
Available on CMS information server CMS CR -2014/081

The Compact Muon Solenoid Experiment

Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Conference Report
21 May 2014 (v3, 19 June 2014)

Achieving High Performance with TCP over
40GbE on NUMA architectures for CMS Data

Acquisition

Tomasz Bawej2), Ulf Behrens1), James Branson4), Olivier Chaze2), Sergio Cittolin4), Georgiana-Lavinia
Darlea6), Christian Deldicque2), Marc Dobson2), Aymeric Dupont2), Samim Erhan3), Andrew Forrest2),

Dominique Gigi2), Frank Glege2), Guillelmo Gomez-Ceballos6), Robert Gomez-Reino2), Jeroen Hegeman2),
Andre Holzner4), Lorenzo Masetti2), Frans Meijers2), Emilio Meschi2), Remigius K. Mommsen5), Srecko

Morovic2,a), Carlos Nunez-Barranco-Fernandez2), Vivian O’Dell5), Luciano Orsini2), Christoph Paus6), Andrea
Petrucci2), Marco Pieri4), Attila Racz2), Hannes Sakulin2), Christoph Schwick2), Benjamin Stieger2), Konstanty

Sumorok6), Jan Veverka6), Christopher C. Wakefield2),Petr Zejdl2)

Abstract

TCP and the socket abstraction have barely changed over the last two decades, but at the network
layer there has been a giant leap from a few megabits to 100 gigabits in bandwidth. At the same time
CPU architectures have evolved into the multi-core era and applications are expected to make full use
of all available resources. Applications in the data acquisition domain based on the standard socket
library running in a NUMA Architecture are unable to reach full efficiency and scalability without
the software being adequately aware about the CPU, IRQ interrupts and memory affinities. During
the first long shutdown of LHC, the CMS DAQ system is going to be upgraded for operation from
2015 onwards and a new software component has been designed and developed in the CMS online
framework for transferring data with sockets. This software attempts to wrap the low-level socket
library to ease higher-level programming with an API based on an asynchronous event driven model
similar to the DAT uDAPL API. It is an event-based application with NUMA optimizations, that allows
for a high throughput of data across a large distributed system. This paper describes the architecture,
the technologies involved and the performance measurements of the software in the context of the
CMS distributed event building.

1) DESY, Hamburg, Germany
2) CERN, Geneva, Switzerland
3) University of California, Los Angeles, Los Angeles, California, USA
4) University of California, San Diego, San Diego, California, USA
5) FNAL, Chicago, Illinois, USA
6) Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
a) Now at Institute Rudjer Boskovic, Zagreb, Croatia

Presented at RT2014 19th Real-Time Conference

Achieving High Performance with TCP over 40GbE
on NUMA Architectures for CMS Data Acquisition

Tomasz Bawej, Ulf Behrens, James Branson, Olivier Chaze, Sergio Cittolin, Georgiana-Lavinia Darlea, Christian
Deldicque, Marc Dobson, Aymeric Dupont, Samim Erhan, Andrew Forrest, Dominique Gigi, Frank Glege,

Guillelmo Gomez-Ceballos, Robert Gomez-Reino, Jeroen Hegeman, Andre Holzner, Lorenzo Masetti, Frans Meijers,
Emilio Meschi, Remigius K. Mommsen, Srecko Morovic, Carlos Nunez-Barranco-Fernandez, Vivian O'Dell,
Luciano Orsini, Christoph Paus, Andrea Petrucci, Marco Pieri, Attila Racz, Hannes Sakulin, Member, IEEE,

Christoph Schwick, Benjamin Stieger, Konstanty Sumorok, Jan Veverka, Christopher C. Wakefield, Petr Zejdl

 Abstract–TCP and the socket abstraction have barely changed
over the last two decades, but at the network layer there has been
a giant leap from a few megabits to 100 gigabits in bandwidth. At
the same time, CPU architectures have evolved into the multi-
core era and applications are expected to make full use of all
available resources. Applications in the data acquisition domain
based on the standard socket library running in a Non-Uniform
Memory Access (NUMA) architecture are unable to reach full
efficiency and scalability without the software being adequately
aware about the IRQ (Interrupt Request), CPU and memory
affinities. During the first long shutdown of LHC, the CMS DAQ
system is going to be upgraded for operation from 2015 onwards
and a new software component has been designed and developed
in the CMS online framework for transferring data with sockets.
This software attempts to wrap the low-level socket library to
ease higher-level programming with an API based on an
asynchronous event driven model similar to the DAT uDAPL
API. It is an event-based application with NUMA optimizations,
that allows for a high throughput of data across a large
distributed system. This paper describes the architecture, the
technologies involved and the performance measurements of the
software in the context of the CMS distributed event building.

