Dark matter searches in ATLAS

Fuquan Wang University of Wisconsin-Madison

On behalf of ATLAS collaboration June 26th, 2014 PPC 2014 at León, Mexico

Outline

- ATLA Detector and collaboration
- Motivation, strategy and models
- Search channels:
	- Mono-jet
	- \bullet Mono- γ
	- Mono-Z (leptonic)
	- Mono-W/Z (hadronic)
	- Mono-W (leptonic)
	- Higgs invisible decays
- Summary

ATLAS collaboration

ATLAS detector

ATLAS Run-I dataset

Introduction

- Dark matter (DM) search at colliders has a better sensitivity compared to direct-detection experiments
	- at low mass with very large production rate.
	- in spin-dependent operators.
- The pair of weakly interacting massive particles (WIMPs) are studied as DM candidates in ATLAS with the signature of
	- Large missing transverse momentum ($\vec{p}_{T}^{\rm miss}$) and energy ($E_{T}^{\rm miss}$)
	- An energetic object (jet, W/Z boson or γ)

• Higgs boson invisible decays provide a portal for DM production at colliders.

One mono-y example event

General analysis strategies

- The standard model (SM) processes are treated as background and compared with the number of data events.
- The signal region (SR) is usually defined with
	- \bullet Large $E_T^{\rm miss}$, an energetic object, veto on additional objects
- The control regions (CRs) are defined to evaluate the background expectation in SR with similar kinematics but
	- Additional object(s)
	- Different E_T^{miss} selection in some cases
	- Orthogonal to SR
- One example:
	- $Z \rightarrow \nu \nu + \gamma$ background (calorimeter-based $E_T^{\rm miss}$, lepton veto)
	- CR: 2 additional muons, dominated by $Z \rightarrow \mu\mu + \gamma$ process
	- Transfer factor (TF) from CR: $N_{\text{data}}/N_{\text{MC}}$
	- Apply TF to $Z \rightarrow \nu \nu + \gamma$ MC in signal region

SUSY WIMP search

- Good: Supersymmetry (SUSY) provides 2 excellent possible WIMPs: the neutralino and the gravitino assuming R-parity conservation.
- Bad: SUSY introduces 128 new parameters. Assumptions and constraints can reduce parameters.
- Ugly: SUSY DM produced via long decay chains through heavier SUSY (strongly/EM interacting) intermediaries which are the first to search for. Limits SUSY DM highly model-dependent.

Example of production of SUSY particles and long decay chain producing neutralinos (assumed stable due to Rparity conservation), jets, leptons, and MET

SUSY limits

• Many SUSY searches undertaken, mainly for gluinos, squarks with indirect limits on WIMPs. Wide range of SUSY variants and final states covered. Limits on SUSY WIMPs indirectly and highly model-dependent. Not covered in this talk

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1or theoretical signal cross section uncertainty

2014/6/26, León, Mexico **10** Dark matter in ATLAS (F. Wang) **10** https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

Effective field theory (EFT)

- EFT considers possible contact interactions of g, q producing WIMP pairs ($\chi \bar{\chi}$) suppressed by a mass scale M_* (i.e. mediator too massive to be created directly)
	- It is valid if the momentum transfer $Q_{tr} < M_{med}$
- Limit is set on the suppression scale M_{*} = $M_{\rm med}/\sqrt{g_{\rm SM}g_{\rm DM}}$
	- $Q_{\text{tr}} < M_* \sqrt{g_{\text{SM}} g_{\text{DM}}}$ is required
	- EFT is more suitable for WIMP searches if
		- Less momentum transfer: lower center-of-mass energy, lower WIMP mass
		- Higher limit on M_* : more integrated luminosity
- The following EFT operators are interpreted in ATLAS:

Simplified models

ATL-PHYS-PUB-2014-007

- Due to the validity issue of EFT, simplified models assume the mediator is not integrated out.
	- Validity question at high Q_{tr} is addressed
- Three domains based on M_{med}
	- Low: high Q_{tr} results in off-shell production
	- Medium: resonant production, large cross section and strong limits
	- High: out of energy reach of the colliders, described by contact theory

Mono-jet

Mono-jet

2014/6/26, León, Mexico **13** Dark matter in ATLAS (F. Wang)

Dataset and event selection

- \sqrt{s} =7 TeV, 4.7 fb⁻¹ data: *JHEP 04 (2013) 075*
- \sqrt{s} =8 TeV, 10.5 fb⁻¹ data: *ATLAS-CONF-2012-147*
- The signal events are selected by requiring:
	- \bullet $E_T^{\rm miss}$ trigger at 70 GeV
	- A primary vertex with at least two associated tracks.
	- Suppression on detector noise, cosmic rays or beam-background muons.
	- no more than one additional jet has p_T >30 GeV.

