix} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 1 \ 2 \ r, \mu \\ 2 \ e, \mu \\ 1 \ 2 \ r \\ \gamma \\ 2 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu (Z) \\ 0 \end{matrix}$	2-6 jets 3-6 jets 7-10 jets 2-6 jets 3-6 jets 3-6 jets 0-3 jets 	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	4.2 1.7 8 1.2 TeV 9 1.1 TeV 9 740 GeV 8 1.3 TeV 8	$ \begin{array}{lll} \label{eq:constraint} & m(z) = m(\bar{z}) & \\ & ary \; m(z) & \\ & ary \; m(z) & \\ & m(\bar{z}^2) = O \; GeV & \\ & tar/v = 18 & \\ & tar/v = 18 & \\ & tar/v = 18 & \\ & m(\bar{z}^2) = SO \; GeV & \\ & m(\bar{z}^2) = SO \; GeV$	ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 1308.1841 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-049 1208.4668 ATLAS-CONF-2013-029 ATLAS-CONF-2013-026 ATLAS-CONF-2012-014 ATLAS-CONF-2012-147 ATLAS-CONF-2012-147
3 rd gen. ἒ med.	$\begin{array}{c} \tilde{g} \rightarrow b \tilde{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \tilde{\chi}_{1}^{1} \\ \tilde{g} \rightarrow b \tilde{t} \tilde{\chi}_{1}^{+} \end{array}$	0 0 0-1 e, µ 0-1 e, µ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	ž 1.2 TeV ž 1.1 TeV ž 1.34 TeV ž 1.34 TeV ž 1.3 TeV	$\begin{array}{l} m(\tilde{k}_{1}^{0}){<}600~{\rm GeV} \\ m(\tilde{k}_{1}^{0}){<}350~{\rm GeV} \\ m(\tilde{k}_{1}^{0}){<}400~{\rm GeV} \\ m(\tilde{k}_{1}^{0}){<}300~{\rm GeV} \end{array}$	ATLAS-CONF-2013-061 1308.1841 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
3 rd gen. squarks direct production	$ \begin{array}{l} b_1 b_1, \ b_1 \rightarrow b \xi_1^0 \\ b_1 b_1, \ b_1 \rightarrow b \xi_1^0 \\ \overline{h}_1 (\operatorname{light}), \ \overline{h} \rightarrow b \xi_1^0 \\ \overline{h}_1 (\operatorname{light}), \ \overline{h} \rightarrow b \xi_1^0 \\ \overline{h}_1 (\operatorname{light}), \ \overline{h} \rightarrow b \xi_1^0 \\ \overline{h}_1 (\operatorname{medium}), \ \overline{h} \rightarrow b \xi_1^0 \\ \overline{h}_1 (\operatorname{medium}), \ \overline{h} \rightarrow b \xi_1^0 \\ \overline{h}_1 (\operatorname{heav}), \ \overline{h} \rightarrow b \xi_1^0 \\ \overline$	$\begin{matrix} 0 \\ 2 e, \mu (SS) \\ 1-2 e, \mu \\ 2 e, \mu \\ 2 e, \mu \\ 0 \\ 1 e, \mu \\ 0 \\ 1 e, \mu \\ 0 \\ 3 e, \mu (Z) \end{matrix}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b 1 ono-jet/c-1 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.3 20.3	5, 100-620 GeV 5, 275-430 GeV 7, 110 <mark>-167 GeV</mark> 7, 130-210 GeV 7, 150-580 GeV 7, 20-580 GeV 7, 20-610 GeV 7, 90-200 GeV 7, 150-580 GeV 7, 150-580 GeV	$\begin{split} m(\tilde{t}^{2}_{1}){\leftarrow}30\text{GeV} \\ m(\tilde{t}^{2}_{1}){\leftarrow}2m(\tilde{t}^{2}_{1}) \\ m(\tilde{t}^{2}_{1}){\leftarrow}50\text{GeV} \\ m(\tilde{t}^{2}_{1}){\leftarrow}50\text{GeV}, m(\tilde{t}_{1}){\leftarrow}30\text{GeV}, m(\tilde{t}_{1}){\leftarrow}30\text{GeV} \\ m(\tilde{t}^{2}_{1}){\leftarrow}200\text{GeV}, m(\tilde{t}^{2}_{1}){\leftarrow}m(\tilde{t}^{2}_{1}){\leftarrow}50\text{GeV} \\ m(\tilde{t}^{2}_{1}){\leftarrow}200\text{GeV}, m(\tilde{t}^{2}_{1}){\leftarrow}60\text{GeV} \\ m(\tilde{t}^{2}_{1}){\leftarrow}0\text{GeV} \\ m(\tilde{t}^{2}_{1}){\leftarrow}10\text{GeV} \\ m(\tilde{t}^{2}_{1}){\leftarrow}150\text{GeV} \\ m(\tilde{t}^{2}_{1}){\leftarrow}200\text{GeV} \\ m(\tilde{t}^{2}_{1}){\leftarrow}200\text{GeV} \end{split}$	1308.2631 ATLAS-CONF-2013-007 1208.4305,1209.2102 1403.4853 1308.2631 ATLAS-CONF-2013-037 ATLAS-CONF-2013-037 ATLAS-CONF-2013-068 1403.5222 1403.5222
EW direct	$\begin{array}{c} \tilde{\ell}_{1,\mathbf{R}}\tilde{\ell}_{1,\mathbf{R}},\tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{\dagger}\tilde{\chi}_{1},\tilde{\chi}_{1}^{\dagger} \rightarrow \tilde{\ell}\nu(\tilde{r}) \\ \tilde{\chi}_{1}^{\dagger}\tilde{\chi}_{1}^{2},\tilde{\chi}_{1}^{\dagger} \rightarrow \tilde{r}\nu(\tilde{r}) \\ \tilde{\chi}_{1}^{\dagger}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{1}\nu\tilde{\ell}_{L}\ell(\tilde{r}\nu), \ell\tilde{\nu}\tilde{\ell}_{L}\ell(\tilde{r}\nu) \\ \tilde{\chi}_{1}^{\dagger}\tilde{\chi}_{2}^{0} \rightarrow W\tilde{\chi}_{1}^{0}\tilde{\chi}_{L}^{0} \\ \tilde{\chi}_{1}^{\dagger}\tilde{\chi}_{2}^{0} \rightarrow W\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \end{array}$	$2 e, \mu$ $2 e, \mu$ 2τ $3 e, \mu$ $2 - 3 e, \mu$ $1 e, \mu$	0 0 - 0 2 b	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.3 20.3 20.3	7 90-325 GeV 주 140-465 GeV 주 180-330 GeV 주 5 주 5 700 GeV n 주 5 700 GeV n	$\begin{split} m(\xi_1^0) &= O \; GeV \\ m(\xi_1^0) &= O \; GeV \; m(\xi_1^0) &= O \; G(m(\xi_1^0) + m(\xi_1^0)) \\ m(\xi_1^0) &= O \; GeV \; (m(\xi_1^0) + m(\xi_1^0) + m(\xi_1^0)) \\ m(\xi_1^0) &= m(\xi_1^0) \; m(\xi_1^0) &= O \; S(m(\xi_1^0) + m(\xi_1^0)) \\ m(\xi_1^0) &= m(\xi_2^0) \; m(\xi_1^0) &= O \; S(m(\xi_1^0) + m(\xi_1^0)) \\ m(\xi_1^0) &= m(\xi_2^0) \; m(\xi_1^0) &= O \; S(m(\xi_1^0) + m(\xi_1^0)) \\ m(\xi_1^0) &= m(\xi_2^0) \; m(\xi_1^0) &= O \; S(m(\xi_1^0) + m(\xi_1^0)) \\ m(\xi_1^0) &= m(\xi_1^0) \; m(\xi_1^0) \; m(\xi_1^0) \\ m(\xi_1^0) &= m(\xi_1^0) \; m(\xi_1^0) \\ m(\xi_1^0) &= m(\xi_1^0) \; m(\xi_1^0) \\ m(\xi_1^0) &= O \; S(m(\xi_1^0) + m(\xi_1^0)) \\ m(\xi_1^0) &= M(\xi_1^0) \; m(\xi_1^0) \\ m(\xi_1^0) &= M(\xi_1^0) \; m(\xi_1^0) \\ m(\xi_1^0) &= M(\xi_1^0) \; m(\xi_1^0) \\ m(\xi_1^0) &= M(\xi_1^0) \\ m(\xi_1^0)$	1403.5294 1403.5294 ATLAS-CONF-2013-028 1402.7029 1403.5294, 1402.7029 ATLAS-CONF-2013-093