Index Terms—Data acquisition systems, data communication,

distributed computing, fast networks, high energy physics
computing, software performance.

I. INTRODUCTION

UNDAMENTAL changes have been made to processor
architectures since the first x86 processor [1] was introduced.
As shown in Fig. 1, in the middle of 2000’s the processor

Manuscript received June 15, 2014.
This work was supported in part by the DOE and NSF (USA) and the

Marie Curie Program.
T. Bawej, O. Chaze, C. Deldicque, M. Dobson, A. Dupont, A. Forrest, D.

Gigi, F. Glege, R. Gomez-Reino, J. Hegeman, L. Masetti, F. Meijers, E.
Meschi, S. Morovic, C. Nunez-Barranco-Fernandez, L. Orsini, A. Petrucci
(corresponding author. phone: +41 22 76 70808, fax: +41 22 76 78940, e-
mail: Andrea.Petrucci@cern.ch), A. Racz, H. Sakulin, C. Schwick, B. Stieger,
C. C. Wakefield and P. Zejdl are with CERN, Geneva, Switzerland.

U. Behrens is with DESY, Hamburg, Germany.
J. Branson, S. Cittolin, A. Holzner and M. Pieri are with University of

California San Diego, La Jolla, California, USA.
G. L. Darlea, G. Gomez-Ceballos, C. Paus, K. Sumorok and J. Veverka are

with Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
S. Erhan is with University of California, Los Angeles, California, USA.
R. K. Mommsen and V. O’Dell are with FNAL, Batavia, Illinois, USA.

frequency stabilized and the number of cores per processor
started to increase.

Fig. 1. This chart plots for the last 40 years: the number of transistors per
processor (red line), the single-thread performance (blue line), the frequency
per core (green line), the typical power consumption (orange line) and the
number of cores per processor (black line) – (source: Sam Naffziger, AMD).

With the advent of multi-core architectures and fine grain
parallel paradigms the “many-core” era started and software
designed with concurrency in mind resulted in more efficient
use of new processors [2].

At the same time the network technology has made a giant
leap from 10 Mbps to 100 Gbps. Therefore the ability to
positively affect application performance involves the
selection of adequate switching fabric type and interconnect.
In this scope, the two most popular networking solutions in the
high performance computing are InfiniBand [3] and Ethernet.

Data Acquisition Systems (DAQ) for High Energy Physics
(HEP) experiments use Commodity Off-The-Shelf (COTS)
technologies whenever possible. For example, the DAQ
system [4] for the Compact Muon Solenoid (CMS) [5]
experiment in the first run of Large Hadron Collider (LHC)
[6] was built with COTS hardware with the exception of the
front-end electronics close to the detector. For LHC run 2 the
CMS DAQ system is going to be replaced using state-of-art
technologies [7], and the DAQ software needs to be adapted to
the new network technologies (Ethernet and Infiniband) and
microprocessor architectures.

F

The content of this paper is organized as follows: Section II
explains the upgrade of CMS DAQ system for LHC run 2.
Section III details the design of the TCP layered architecture.
Section IV outlines the tuning for 40 Gbps network using
custom TCP settings and processor, memory and IRQ
affinities. The experimental results of the TCP layered
architecture in the context of the CMS DAQ for run 2 are
presented in Section V. A brief conclusion and future work are
described in Section VI.

II. THE CMS DATA ACQUISITION SYSTEM FOR LHC RUN 2
The CMS is a general-purpose particle detector designed to

study both proton-proton and heavy ion collisions produced at
the LHC at CERN in Geneva, Switzerland. In CMS a rejection
power of O(104) is required in order to reduce the event rate
from the 40 MHz LHC beam crossing frequency to an
acceptable rate of O(1000) Hz for offline processing and
physics analysis. The detector is comprised of about 71
million readout channels. Online event selection is performed
using two trigger levels: a hardware based Level-1 Trigger
(L1T) and a software-based high-level trigger (HLT). During
LHC run 1 (2009-2013) the CMS data acquisition system
(DAQ) delivered an excellent performance recording proton-
proton collisions at a center-of-mass energy of 7 TeV (2010
and 2011) and at 8 TeV (2012) with 50 ns bunch spacing. The
central DAQ availability was more than 99.6 % [8].