• No excess is observed above SM backgrounds.

- EFT interpretation
	- Translated to 90% CL limit on the WIMP-nucleon cross section

• No excess is observed above SM backgrounds.

2014/6/26, León, Mexico **17** Dark matter in ATLAS (F. Wang)

14 TeV prospect ATL-PHYS-PUB-2014-007

- The LHC will run at \sqrt{s} =13/14 TeV in 2015.
	- More momentum transfer leads to higher E_T^{miss} tail.

- The prospect is studied with truth level MC and emulated detector response at high pile-up conditions.
	- First a few month data-taking will give better sensitivity compared
to Bun I dataset to Run I dataset.

14 TeV prospect

EFT validity at 14 TeV

-
- $R_{M_{\text{med}}}^{\text{tot}}$ t : faction of valid events with Q_{tr} < $M_*\sqrt{g_{\text{SM}}g_{\text{DM}}}$
- Stringent limits at 14 TeV lead to larger valid ranges for EFT

Mono-y

MONO-Y

2014/6/26, León, Mexico **22** Dark matter in ATLAS (F. Wang)

Dataset and event selection

- \sqrt{s} =7 TeV, 4.6 fb⁻¹: *PRL 110, 011802 (2013)*
- The signal events are selected by requiring:
	- \bullet $E_T^{\rm miss}$ trigger at 70 GeV
	- A isolated γ , p_T >150 GeV, passing tight identification (ID) criteria
	- $E_T^{\rm miss}$ >150 GeV and $\Delta\phi(E_T^{\rm miss},\gamma)$ >0.4
	- $\bullet \leq 1$ jet. $\Delta R(\gamma,$ jet)>0.4 and $\Delta \phi(E_T^{\rm miss},$ jet)>0.4
	- No electrons or muons.

Results

• No excess is observed compared to background expectation.

• The 90% (95%) CL limit on the $\sigma \times A \times \epsilon$ is 5.6 (6.8) fb.

EFT interpretation

Mono-Z (leptonic)

MONO-Z (Ieptonic)

Dataset and event selection

- =8 TeV, 20.3 fb−1: *arXiv 1404.0051*, accepted by *PRD*
- The signal events are selected by requiring:
	- Single lepton or di-lepton triggers
	- A primary vertex with at least three associated tracks
	- \bullet Two opposite-sign, same-flavor leptons balancing $E_T^{\rm miss}$
		- $\Delta \phi (E_T^{\text{miss}}, p_T^{ll})$ >2.5, $|\eta^{ll}|$ <2.5, $|p_T^{ll}-E_T^{\text{miss}}|/p_T^{ll}$ <0.5
	- 76 $\leq m_{11}$ < 106 GeV and no additional looser leptons or jets
- \bullet 4 SRs, with $E_T^{\rm miss}$ > 150, 250, 350 and 450 GeV

new

Results

- No excess is observed above SM expectation.
- EFT (heavy mediator)

Results

Mono-*W | Z* (hadronic)

MONO-W /Z (hadronic)

2014/6/26, León, Mexico **30 Carry Community Community Community** Dark matter in ATLAS (F. Wang) 30

Motivation

- Mono-jet and mono- γ searches assume the same DM coupling for up and down quarks $[C(u) = C(d)].$
- If the couplings have the opposite sign as $C(u) = -C(d)$,

• \sqrt{s} =8 TeV, 20.3 fb⁻¹: *PRL 112, 041802 (2014)*.

Event selection

- Jet definition:
	- Large radius jet (large-R jet): Cambridge-Aachen algorithm with distance parameter of 1.2
	- Narrow jet (j): anti- k_t algorithm with distance parameter of 0.4
- The signal events are selected by requiring:
	- \bullet $E_T^{\rm miss}$ trigger
	- \geq 1 large-R jet, with p_T >250 GeV, $|\eta|$ <1.2, 50< $m_{\rm jet}$ <120 GeV and min(p_{T1} , p_{T2}) $\Delta R/m_{\text{jet}}$ >0.4.
	- \leq 1 i not overlapping with the leading large-R jet(Δ R>0.9).
	- Veto events with narrow jet $\Delta\phi(E_T^{\text{miss}}, \text{j})$ <0.4.
	- Veto events with any reconstructed electrons, muons or photons.
- \bullet Two SRs, with $E_T^{\rm miss} >$ 350 or 500 GeV.

Results

 m_{jet} [GeV]

EFT interpretations.