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^+$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{c}, \tilde{\mu}) + \tau(e$ GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ $\tilde{q}\tilde{q}, \tilde{\chi}_1^0 \rightarrow qq\mu$ (RPV)	Disapp. trk 0 (, μ) 1-2 μ 2 γ 1 μ, displ. vb	1 jet 1-5 jets -	Yes Yes - Yes	20.3 22.9 15.9 4.7 20.3	k¦ 270 GeV 832 GeV 2 832 GeV K <mark>↓ 230 GeV 475 GeV</mark> 4 1.0 TeV	$\begin{array}{l} m(\tilde{k}_{1}^{0})\!=\!m(\tilde{k}_{1}^{0})\!=\!160\ \mathrm{MeV},\ \tau(\tilde{k}_{1}^{0})\!=\!0.2\ \mathrm{ns}\\ m(\tilde{k}_{1}^{0})\!=\!100\ \mathrm{GeV},\ 10\ \mu\mathrm{s}\!<\!\tau(\tilde{g})\!<\!1000\ \mathrm{s}\\ 10\!\cdot\!\mathrm{tan}\beta\!<\!50\\ 0.4\!<\!\tau(\tilde{k}_{1}^{0})\!<\!2\ \mathrm{ns}\\ 1.5\!<\!\mathrm{cr}\!<\!156\ \mathrm{nm},\ \mathrm{BR}(\mu)\!=\!1,\ m(\tilde{k}_{1}^{0})\!=\!108\ \mathrm{GeV}\\ \end{array}$	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV pp \rightarrow \tilde{\mathbf{v}}_{\tau} + X, \tilde{\mathbf{v}}_{\tau} \rightarrow e + \mu \\ LFV pp \rightarrow \tilde{\mathbf{v}}_{\tau} + X, \tilde{\mathbf{v}}_{\tau} \rightarrow e(\mu) + \tau \\ Bilmoar RPV CMSSM \\ \tilde{\mathcal{K}}_{1}^{\dagger} \tilde{\mathcal{K}}_{1}^{\dagger} \rightarrow \mathcal{W}_{1}^{0} \tilde{\mathcal{K}}_{1}^{0} \rightarrow ee\tilde{v}_{\mu}, e\mu\tilde{v}_{e} \\ \tilde{\mathcal{K}}_{1}^{\dagger} \tilde{\mathcal{K}}_{1}^{\dagger} \rightarrow \mathcal{W}_{1}^{0} \tilde{\mathcal{K}}_{1}^{0} \rightarrow \tau r\tilde{\mathbf{v}}_{e}, er\tilde{v}_{\tau} \\ \tilde{\mathcal{K}}_{1}^{\dagger} \tilde{\mathcal{K}}_{1}^{\dagger} \rightarrow \mathcal{W}_{1}^{0} \tilde{\mathcal{K}}_{1}^{0} \rightarrow \tau r\tilde{v}_{e}, er\tilde{v}_{\tau} \\ \tilde{g} \rightarrow qq \\ \tilde{g} \rightarrow \tilde{q}_{1}t, \tilde{t}_{1} \rightarrow bs \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 1 \ e, \mu \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \ (SS) \end{array}$	7 jets 6-7 jets 0-3 b	- Yes Yes - Yes	4.6 4.6 4.7 20.7 20.7 20.3 20.3	5, 1.61 1 5, 1.1 TeV 4, 2 760 GeV 4, 350 GeV 8 916 GeV 8 880 GeV	$\begin{array}{l} \textbf{TeV} & \mathcal{A}_{211}^{'}=0.10, \mathcal{A}_{132}=0.05 \\ \mathcal{A}_{411}^{'}=0.10, \mathcal{A}_{1233}=0.05 \\ m(\beta=m(k_{2}), \mathcal{A}_{1233}=0.05 \\ m(k_{1}^{'})>300 \text{GeV}, \mathcal{A}_{123}>0 \\ m(k_{1}^{'})>300 \text{GeV}, \mathcal{A}_{133}>0 \\ \text{BR}(\rho)=\text{BR}(\rho)=\text{BR}(\rho)=0\% \end{array}$	1212.1272 1212.1272 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 ATLAS-CONF-2013-091 ATLAS-CONF-2013-091
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	0 2 e,µ (SS) 0	4 jets 2 <i>b</i> mono-jet	Yes t Yes	4.6 14.3 10.5	sgluon 100-287 GeV sgluon 350-800 GeV M' scale 704 GeV	incl. limit from 1110.2693 $m(\chi) {<} 80 \ {\rm GeV}, \ {\rm limit} \ {\rm of} {<} 687 \ {\rm GeV} \ {\rm for} \ {\rm D8}$	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
	$\sqrt{s} = 7 \text{ TeV}$ full data	$\sqrt{s} = 8$ TeV partial data	$\sqrt{s} = $ full	8 TeV data		10 ⁻¹ 1	Mass scale [TeV]	~