 In order to reach the energy of 13~14 TeV and a luminosity
of 2x1034 cm-2s-1 (LHC run 2) the LHC machine needs to be
upgraded during long shutdown 1 (LS1) 2013-2014. Some
CMS sub-detector front-end electronics and readout systems
will also be upgraded using µTCA-based [9] systems.

The DAQ system must be upgraded in order to cope with
the increased instantaneous luminosity requirement for LHC
run 2. Furthermore, the DAQ equipment (PCs, networks, etc.)
has reached the end of the 5-year replacement cycle. CMS
decided to build a new DAQ system that will accommodate
sub-detectors with legacy as well as upgraded new off-
detector electronics.

A. Requirements for the CMS DAQ System after LS1
 Table I shows the main parameters of the Trigger and Data

Acquisition (TriDAS) system in the case of proton-proton
collisions at LHC for run 1 and 2. The important parameters
for the capacity of the DAQ are not going to change, in fact
the LHC beam crossing will stay to 40 MHz and the CMS
Level-1 at 100 kHz. The number of Front End Driver (FED)
will be 620 (~500 legacy FEDs; ~120 µTCA FEDs) and the
new µTCA FEDs will use Slink-express as the new interface
link [9]. The event size will increase to 2 MB and the event
builder throughput will be 200 GB/s as a result of the
additional detector readout channels and increase of
instantaneous luminosity. The high-level trigger (HLT) will be
file-system-based to reduce the interdependency of the DAQ
system and the HLT. A more detailed description can be found
in [10].

B. Architecture of the CMS DAQ System After LS1
The architecture of the CMS DAQ system for LHC run 2 is

shown in Fig. 2. The system is designed to read out event
fragments from around 700 detector Front-Ends Drivers
(FEDs) at the level-1 trigger rate of 100 kHz. For the legacy
FEDs, data is transferred using SLINK-64 [11] copper links
from the sub-detector specific FEDs with SLINK-64 sender
cards to a common Frontend Readout Link (FRL) modules.

The FRL is a Compact PCI with two boards connected
through a PCI-X interface. The main board provides the
interface to the legacy FEDs and the second board is
Front-End Readout Optical Link (FEROL). The FEROL [12]
has two possible inputs: data coming from the FRL or from
the new µTCA FEDs using Slink-Express with a point-to-
point optical connection. The FEDs, FRLs and FEROLs are
installed in the Underground Service Cavern (USC).

Using a 10 Gbps Ethernet link, FEROLs send data to a
Readout Unit (RU) machine with a TCP stream for each FED.
Data is transferred from the USC to the Surface Counting
room (SC) over a layer of 10/40 Gbps Ethernet switches.
The event building is lossless and performed in two different
steps: the FED builder and the RU builder. In the first step a
super-fragment is created in the RU from 12 or 16 TCP
streams coming from FEROLs. The second part the of event
builder system assembles super-fragments into complete
events in the Builder Unit (BU) machine. The Event Manager
(EVM) supervises the data flow in the RU Builder and
receives a data record from the Level-1 trigger via a dedicated
FED Builder. The EVM allocates events on request to a BU,
which subsequently collects the super-fragments from all RUs.
The connectivity between EVM, RUs and BUs is based on an
InfiniBand FDR CLOS network.

The file-system-based HLT farm is composed of “BU-FU
appliances”. One BU and a fixed number of Filter Units (FUs)
are dedicated for each “BU-FU appliance”. The filter farm
applications running the physics algorithms read the raw data
from the file system located in the BU’s RAM disk, and write
the selected events and monitoring meta-data to a local disk.
This data is then aggregated over several steps and made
available for offline reconstruction and online monitoring.
Data between BUs and FUs is exchanged over 1/10/40 Gbps
Ethernet switches. Accepted events are transferred over an
aggregate bandwidth of 60 Gbps fiber optic connection to the

TABLE I
NOMINAL PARAMETERS OF THE CMS DAQ

Parameter LHC RUN I LHC RUN II VALUE
Beam crossing rate 40 MHz 40 MHz 40 MHz
Level-1 trigger rate 100 kHz 100 kHz 100 kHz

Number of
front end drivers 640 Legacy

500
µTCA

120
 700

Interface link Slink64 Slink64 Slink-
Express

Fragment size 1-2 kB 1-4 kB 2-8 kB
Event size 1 MB 2 MB 1 MByte

Event builder
throughput 100 GB/s 200 GB/s 100 GByte/s

Fig. 2. The diagram shows the CMS data acquisition architecture for LHC run 2. Event data flows from the top to the bottom. The events are built in two
stages: super-fragments are built in the Readout Unit (RU) and full events are built in the Builder Unit (BU). The Filter Units (FUs) run the high-level trigger
software.