Mono-W (leptonic)

MONO-W (leptonic)

Event selection

- =8 TeV, 20.3 fb−1: *ATLAS -CONF - 2014-017*
- Event selection:
	- At least one primary vertex with three associated tracks
	- Electron channel:
		- Trigger on single electron with p_T >120 GeV
		- One isolated electron with p_T >125 GeV, $E_T^{\rm miss}$ >125 GeV
	- Muon channel:
		- Trigger on single muon with p_T >36 GeV
		- One isolated muon with p_T >45 GeV,
Finiss, 45 G V $E_T^{\{1\}}$ $_{T}^{\rm{miss}}$ >45 GeV
	- Cut on $m_T(l,E_T^{\text{miss}})$ to suppress \int non -W background

new

Results

- No significant excess is observed.
- 95% CL limit on M^* in EFT framework.

Higgs invisible decay

HIggs Invisible decay

Motivation

- The Higgs boson is discovered by the ATLAS/CMS.
	- Best-fit mass in ATLAS is at m_H =125.4 GeV. [*arXiv:1406.3827*]
- In some extensions of SM, the Higgs boson can decay to stable or long-lived particles invisible in the detector, which can be dark matter candidates.
	- This decay is allowed only if $m_{\chi} < m_H/2$
- The only invisible SM decay of Higgs boson is $H \to ZZ^* \to 4\nu$, which this search is not sensitive to.
- ZH production mode with leptons and large $E_T^{\rm miss}$ is studied.

Dataset and event selection

- \sqrt{s} =7 (8) TeV, 4.5 (20.3) fb⁻¹
	- *Phys. Rev. Lett. 112, 201802 (2014)*
- The selection is very similar to Mono-Z (leptonic) search with some optimization based on a Higgs boson as the mediator:
	- $E_T^{\rm miss}$ >90 GeV and $\Delta\phi(E_T^{\rm miss}, \vec{p}_T^{\rm miss})$ <0.2
	- $\Delta \phi(E_T^{\text{miss}}, p_T^{ll})$ >2.6, $\Delta \phi(l, l)$ <1.7, $|p_T^{ll} E_T^{\text{miss}}|/p_T^{ll}$ <0.2
- The $E_T^{\rm miss}$ distribution is fitted to extract the exclusion limit.

Results

• No significant excess is observed above SM backgrounds.

2014/6/26, León, Mexico **Additional Exercise Serverse Dark matter in ATLAS (F. Wang) 40**

Mono- W/Z (hadronic)

• The limit is set on $\sigma \times BR$ Higgs invisible decay in association with a W or Z boson.

Summary

- The dark matter searches are being performed in ATLAS with the Run-I dataset into various mono-object final states
	- No significant excess beyond SM is observed in any channel.
- The limits are interpreted for EFT and simplified models.
- The Higgs boson as a light mediator is studied in association with W or Z bosons
	- It gives stringent limit on the low mass DM-nucleon cross section.
- At the coming 13/14 TeV runs, the dark matter search in ATLAS will have a better sensitivity. Please stay tuned!
- Theoretical inputs are welcome!

Backup

Rackup

2014/6/26, León, Mexico **Additional Exercise Servers Dark matter in ATLAS (F. Wang) 43**

ATLAS detector slice

Mono-jet: Background CRs

- Minor contributions from multi-jets, $t\bar{t}$, single-top, non-
collision background and di-bosons
	- \bullet <1% in SRs
- The major backgrounds are W/Z+jets processes.
	- $Z \rightarrow \nu \nu$, $W \rightarrow l \nu$ with misidentified leptons or hadronic decaying τ
	- Define various CRs to study TF $N_{\mathrm{SR}}^{\mathrm{MC}}/N_{\mathrm{jet}/E_T^{\mathrm{NL}}}^{\mathrm{ML}}$ miss
T MC
		- $N_{\text{jet}/E_T^n}^{\text{ML}}$ $_{\rm jet/E^{miss}_{T}}$: yield with only jet and $E_T^{\rm miss}$ kinematics cut
	- SR expectation $N_{\mathrm{SR}}^{\mathrm{predicted}} = \left(N_{\mathrm{CR}}^{\mathrm{data}} N_{\mathrm{CR}}^{\mathrm{bkg:other}}\right)$ \times TF
- Object definitions are modified in CRs:
	- Electrons: tighter quality cut on shower shapes and higher p_T cut
	- Muons: require muon spectrometer track and higher p_T cut
	- \bullet In SR $E_T^{\rm miss}$ is calorimeter-based. In CRs, define:
		- $E_T^{\text{miss},\text{no }e} = |\vec{p}_T^{\text{miss}} + \vec{p}_T^{\text{electrons}}|$
		- $E_T^{\text{miss},\mu}$ =| $\vec{p}_T^{\text{miss}} \vec{p}_T^{\text{muons}}$ |