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults 2014/6/26, León, Mexico Dark matter in ATLAS (F. Wang)

Effective field theory (EFT)

- EFT considers possible contact interactions of g, q producing WIMP pairs $(\chi \overline{\chi})$ suppressed by a mass scale M_* (i.e. mediator too massive to be created directly)
 - It is valid if the momentum transfer $Q_{tr} < M_{med}$
- Limit is set on the suppression scale $M_*=M_{\rm med}/\sqrt{g_{\rm SM}g_{\rm DM}}$
 - $Q_{\rm tr} < M_* \sqrt{g_{\rm SM}g_{\rm DM}}$ is required
 - EFT is more suitable for WIMP searches if
 - Less momentum transfer: lower center-of-mass energy, lower WIMP mass
 - Higher limit on M_* : more integrated luminosity
- The following EFT operators are interpreted in ATLAS:

Name	D1	D5	D11	D8	D9
Operator	<i>x̄χq̄q</i> scalar	$ar{\chi}\gamma^{\mu}\chiar{q}\gamma_{\mu}q$ vector	$ar{\chi} \chi G^{\mu u} G_{\mu u}$ scalar	$\overline{\chi}\gamma^{\mu}\gamma^{5}\chi\overline{q}\gamma_{\mu}\gamma^{5}q$ axial-vector	$ar{\chi} \sigma^{\mu u} \chi ar{q} \sigma_{\mu u} q$ tensor
Coefficient	m_q/M_*^3	$1/M_{*}^{2}$	$\alpha_s/4M_*^3$	$1/M_{*}^{2}$	$1/M_{*}^{2}$
Spin		Independent		Depen	dent
•		-			

2014/6/26, León, Mexico

Simplified models

- Due to the validity issue of EFT, simplified models assume the mediator is not integrated out.
 - Validity question at high Q_{tr} is addressed
- Three domains based on $M_{\rm med}$
 - Low: high Q_{tr} results in off-shell production
 - Medium: resonant production, large cross section and strong limits
 - High: out of energy reach of the colliders, described by contact theory

ATL-PHYS-PUB-2014-007

Mono-jet

Mono-jet

2014/6/26, León, Mexico

Dark matter in ATLAS (F. Wang)

Dataset and event selection

- \sqrt{s} =7 TeV, 4.7 fb⁻¹ data: *JHEP 04 (2013) 075*
- \sqrt{s} =8 TeV, 10.5 fb⁻¹ data: *ATLAS-CONF-2012-147*
- The signal events are selected by requiring:
 - E_T^{miss} trigger at 70 GeV
 - A primary vertex with at least two associated tracks.
 - Suppression on detector noise, cosmic rays or beam-background muons.
 - no more than one additional jet has p_T >30 GeV.

Signal regions	SR1	$\operatorname{SR2}$	SR3	SR4
Common requirements	Data qu $ \eta^{ m jet1} < 2$	1 a lity + trig $.0 + \Delta \phi(\mathbf{p}) $	$ gger + vertec_{\mathrm{T}}^{\mathrm{miss}}, \mathbf{p}_{\mathrm{T}}^{\mathrm{jet2}}) \leq g_{\mathrm{T}}^{\mathrm{jet2}} $	ex + jet quality + > $0.5 + N_{jets} \le 2 +$
$E_{\mathrm{T}}^{\mathrm{miss}}, p_{\mathrm{T}}^{\mathrm{jet1}} >$	120 GeV	220 GeV	$350 {\rm GeV}$	$500 {\rm GeV}$

No excess is observed above SM backgrounds.

Yield	SR1	SR2	SR3	SR4
Total Bkg	124000 ± 4000	8800±400	750 <u>±</u> 60	83 <u>±</u> 14
Data	124703	8631	785	77

• Exclusion limits are set on $\sigma_{vis} = \sigma \times A \times \epsilon$

- EFT interpretation
 - Translated to 90% CL limit on the WIMP-nucleon cross section

No excess is observed above SM backgrounds.

Dark matter in ATLAS (F. Wang)

effective theory

 10^{3}

not valid

WIMP mass m, [GeV]

10²

EFT interpretation (D5, D8, D11 operators)

14 TeV prospect ATL-PHYS-PUB-2014-007

- The LHC will run at $\sqrt{s}=13/14$ TeV in 2015.
 - More momentum transfer leads to higher E_T^{miss} tail.

- The prospect is studied with truth level MC and emulated detector response at high pile-up conditions.
 - First a few month data-taking will give better sensitivity compared to Run I dataset. $\frac{\sqrt{s} [\text{TeV}] \quad \mu \quad L \, [\text{fb}^{-1}]}{8}$

	8	20	20	
Phase 0 upgrade (2014-2015)	14	60	25	
Phase 1 upgrade (2018)	14	60	300	
Phase 2 upgrade (2022)	14	140	3000	
Dark matter in ATLAS (F. Wang)				

14 TeV prospect

• Potential to discovery.

	ATLAS Simulation Preliminary	Integrated lumi [fb $^{-1}$]	Higher M_* bounda	ary for discovery
ugis 14 14 14 12	$y' = 14 \text{ TeV} \int Ldt = 25 \text{ fb}^{-1}$ D5, m _{χ} = 50 GeV		1% systematic	5% systematic
10 ⁻	$\pi < \sqrt{9_{SM}9_{DM}} < 4\pi$ 	25	-	1.6 TeV
6	5σ discovery	300	2.2 TeV	1.8 TeV
4 2	3σ evidence	3000	2.6 TeV	1.8 TeV
1 1.2	1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 M. [TeV]	2		

EFT validity at 14 TeV

- $R_{M_{\text{med}}}^{\text{tot}}$: faction of valid events with $Q_{\text{tr}} < M_* \sqrt{g_{\text{SM}} g_{\text{DM}}}$
- Stringent limits at 14 TeV lead to larger valid ranges for EFT