CERN computer center (Tier-0), where they are processed for
analysis and archived to a mass storage system.

C. XDAQ Framework
The DAQ applications responsible for the data flow in the

CMS DAQ are written using the XDAQ [13] framework.
XDAQ is software platform created specifically for the
development of distributed data acquisition systems. The
development is carried out at CERN for the CMS experiment.

 It provides platform independent services, tools for local
and remote inter-process communication, configuration and
control, as well as technology independent data storage. To
achieve these goals, the framework builds upon industrial
standards, open protocols and libraries, is designed according
to the object-oriented model, and is implemented using the
C++ programming language. The distributed processing
infrastructure is made scalable by the ability to partition
applications into smaller functional units that can be
distributed over multiple processing units.

A core executive provides the basic functionality, which can
be extended at run time with additional binary plugins
depending on the requirements, as shown in Fig. 3. Plugins
exist for a wide range of additional features, including

network communication, memory management and device
access. Software for DAQ should be designed to benefit from
parallelism available on a hardware/software platform such as
multi-core or multi-processor systems. The framework
supports three types of access to multithreaded programming:
tasks, workloops and timers.

Fig. 3. XDAQ Middleware provides an executive function that supports
plug-in modules for additional functionality.

A task is a thin layer over the operating system specific
threading API, similar to the Java Task class. Workloops allow
for methods to be executed from within a separate thread of
control to the invoker thread. A timer uses the task object to
schedule a function to be executed at a specific time and/or
periodically. In a multiprocessor environment, the framework
allows threads to be assigned to run on designated cores,
which allows a high granularity of control over where and
how processes execute concurrently.

 Concerning memory management, XDAQ builds upon the
concepts of memory pools and buffer loaning in order to
provide an efficient use of memory. The use of memory pools
allows fast and deterministic allocation time and avoids
fragmentation of memory over long run periods by allocating
fixed-sized blocks of memory from one of various buffer
pools. With buffer loaning the framework allows applications
to deal with data as references to buffers, which can be
exchanged between applications with minimal and constant
overhead. Such a scheme enables the zero-copy transfer of
data through different software layers. When a buffer is no
longer needed, the reference to it can be released, and the
buffer is returned to the pool and becomes available for re-
allocation.

Data transmission between XDAQ processes is carried out
through special plug-in components, named peer transports.
The peer transport interface relies on the buffer reference
abstraction for accessing data allowing the plugin
implementation to maintain a zero-copy architecture
throughout. By having a peer transport plug-in for each
required protocol or network medium, applications using the
framework can be protocol and network independent.

III. THE TCP LAYER ARCHITECTURE
TCP Layered Architecture (TCPLA) is a lightweight,

transport and platform independent user-level library for
handling socket processing. TCPLA is modeled against the
uDAPL [14] specification, in particular the send/receive
semantics it describes. By implementing a wrapper for
networking primitives (e.g. sockets), it aims to provide the
user with an event driven model of handling network
communications, where all calls to send and receive data are
performed asynchronously. It supports user defined message
formats, and allows the user to control the behavior of the
underlying processes. Programming against such an event
driven model gives a solid framework to allow well-optimized
multi-threaded applications.

The TCPLA represents the various concepts of networking
as objects. For example, an Interface Adapter (IA) is an object
used to represent a network adapter and an Event Dispatcher
(EVD) is an object that queues events for the consumer. These
objects are related to one another in an ownership hierarchy.
For example, an EVD object is created as the child of a
specific IA. Consumers manipulate these objects through
handles. Each object type has creation and destruction
functions to allocate and de-allocate object resources. The
creation functions return a handle with which the consumer
can manipulate the object and associate it with other objects.

In TCPLA processes communicate by defining End Points
(EPs), which need to be connected to each other before
communication can take place. To send or receive data, work
requests are posted onto the relative EP’s. The completion
status of previously posted operations (e.g. work request,
connection request) can be checked by using a completion
queue mechanism.