Mono-jet: Background CRs

- W/Z leptonically decaying processes are used as CRs:
	- One or two opposite-sign same-flavor leptons
	- $W \to e\nu$ +jets: $E_T^{\rm miss}$ >25 GeV, 40< m_T <110 GeV, $E_T^{\rm miss, no\ e}$ is used
	- $W \to \mu \nu$ +jets: $E_T^{\text{miss},\mu}$ >25 GeV, m_T >40 GeV
	- $Z \rightarrow ee+{\rm jets}$: 66< m_{ee} <116 GeV, $E_T^{\rm miss, no\ e}$ is used
		- 7 TeV analysis only
	- $Z \rightarrow \mu\mu + \text{jets: } 66 < m_{\mu\mu} < 116 \text{ GeV}$
- The multi-jet backgrounds are normalized in the CR requiring $\Delta\boldsymbol{\phi}(E_T^{\text{miss}})$ jet)<0.4 and extrapolated to SR.
- CRs are defined according to p_T^{jet} and E_T^{miss} cuts in SR

• 17 (13) CRs for 7 (8) TeV analyses

$Mono-\gamma: background yield$

- 1- and 2-muon CRs
	- $W + \gamma$ and $Z + \gamma$ enriched CRs
	- Evaluate the data/MC ratios $\kappa = N^{\text{data}}/N^{\text{MC}}$
	- Apply κ 's to $W + \gamma$ and $Z + \gamma$ MC expectation in SR
- W/Z +jets background is estimated according to fake factors:
	- Rate of e-faking- γ is studied in a data sample of Z candidates as a function of p_T and $|\eta|$
	- Rate of Jet-faking- γ is studied in a CR of non-isolated γ candidates, or the γ 's passing loose ID but failing tight ID
- The γ +jets or multi-jet backgrounds are normalized in the CR requiring $\Delta \phi(E_T^{\text{miss}})$, jet)<0.4 and extrapolated to SR.

$Mono-Z: background yield$

- The dominant background process is SM $ZZ \rightarrow ll\nu\nu$
	- Estimated from NLO MC.
	- A 35% theoretical systematical uncertainty is assigned.
- Minor background processes include
	- $WZ \rightarrow \bar{q}q'll$ and $ZZ \rightarrow llq\bar{q}$: estimated from NLO MC
	- \bullet $t\bar{t} \rightarrow l\nu bl\bar{\nu}b$, Wt and $Z \rightarrow \tau\tau$
		- Obtained from $e\mu$ CR which is otherwise defined the same as SR
		- Expect contributions ee : $\mu\mu$: $e\mu$ = 1:1:2
		- $WW \rightarrow lvlv$ process is estimated in the same way
	- $Z \rightarrow l\ell +$ jets
		- Consistent results using ABCD method based on E_T^{miss} and η^{ll} , and using extrapolation from fitted distributions of $E_T^{\rm miss}$ and $\Delta\boldsymbol{\phi}(E_T^{\rm miss},p_T^{ll})$ at small values.

Mono-W/Z: Background CRs

- Minor background contributions are estimated with MC.
- Define W/Z +jets enriched CRs with similar selection as SR except that the muon veto is inverted.
	- Other background contribution is subtracted using MC expectation.
	- Derive two extrapolation factors for $Z \rightarrow \nu \nu + \text{jets}$ and $W/Z + \text{jets}$ as functions of $m_{\tilde{\gamma}}$.

EFT operators

mSUGRA

Third generation squark

EW gaugino production

AMSB model

Phys. Rev. D 88, 112006 (2013)

Large extra dimensions

- Models of large extra dimensions can provide solutions to so- called hierarchy problem of SM.
- Arkani-Hamed, Dimopoulos, Davil model (ADD)
	- Gravity propagates in 4+n dimension bulk space
	- SM fields confined to 4 dimensions. n extra dimensions (ED).
	- 4D Plank scale $M_{\rm Pl}$ linked to fundamental Plank scale in 4+n dims $M_{\rm Pl}^2 \sim M_{\rm D}^{2+n} R^n$
	- $M_{\rm D} \ll M_{\rm Pl}$ if R is of $O(mm)$, R = size of extra dimensions
	- Conservation of KK-parity \rightarrow lightest KK state is stable
		- Phenomenology similar to SUSY, but no DM candidate (graviton moves in EDs)
- At LHC, gravitons can be produced in association with jets or photons, leading to mono-jet or mono-photon detector signatures.

xtra-dimen

2014/6/26, León, Mexico **55** Dark matter in ATLAS (F. Wang)

ADD interpretation

- Results of mono- γ and mono-jet searches can be interpreted in context of ADD model.
- 95% CL limits set on M_D as function of number of extra dimensions
Mono-iet. 7 TeV. 4.6 fb⁻¹ Mono-y. 7 TeV. 4.6 fb⁻¹

Mono-jet, 8 TeV, 10.5 fb^{-1}

Extra-dimensions					
95% CL observed lower limit on M_{DM} [TeV]	3.88	3.16	2.84	2.65	2.58