Mono- γ

Mono- γ

2014/6/26, León, Mexico

Dark matter in ATLAS (F. Wang)

Dataset and event selection

- \sqrt{s} =7 TeV, 4.6 fb⁻¹: *PRL 110, 011802 (2013)*
- The signal events are selected by requiring:
 - E_T^{miss} trigger at 70 GeV
 - A isolated γ , p_T >150 GeV, passing tight identification (ID) criteria
 - E_T^{miss} >150 GeV and $\Delta \phi(E_T^{\text{miss}}, \gamma)$ >0.4
 - \leq 1 jet. $\Delta R(\gamma, \text{jet})$ >0.4 and $\Delta \phi(E_T^{\text{miss}}, \text{jet})$ >0.4
 - No electrons or muons.

Results

• No excess is observed compared to background expectation.

Background source	Prediction	\pm (stat.)	\pm (syst.)
$Z(\rightarrow \nu \bar{\nu}) + \gamma$	93	± 16	± 8
$Z/\gamma^* (\to \ell^+ \ell^-) + \gamma$	0.4	± 0.2	± 0.1
$W(\rightarrow \ell \nu) + \gamma$	24	± 5	± 2
W/Z + jets	18	_	± 6
Тор	0.07	± 0.07	± 0.01
$WW, WZ, ZZ, \gamma\gamma$	0.3	± 0.1	± 0.1
γ +jets and multi-jet	1.0	_	± 0.5
Total background	137	± 18	± 9
Events in data (4.6 fb^{-1})	116		

• The 90% (95%) CL limit on the $\sigma \times A \times \epsilon$ is 5.6 (6.8) fb.

EFT interpretation

Mono-Z (leptonic)

Mono-Z (leptonic)

2014/6/26, León, Mexico

Dataset and event selection

- \sqrt{s} =8 TeV, 20.3 fb⁻¹: *arXiv* 1404.0051, accepted by *PRD*
- The signal events are selected by requiring:
 - Single lepton or di-lepton triggers
 - A primary vertex with at least three associated tracks
 - Two opposite-sign, same-flavor leptons balancing E_T^{miss}
 - $\Delta \phi(E_T^{\text{miss}}, p_T^{ll}) > 2.5, |\eta^{ll}| < 2.5, |p_T^{ll} E_T^{\text{miss}}|/p_T^{ll} < 0.5$
 - 76< m_{ll} <106 GeV and no additional looser leptons or jets
- 4 SRs, with E_T^{miss} > 150, 250, 350 and 450 GeV

nev

Results

• No excess is observed above SM expectation.

• EFT (heavy mediator)

Results

• Simplified model (light mediator)

Mono-W/Z (hadronic)

Mono-W/Z (hadronic)

2014/6/26, León, Mexico

Dark matter in ATLAS (F. Wang)

Motivation

- Mono-jet and mono- γ searches assume the same DM coupling for up and down quarks [C(u) = C(d)].
- If the couplings have the opposite sign as C(u) = -C(d), the mono-W production will be dominant.

• \sqrt{s} =8 TeV, 20.3 fb⁻¹: *PRL 112, 041802 (2014)*.

Event selection

- Jet definition:
 - Large radius jet (large-R jet): Cambridge-Aachen algorithm with distance parameter of 1.2
 - Narrow jet (j): anti- k_t algorithm with distance parameter of 0.4
- The signal events are selected by requiring:
 - E_T^{miss} trigger
 - \geq 1 large-R jet, with p_T >250 GeV, $|\eta|$ <1.2, 50< m_{jet} <120 GeV and $\min(p_{T1}, p_{T2}) \Delta R/m_{jet}$ >0.4.
 - ≤ 1 j not overlapping with the leading large-R jet($\Delta R > 0.9$).
 - Veto events with narrow jet $\Delta \phi(E_T^{\text{miss}}, \mathbf{j}) < 0.4$.
 - Veto events with any reconstructed electrons, muons or photons.
- Two SRs, with $E_T^{\text{miss}} > 350 \text{ or } 500 \text{ GeV}$.

Results

m_{iet} [GeV]

No excess observed above the SM background expectation.

			$\mathbf{\Phi}_{ara} = \mathbf{AT} \mathbf{AS} 20.3 \text{ fb}^{-1} \sqrt{s} = 8 \text{ TeV}^{-1}$	🗕 Data ' –
Process	$ E_{\rm T}^{\rm miss}>350~{\rm GeV} $	$E_{\rm T}^{\rm miss} > 500 {\rm ~GeV}$	$^{\circ}$	Z(vv)+jet
$\overline{Z \to \nu \bar{\nu}}$	402^{+39}_{-24}	54^{+8}_{-10}	ب ي 200	Top
$W \to \ell^{\pm} \nu, Z \to \ell^{\pm} \ell^{\mp}$	210^{+20}_{-18}	22^{+4}_{-5}		Diboson
WW, WZ, ZZ	57^{+11}_{-8}	$9.1^{+1.3}_{-1.1}$		D5(u=d) x100 D5(u=-d) x1
$t\bar{t}$, single t	39_{-4}^{+10}	$3.7^{+1.7}_{-1.3}$		
Total	707^{+48}_{-38}	89^{+9}_{-12}	50	
Data	705	89		
			50 60 70 80 90	100 110 120

• EFT interpretations.