The TCPLA library is written in C++ using the XDAQ
framework and takes advantage of the memory and thread
management facilities that are provided. Fig. 4 shows a UML
class diagram of the TCPLA library.

Fig. 4. UML class diagram of object relationships within the TCPLA.

A. TCPLA Design
Communication is achieved using the standard TCP model

(socket, bind etc.), but the way data is sent and received from
a user’s perspective is similar to the uDAPL API. For an
optimal usage, understanding how TCPLA relates to TCP is
important for performance tuning.

1) TCPLA Event System
TCPLA gives the user an event driven API for

communication, connection management and error handling.
The user needs to provide an implementation dealing with
these events, as what to do can be highly application specific.
The event system is the heart of the TCPLA model. Nearly all
API invocations are asynchronous in nature, and results are
returned in an event.

Completions are logically grouped into event queues, which
feed into event dispatchers. Event queue notifications include
data transfer completions, connection requests, connection
establishment, disconnect notifications, asynchronous errors,
and software generated events. Events can be de-queued
exactly once. Consumers place operations in queues for
processing and either poll or wait on EVD objects for the
corresponding events signaling the operation’s result. To assist
the handling of multiple connections, events contain the
information that is necessary for the user to provide in-context
responses.

TCPLA uses three queues (in, out and event), as shown in
Fig. 5. The in and out queues are filled with buffers that are to
be sent or received into. These queues are managed internally,
but it is up to the user to provide them with buffers to use. The
third queue is the event queue, which is used to schedule
events for the ‘EventHandler’ to consume. Due to the nature

of asynchronous communication, event ordering is non-
deterministic.

The event handler is the user-derived object that provides
implementation for reacting to events. This includes both
events relating to normal operation, and events relating to
errors and abnormal operation, including peer rejection, loss
of connection, timeouts and memory errors.

Fig. 5. TCPLA uses three queues to handle events: inbound queue for

incoming data, outbound queue for outgoing data and completion event queue
for events.

TCPLA allows for two different types of event dispatch

queues, waiting and polling. Dispatchers are based on XDAQ
workloops and allow the association of threads to different
tasks (e.g. receiving completion thread, error event handling
thread, send completion thread etc.)

2) TCPLA Connection
TCPLA supports reliable connections using a client-server

connection model. The client side creates an Endpoint (EP)
object and asynchronously submits a connection request to the
specified address and port (service point). Upon successful
negotiation of a connection, the client receives a ‘connection
established’ event and can begin transmitting data.

Servers handle connection requests using a Public Service
Point (PSP). A PSP creates a persistent listener that can
service any number of connections. When the socket listen
function receives a new connection, a ‘connection request’
event is dispatched to the user. If the user accepts the
connection, an EP is created and a ‘connection accepted’ event
is generated. In turn this triggers the ‘connection established’
event in the client side and data can be received. The
established connection is persistent until either party
disconnects or the connection is broken due to error.

All connections are point to point; there is no notion of
multicast addressing.

3) TCPLA Communication
A user can choose to use select or poll as the underlying

mechanism for reading or writing to a socket. To achieve this,
TCPLA provides two different versions of InterfaceAdapter
and PublicServicePoint, which provide optimized concrete
implementations.

When using TCPLA, the receiver must pre-emptively
allocate memory for receiving data. Buffers are en queued by
the user, and consumed by the TCPLA when needed. When a
buffer is filled, a ‘receive complete’ event occurs, notifying
the user that the buffer is ready to be used. The same model is
used for sending data. The enqueued buffer contains the data
to be sent, and the return event notifies the user of a send
completion. This use of queues allows the send and receive
operations to be executed asynchronously in different threads
of control.

B. Developing Peer Transport with TCPLA
TCPLA provides the building blocks for developing XDAQ

peer transports to support different higher-level protocols over
TCP/IP capable networks.

The XDAQ distribution specifies three ready to use
communication protocols. One is based on the I2O [15]
specification and is used for efficient and high performance
data transmission. The second one is based on custom binary
protocol and is used for monitoring communication due to its
flexibility. The last protocol is based upon SOAP and XML
[16] and is used for configuration and control.

Two peer transports have been developed using TCPLA for
the CMS DAQ system for run 2: the ptFRL to support the
FEROL protocol [11] and the ptUTCP to support the I2O and
B2IN protocols. The ptFRL is designed to manage TCP/IP
streams from FEROLs and runs on RU machines. Its main
task is to collect and merge data from FEROLs and deliver
them to the RU applications. The ptUTCP is the peer transport
used when collecting data flow monitoring information in the
CMS DAQ system for run 2.

IV. PERFORMANCE TUNING
Multi-core architectures and fine grained parallel

programming paradigms dictate the design of systems and
augmenting software to take advantage of available hardware
features enabling greater performance.

Fig. 6. This diagram shows the different distance between computational

core and memory or I/O interrupts in Non-Uniform Memory Access (NUMA)
memory design used in multi-core processors.

Within Non-Uniform Memory Access (NUMA) [17]

architectures, the distance between processing cores and

memory or I/O interrupts varies, with each core having faster
access to it’s own local memory or interrupt than others (Fig.
6). By properly configuring the affinity for interrupt, memory
and processes, it is possible to minimize the access time to
memory on multi-core systems.

The default TCP parameters in most Linux distributions are
tuned for 100 Mbps or 1 Gbps network interfaces and
adjustments should be made when a 40 Gbps network card is
used. In the CMS DAQ for LHC run 2, tuning of the TCP
settings and the assignment of affinity for memory, CPU’s and
I/O interrupts are used to achieve maximum performance for
the reading of incoming data in the RU’s.

By applying the above optimizations a clear difference in
performance is observed as shown in Fig. 7.

Fig. 7. Throughput in MB/s versus message size in Bytes with point to

point application using 40 GbE interface without tuning (black line) and with
tuning (red line). The fragment size axis scale is logarithm.

A. TCP Custom Kernel Settings
The most important parameters to change are the kernel

TCP socket buffer settings [18]. In TCP the Round Trip Time
(RTT) is the time that a packet takes to reach a destination and
the acknowledgment packet takes to reach the source. The
Bandwidth Delay Product (BDP) is the amount of data that
can be in transit at any given time. The BDP is the result of the
product of the link bandwidth and the RTT value.

Buffer sizes should be adjusted according to the BDP to
allow the maximum number of bytes to be in transit at any
given time and prevent traffic throttling.

The Fig. 8 shows the commands used to adjust the TCP
parameters to achieve the maximum performance in the RU
machines where window sizes, buffer limits, queue length and
other TCP parameters are changed.

B. Assigning Affinity with the XDAQ Framework
Assigning affinity for processes and memory allocation

helps to reduce the latency when accessing shared data
structures and prevents the process scheduler from
performing unwanted process migration. The process
affinity represents the mapping between a process (thread) and
one or a set of processors allowed to run the process. The

memory affinity indicates the association of future memory
allocations with a single NUMA node.

The XDAQ framework provides configurable allocation
and thread policies which are set at runtime according to an
XML configuration file. Policies are matched to thread
(workloop) or allocator (memory pool) identifiers using
regular expressions.

Fig. 8. These commands are used to adjust the TCP parameters in the RU

machine for use with 40 Gbps network interfaces.

Within a RU machine, the processor setup is a dual socket

8-core processor with a 16GB NUMA memory node per
socket. To take full advantage of the processor architecture,
the TCPLA is set to use two dedicated threads for reading
sockets, as shown in Fig. 9. These threads are assigned
affinities that place them on either side of the core handling
the interrupts for the 40 Gbps network card. For the other
processor socket, all cores are assigned to run DAQ
application tasks with one core kept aside for handling the
Infiniband card’s interrupts.

Fig. 9. This diagram shows the I/O interrupt, CPU and memory affinities

in the RU Machine.

The memory pools used for DAQ applications allocate

buffers on the NUMA node located closest to the 40 Gbps
network card. This gives the quickest access time to the
threads responsible for reading the sockets, thus reducing the
overhead from copying data.

C. Setting IRQ Affinities
I/O interrupts are used by I/O devices to notify processors

of the completion of an operation. The Advanced
Programmable Interrupt Controller (APIC) routes the
interrupts to one processor in the system based on the interrupt
redirection table. In Linux, it is possible to edit the redirection
table using the smp_affinity file of each device in the /proc file
system. The irqbalance daemon dynamically changes the table
based on the number of interrupts generated for a certain time
interval.

The interrupt affinity defines a fixed mapping in the
redirection table. In RU machines the interrupt from the 40
Gbps Ethernet card is redirected to a single processor that has
local access to the card. To ensure this mapping is fixed, the
processors used by DAQ applications and the interrupts from
the 40 Gbps Ethernet card have been removed from the
resource available to the irqbalance daemon.