Mono-W (leptonic)

Mono-W (leptonic)

2014/6/26, León, Mexico

Event selection

- √s=8 TeV, 20.3 fb⁻¹: ATLAS-CONF-2014-017
- Event selection:
 - At least one primary vertex with three associated tracks
 - Electron channel:
 - Trigger on single electron with p_T >120 GeV
 - One isolated electron with p_T >125 GeV, E_T^{miss} >125 GeV
 - Muon channel:
 - Trigger on single muon with p_T >36 GeV
 - One isolated muon with p_T >45 GeV, E_T^{miss} >45 GeV
 - Cut on $m_T(l, E_T^{\text{miss}})$ to suppress non-W background

new

Results

- No significant excess is observed.
- 95% CL limit on M^* in EFT framework.

Higgs invisible decay

Higgs invisible decay

Motivation

- The Higgs boson is discovered by the ATLAS/CMS.
 - Best-fit mass in ATLAS is at m_H=125.4 GeV. [arXiv:1406.3827]
- In some extensions of SM, the Higgs boson can decay to stable or long-lived particles invisible in the detector, which can be dark matter candidates.
 - This decay is allowed only if $m_{\chi} < m_H/2$
- The only invisible SM decay of Higgs boson is $H \rightarrow ZZ^* \rightarrow 4\nu$, which this search is not sensitive to.
- ZH production mode with leptons and large E_T^{miss} is studied.

Dataset and event selection

- \sqrt{s} =7 (8) TeV, 4.5 (20.3) fb⁻¹
 - Phys. Rev. Lett. 112, 201802 (2014)
- The selection is very similar to Mono-Z (leptonic) search with some optimization based on a Higgs boson as the mediator:
 - E_T^{miss} >90 GeV and $\Delta \phi(E_T^{\text{miss}}, \vec{p}_T^{\text{miss}})$ <0.2
 - $\Delta \phi(E_T^{\text{miss}}, p_T^{ll}) > 2.6, \Delta \phi(l, l) < 1.7, |p_T^{ll} E_T^{\text{miss}}|/p_T^{ll} < 0.2$
- The E_T^{miss} distribution is fitted to extract the exclusion limit.

Results

No significant excess is observed above SM backgrounds.

Data Period	2011 (7 TeV)	2012 (8 TeV)
$ZZ ightarrow \ell \ell u u$	$20.0 \pm 0.7 \pm 1.6$	$91\pm1\pm7$
$WZ \to \ell \nu \ell \ell$	$4.8\pm0.3\pm0.5$	$26 \pm 1 \pm 3$
Dileptonic $t\bar{t}, Wt, WW, Z \to \tau\tau$	$0.5\pm0.4\pm0.1$	$20 \pm 3 \pm 5$
$Z \to ee, \ Z \to \mu\mu$	$0.13 \pm 0.12 \pm 0.07$	$0.9\pm0.3\pm0.5$
W + jets, multijet, semileptonic top	$0.020 \pm 0.005 \pm 0.008$	$0.29 \pm 0.02 \pm 0.06$
Total background	$25.4 \pm 0.8 \pm 1.7$	$138\pm4\pm9$
Signal $(m_H = 125.5 \text{ GeV}, \sigma_{\text{SM}}(ZH), \text{BR}(H \to \text{inv.}) = 1)$	$8.9\pm0.1\pm0.5$	$44\pm1\pm3$
Observed	28	152

2014/6/26, León, Mexico

Dark matter in ATLAS (F. Wang)

Mono-W/Z (hadronic)

• The limit is set on $\sigma \times BR$ Higgs invisible decay in association with a W or Z boson.

Summary

- The dark matter searches are being performed in ATLAS with the Run-I dataset into various mono-object final states
 - No significant excess beyond SM is observed in any channel.
- The limits are interpreted for EFT and simplified models.
- The Higgs boson as a light mediator is studied in association with W or Z bosons
 - It gives stringent limit on the low mass DM-nucleon cross section.
- At the coming 13/14 TeV runs, the dark matter search in ATLAS will have a better sensitivity. Please stay tuned!
- Theoretical inputs are welcome!