V. PRELIMINARY RESULTS
In the RU’s, the ptFRL peer transport is responsible to

readout fragment data from FEROLs. The goal is to
concentrate FED streams in order to optimize the number of
RU machines in the system. The following DAQ requirements
need to be considered for an L1 trigger operating at 100 kHz:

• 1 FED connected to FRLs/FEROLs with a
fragment size between 2 and 4 kB;

• 2 FEDs connected FRLs/FEROLs with a fragment
size between 1 and 2 kB.

To perform benchmark evaluation of the new peer
transports a DAQ test bed was used.

A. DAQ Test Bed
The CMS DAQ group has built a DAQ test bed in order to

develop and test software, which allows the testing of various
configurations of the DAQ system for LHC run 2. For the
purposes of testing the TCPLA, the DAQ test bed consisted of
the subset of the CMS DAQ column as required.

Fig. 10. This diagram shows the DAQ test bed used to evaluate the ptFRL.

It composed of 47 FRLs/FEROLs, 4 RUs and 8 BUs. The Mellanox SX 1024
and the Mellanox SX 6036 were used for 10/40 Gbps and 56 Gbps Infiniband
interconnections.

The final performance indicator of the ptFRL is based upon
the performance achieved while executing simultaneous input
and output in the RU. To accommodate this requirement, the
tests used the CMS event builder software in emulator mode.
FRLs generate the event fragment data (virtual FED) and BUs
discard the event data once an event is fully assembled. The
L1 trigger is not emulated and all measurements correspond to
the saturation limit. The connection between the RU’s and
BU’s is a 56 Gbps Infiniband network.

The setup consisted of 47 FRLs/FEROLs in 3 crates with 4
RUs and 8 BUs, as shown in Fig. 10. The FEROLs were
connected to Mellanox SX 1024 switch using 10 Gbps links.
RU nodes are DELL PowerEdge R620’s with dual socket Intel
Xeon E5-2670 8-core processors at 2.6 GHz and 32GB of
memory. Each RU was equipped with two Mellanox
ConnectX-3 VPI network cards for 40 GbE and FDR
Infiniband connections. DELL PowerEdge C6220’s with dual
socket Intel Xeon E5-2670 8-core processors at 2.6 GHz and
32GB of memory were used for BU nodes. Each BU had a
DELL mezzanine with a Mellanox ConnectX-3 VPI for FDR
Infiniband connection. RUs and BUs were connected through
a Mellanox SX 1036 and the pause frames were enabled in the
switch. The operating system running on the nodes was
Scientific Linux CERN 6 (SLC6) with the 2.6.32-279.5.2.el6
kernel.

B. Performance Measurements
Preliminary results are presented on throughput

measurements for two tests: the first test with one virtual FED
per FRL, and the second with two virtual FEDs per FRL. The
results are obtained by runs of typically 3 minutes for each
measurement.

Fig. 11. Incoming throughput per RU in MB/s using event builder

software versus fragment size in Bytes for the following configurations: 12
TCP streams from 12 FEROLs, 1 RU and 4 BUs (black line); 24 TCP streams
from 24 FEROLs, 2 RUs and 4 BUs (red line); 47 TCP streams from 47
FEROLs, 4 RUs and 8 BUs (green line); 100 kHz for 12 streams L1 trigger
requirement for DAQ 2 (dashed line). The fragment size axis scale is
logarithm.

For the first test, the incoming throughput per RU as a
function of fragment size is shown in Fig. 11 where 12 TCP

streams from 12 FEROLs are concentrated in one RU
machine. The saturation of the 40 Gbps link (around 5000
MB/s) is reached in all three configurations for fragment sizes
above 2.3 kB. When operating at 90% of the 40 Gbps
bandwidth with merging from 12 FEDs, the 100 kHz
requirement for fragment sizes below 3.7 kB is satisfied.

For the second test, the incoming throughput per RU as a
function of fragment size is shown in Fig. 12 where 16 TCP
streams from 8 FEROLs are concentrated in one RU machine.
Again, the saturation of the 40 Gbps link is reached in all three
configurations for fragment sizes above 2.3 kB, and the 100
kHz requirement is met when using 90% of the 40 Gbps
bandwidth for fragment sizes less than 2.8 kB.

Fig. 12. Incoming throughput per RU in MB/s using event builder

software versus fragment size in Bytes for the following configurations: 16
TCP streams from 8 FEROLs, 1 RU and 4 BUs (black line); 32 TCP streams
from 16 FEROLs, 2 RUs and 4 BUs (red line); 64 TCP streams from 24
FEROLs, 4 RUs and 8 BUs (green line); 100 kHz for 16 streams L1 trigger
requirement for DAQ 2 (dashed line). The fragment size axis scale is
logarithm.

VI. SUMMARY
This paper has shown the TCP Layer Architecture approach

in the context of the CMS DAQ system for run 2. TCPLA is
based on the standard socket library with optimizations for
NUMA environments using the XDAQ framework. It has
been developed to allow high performance of critical
applications in the new CMS DAQ system. This was achieved
by exploiting multi-core architectures and optimizing TCP
settings. Considerable success has been achieved in modeling
the uDAPL API using socket based programming. The XDAQ
peer transports that were developed have been shown to
operate above the requirements for the LHC run 2, and will be
used for both data acquisition and data flow monitoring.
Future work will be to demonstrate scalability by expanding
the tests over the full DAQ system.

ACKNOWLEDGMENT
This work was supported in part by the DOE and NSF (USA)
and the Marie Curie Program.

REFERENCES
[1] Benj Edwards, (2008, June), “Birth of a Standard: The Intel 8086

Microprocessor” in PC Wold. [Online]. Available
http://www.pcworld.com/article/146957/article.html

[2] Sutter, H. (2005, March), “The Free Lunch Is Over: A Fundamental
Turn Toward Concurrency” in Software. Dr. Dobb's Journal 30 (3)
[Online]. Available http://www.gotw.ca/publications/concurrency-
ddj.htm

[3] InfiniBand Trade Association. (2004, Oct.). InfiniBand Architecture
Specification. [Online]. Available: http://www.infinibandta.org/specs/

[4] The CMS Collaboration, CMS, “The TriDAS Project,” Tech. Des. Rep.,
2002, Volume 2: Data Acquisition and High-Level Trigger,
CERN/LHCC 2002-26.

[5] The CMS Collaboration, “CMS Technical Proposal,” CERN LHCC 94-
38, 1994.

[6] The LHC Study Group, “The Large Hadron Collider Conceptual Design
Report,” CERN AC 95-05, 1995.

[7] G. Bauer et al., “The new CMS DAQ system for LHC operation after
2014 (DAQ2),” in J. Phys. Conf. Ser. Proceedings of CHEP2013. 513 In
Press.

[8] G. Bauer et al., “Automating the CMS DAQ,” in J. Phys. Conf. Ser.
Proceedings of CHEP2013. 513 In Press.

[9] E. Hazen et al., “The AMC13XG: a new generation clock/timing/DAQ
module for CMS MicroTCA,” in J. Instrumentation . Conf. Ser. 8
C12036, 2013

[10] G. Bauer et al., “Prototype of a File-Based High-Level Trigger in CMS,”
in J. Phys. Conf. Ser. Proceedings of CHEP2013. 513 In Press.

[11] Attila Racz, Robert McLaren & Erik van der Bij, The S-LINK 64 bit
extension specification: S-LINK64, EP Division, CERN

[12] G. Bauer et al., “10 Gbps TCP/IP streams from the FPGA for the CMS
DAQ eventbuilder network,” in J. Instrumentation . Conf. Ser. 8
C12039, 2013

[13] J. Gutleber, S. Murray and L. Orsini,“Towards a homogeneous
architecture for high-energy physics data acquisition systems” in
Computer Physics Communications, vol. 153, issue 2, pp. 155-163, 2003

[14] uDAPL API Spec Version 2.0. [Online]. Available:
http://www.datcollaborative.org/uDAPL_v20.zip

[15] I2O Special Interest Group, Intelligent I/O (I2O) Architecture
Specification v2.0 (1999).

[16] J. Boyer. (2001, March). Canonical XML Version 1.0, W3C. [Online].
Available: http://www.w3.org/TR/xml-c14n

[17] N. Manchanda, K. Anand (2010. May) “Non-Uniform Memory Access
(NUMA)” in New York University. [Online]. Available
http://cs.nyu.edu/~lerner/spring10/projects/NUMA.pdf

[18] NASA, TCP Performance Tuning on End Systems. [Online]. Available:
http://www.nren.nasa.gov/tcp_tuning.html