Backup

Backup

2014/6/26, León, Mexico

Dark matter in ATLAS (F. Wang)

ATLAS detector slice

Mono-jet: Background CRs

- Minor contributions from multi-jets, $t\bar{t}$, single-top, noncollision background and di-bosons
 - <1% in SRs
- The major backgrounds are W/Z+jets processes.
 - $Z \rightarrow \nu \nu$, $W \rightarrow l \nu$ with misidentified leptons or hadronic decaying τ
 - Define various CRs to study TF $N_{SR}^{MC}/N_{jet/E_T}^{MC}$
 - $N_{jet/E_T^{miss}}^{MC}$: yield with only jet and E_T^{miss} kinematics cut
 - SR expectation $N_{SR}^{\text{predicted}} = \left(N_{CR}^{\text{data}} N_{CR}^{\text{bkg:other}}\right) \times \text{TF}$
- Object definitions are modified in CRs:
 - Electrons: tighter quality cut on shower shapes and higher p_T cut
 - Muons: require muon spectrometer track and higher p_T cut
 - In SR E_T^{miss} is calorimeter-based. In CRs, define:
 - $E_T^{\text{miss,no }e} = |\vec{p}_T^{\text{miss}} + \vec{p}_T^{\text{electrons}}|$
 - $E_T^{\text{miss},\mu} = |\vec{p}_T^{\text{miss}} \vec{p}_T^{\text{muons}}|$

Mono-jet: Background CRs

- W/Z leptonically decaying processes are used as CRs:
 - One or two opposite-sign same-flavor leptons
 - $W \rightarrow e\nu$ +jets: E_T^{miss} >25 GeV, 40< m_T <110 GeV, $E_T^{\text{miss,no} e}$ is used
 - $W \rightarrow \mu\nu$ +jets: $E_T^{\text{miss},\mu}$ >25 GeV, m_T >40 GeV
 - $Z \rightarrow ee$ +jets: 66< m_{ee} <116 GeV, $E_T^{\text{miss,no }e}$ is used
 - 7 TeV analysis only
 - $Z \rightarrow \mu\mu$ +jets: 66< $m_{\mu\mu}$ <116 GeV
- The multi-jet backgrounds are normalized in the CR requiring $\Delta \phi(E_T^{miss}, jet) < 0.4$ and extrapolated to SR.
- CRs are defined according to $p_T^{\rm jet}$ and $E_T^{
 m miss}$ cuts in SR

• 17 (13) CRs for 7 (8) TeV analyses

SR process	$Z \rightarrow \nu \bar{\nu} + \text{jets}$	$W \to \tau \nu + \text{jets}$ $W \to \mu \nu + \text{jets}$	$W \rightarrow e\nu + \text{jets}$	$Z \to \tau^+ \tau^- + \text{jets}$ $Z \to \mu^+ \mu^- + \text{jets}$
CR process	$W \rightarrow e\nu + \text{jets}$ $W \rightarrow \mu\nu + \text{jets}$ $Z \rightarrow e^+e^- + \text{jets}$ $Z \rightarrow \mu^+\mu^- + \text{jets}$	$W \rightarrow \mu \nu + \text{jets}$	$W \rightarrow e\nu + \text{jets}$	$Z \to \mu^+ \mu^- + \text{jets}$

Mono- γ : background yield

- 1- and 2-muon CRs
 - $W + \gamma$ and $Z + \gamma$ enriched CRs
 - Evaluate the data/MC ratios $\kappa = N^{\text{data}}/N^{\text{MC}}$
 - Apply κ 's to $W + \gamma$ and $Z + \gamma$ MC expectation in SR
- W/Z +jets background is estimated according to fake factors:
 - Rate of e-faking- γ is studied in a data sample of Z candidates as a function of p_T and $|\eta|$
 - Rate of Jet-faking- γ is studied in a CR of non-isolated γ candidates, or the γ 's passing loose ID but failing tight ID
- The γ +jets or multi-jet backgrounds are normalized in the CR requiring $\Delta \phi(E_T^{\rm miss}$, jet)<0.4 and extrapolated to SR.

Mono-Z: background yield

- The dominant background process is SM $ZZ \rightarrow ll \nu \nu$
 - Estimated from NLO MC.
 - A 35% theoretical systematical uncertainty is assigned.
- Minor background processes include
 - $WZ \rightarrow \overline{q}q'll$ and $ZZ \rightarrow llq\overline{q}$: estimated from NLO MC
 - $t\bar{t} \rightarrow l\nu b l\bar{\nu}\bar{b}$, Wt and $Z \rightarrow \tau\tau$
 - Obtained from $e\mu$ CR which is otherwise defined the same as SR
 - Expect contributions $ee: \mu\mu: e\mu = 1:1:2$
 - $WW \rightarrow l\nu l\nu$ process is estimated in the same way
 - $Z \rightarrow ll$ +jets
 - Consistent results using ABCD method based on E_T^{miss} and η^{ll} , and using extrapolation from fitted distributions of E_T^{miss} and $\Delta \phi(E_T^{\text{miss}}, p_T^{ll})$ at small values.

Mono-W/Z: Background CRs

- Minor background contributions are estimated with MC.
- Define W/Z+jets enriched CRs with similar selection as SR except that the muon veto is inverted.
 - Other background contribution is subtracted using MC expectation.
 - Derive two extrapolation factors for $Z \rightarrow \nu\nu$ +jets and W/Z+jets as functions of $m_{\mathfrak{J}}$.

EFT operators

Name	Operator	Coefficient
D1	$ar{\chi}\chiar{q}q$	m_q/M_*^3
D2	$ar{\chi}\gamma^5\chiar{q}q$	im_q/M_*^3
D3	$ar{\chi}\chiar{q}\gamma^5 q$	im_q/M_*^3
D4	$ar{\chi}\gamma^5\chiar{q}\gamma^5q$	m_q/M_*^3
D5	$ar{\chi}\gamma^\mu\chiar{q}\gamma_\mu q$	$1/M_{*}^{2}$
D6	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$
D7	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_{*}^{2}$
D8	$ar{\chi}\gamma^{\mu}\gamma^5\chiar{q}\gamma_{\mu}\gamma^5q$	$1/M_{*}^{2}$
D9	$\bar{\chi}\sigma^{\mu\nu}\chi\bar{q}\sigma_{\mu\nu}q$	$1/M_{*}^{2}$
D10	$\bar{\chi}\sigma_{\mu\nu}\gamma^5\chi\bar{q}\sigma_{lphaeta}q$	i/M_*^2
D11	$\bar{\chi}\chi G_{\mu\nu}G^{\mu\nu}$	$\alpha_s/4M_*^3$
D12	$\bar{\chi}\gamma^5\chi G_{\mu\nu}G^{\mu\nu}$	$i\alpha_s/4M_*^3$
D13	$\bar{\chi}\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$i\alpha_s/4M_*^3$
D14	$\bar{\chi}\gamma^5\chi G_{\mu u}\tilde{G}^{\mu u}$	$\alpha_s/4M_*^3$

Name	Operator	Coefficient
C1	$\chi^\dagger \chi \bar q q$	m_q/M_*^2
C2	$\chi^\dagger \chi \bar{q} \gamma^5 q$	$im_{\bar{q}}/M_*^2$
C3	$\chi^\dagger \partial_\mu \chi \bar q \gamma^\mu q$	$1/M_{*}^{2}$
C 4	$\chi^\dagger \partial_\mu \chi ar q \gamma^\mu \gamma^5 q$	$1/M_{*}^{2}$
C5	$\chi^\dagger \chi G_{\mu\nu} G^{\mu\nu}$	$\alpha_s/4M_*^2$
C6	$\chi^\dagger \chi G_{\mu\nu} \tilde{G}^{\mu\nu}$	$i \alpha_s / 4 M_*^2$
R1	$\chi^2 ar q q$	$m_q/2M_*^2$
R2	$\chi^2 \bar{q} \gamma^5 q$	$im_q/2M_*^2$
R3	$\chi^2 G_{\mu\nu} G^{\mu\nu}$	$\alpha_s/8M_*^2$
R4	$\chi^2 G_{\mu\nu} \tilde{G}^{\mu\nu}$	$i \alpha_s / 8 M_*^2$

mSUGRA

Third generation squark

EW gaugino production

AMSB model

Phys. Rev. D 88, 112006 (2013)

Large extra dimensions

- Models of large extra dimensions can provide solutions to socalled hierarchy problem of SM.
- Arkani-Hamed, Dimopoulos, Davil model (ADD)
 - Gravity propagates in 4+n dimension bulk space
 - SM fields confined to 4 dimensions. n extra dimensions (ED).
 - 4D Plank scale $M_{\rm Pl}$ linked to fundamental Plank scale in 4+n dims $M_{\rm Pl}^2 \sim M_{\rm D}^{2+n} R^n$
 - $M_{\rm D} \ll M_{\rm Pl}$ if R is of O(mm), R = size of extra dimensions
 - Conservation of KK-parity \rightarrow lightest KK state is stable
 - Phenomenology similar to SUSY, but no DM candidate (graviton moves in EDs)
- At LHC, gravitons can be produced in association with jets or photons, leading to mono-jet or mono-photon detector signatures.

xtra-dimens

Dark matter in ATLAS (F. Wang)

ADD interpretation

- Results of mono- γ and mono-jet searches can be interpreted in context of ADD model.
- 95% CL limits set on $M_{\rm D}$ as function of number of extra dimensions Mono-jet, 7 TeV, 4.6 fb⁻¹ Mono- γ , 7 TeV, 4.6 fb⁻¹

Mono-jet, 8 TeV, 10.5 fb⁻¹

Extra-dimensions	2	3	4	5	6
95% CL observed lower limit on $M_{\rm DM}$ [TeV]	3.88	3.16	2.84	2.65	2.58

2014/6/26, León, Mexico