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Correction of beta-beat is of great importance for performance improvement of high energy accelera-

tors, like the Relativistic Hadron Ion Collider (RHIC). At RHIC, using the independent component

analysis method, linear optical functions are extracted from the turn by turn beam position data of the ac

dipole driven betatron oscillation. Despite the constraint of a limited number of available quadrupole

correctors at RHIC, a global beta-beat correction scheme using a beta-beat response matrix method was

developed and experimentally demonstrated. In both rings, a factor of 2 or better reduction of beta-beat

was achieved within available beam time. At the same time, a new scheme of using horizontal closed orbit

bump at sextupoles to correct beta-beat in the arcs was demonstrated in the Yellow ring of RHIC at beam

energy of 255 GeV, and a peak beta-beat of approximately 7% was achieved.
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I. INTRODUCTION

There have been many proposals for improving perform-
ance of the Relativistic Hadron Ion Collider (RHIC), such
as electron lenses for head-on beam-beam compensation,
beta star knob at interaction region for dynamic beta
squeezing, near-integer working point for larger dynamical
aperture, as well as more tune space for preserving polar-
ization [1]. All of these projects and proposals require a
solid understanding as well as precise control of machine
optics. Accurate optics measurement techniques and
efficient optics correction schemes are therefore desired
to minimize the deviation of measured beta functions away
from designed beta functions, i.e., beta-beat.

For optics measurements, RHIC is equipped with both
pulsed kickers and ac dipoles [2] to excite coherent beam
motion. A pulsed kicker can excite coherent free betatron
oscillation. However, the excited free oscillation is often
prone to quick decoherence which compromises the qual-
ity of the signal. In addition, the excitation can cause beam
emittance growth. On the other hand, an ac dipole operated
in an adiabatic fashion is able to excite a sustained coherent
driven betatron oscillation of the beam with a large ampli-
tude and preservation of beam emittance [3]. Higher signal

to noise ratio as well as nondestructive nature makes ac
dipole a preferable diagnostic tool for high energy hadron
accelerators.
The turn by turn data from a linear beam position

monitor (BPM) system can be considered as a linear mix-
ture of physical source signals, which are usually harmonic
oscillations with different frequencies, such as betatron
motion, synchrotron motion, and nonlinear motions.
These source signals are closely related to the machine
optics. Many methods have been developed to derive linear
optics from turn by turn BPM data by separating the source
signals. For example, a Fourier analysis technique was
implemented at PEP-II to extract four linear independent
betatron orbits from turn by turn BPM data for linear optics
modeling [4]. The technique of principle component analy-
sis (PCA) was also applied at the Advanced Photon Source
(APS) for linear optics measurement [5]. Independent com-
ponent analysis (ICA) is a powerful technique in signal
processing, and particularly efficient in separating narrow-
band source signals from sampled data [6]. Both spatial and
temporal functions of different source signals extracted
from ICA analysis provide information about beammotions
from which optical functions can be derived. In addition to
its high efficiency in mode separation, the technique of ICA
for optics measurement has been proven to be as robust as
PCA against BPM noise [7]. ICA has been applied to the
free betatron oscillation signal to analyze the transverse
betatron amplitude function and phase advance, dispersion
function, linear coupling, and sextupole strength [7–9].
However, additional considerations on interpretation of
source signals are required to apply ICA to ac dipole driven
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betatron oscillation for optics measurement. This is because
the measured optics are modified in driven beam oscilla-
tions excited by an ac dipole [10].

There are various methods to correct beta-beat, such as
stop band compensation [11] and linear optics from closed
orbit [12] technique. The stop band compensation method
relies on the fact that beta-beat is dominated by harmonics
near twice the betatron tune. The harmonic contents of the
measured beta-beat can be obtained by Fourier analysis.
A few families of trim quadrupoles are then excited to
cancel the dominating harmonics [13]. Since the horizontal
and vertical betatron tunes for RHIC polarized proton
operation are 28.6975 and 29.6838, respectively, horizontal
and vertical beta-beat are dominated by the 57th to 60th
harmonics, which cannot be accurately sampled by only
160 BPMs available at RHIC. Hence, the stop band
compensation method is not effective.

The segment-by-segment technique (SBST) first intro-
duced at the Large Hadron Collider (LHC) for identifying
large local gradient errors in interaction regions [14]
was also successfully applied to RHIC [15]. This sets a
favorable foundation of the development of global optics
correction schemes.

Because of the powering scheme at RHIC [16], only the
triplets and trim quadrupoles in interaction regions have
independent power supplies. To fully utilize these available
quadrupole correctors for global beta-beat correction, a
correction scheme of using the beta-beat response matrix
method was systematically studied. To further reduce beta-
beat in the arcs in the presence of lacking independently
powered quadrupoles in the region, a new scheme of using
a horizontal closed orbit bump at sextupoles in the arcs was
explored. These correction schemes were successfully
demonstrated during the 2013 RHIC polarized proton op-
eration. The experimental results are reported in this paper.

A brief introduction of the ICA technique for RHIC
optics measurement is presented in Sec. II. Section III
presents the algorithm and experimental results of a global
correction scheme using the beta-beat response matrix
method. Experimental results of using a horizontal closed
orbit bump at sextupoles for arc beta-beat correction are
presented in Sec. IV.

II. ICA FOR AC DIPOLE BASED
OPTICS MEASUREMENT

The model of ICA assumes that in a complex dynamical
system an m-dimensional observable vectorXðtÞ is related
to an n-dimensional source signal vector sðtÞ as

XðtÞ ¼ AsðtÞ þNðtÞ; (1)

where them� n (m � n) matrixA is called mixing matrix
and NðtÞ is the noise vector which is assumed to be sta-
tionary, temporally white and statistically independent
of source signal sðtÞ. The goal of ICA is to determine
the mixing matrix A and the source signals sðtÞ from

the sampled observable vector XðtÞ without a priori
knowledge of the underlying physical process. The source
signals si are assumed to be mutually independent and
temporally uncorrelated. The time-lagged covariance
matrix Csð�Þ ¼ hsðtÞsðtþ �ÞTi is therefore diagonal [6],
i.e., hsiðtÞsjðtþ �ÞTi ¼ Sið�Þ�i;j, where the superscript T

means a transpose, � is a time-lag constant, and the average
is taken over time. From Eq. (1) the relationship between
the time-lagged covariancematrixCXð�Þ¼hXðtÞXðtþ�ÞTi
and Csð�Þ is obtained:

CXð0Þ ¼ ACsð0ÞAT þ �2I; (2)

CXð�Þ ¼ ACsð�ÞAT; � � 0; (3)

where the random noises are assumed to have identical
distributions with standard deviation �. Since Csð�Þ is
diagonal, the mixing matrix A is found as the joint
diagonalizer of CXð�Þ. In the following, the algorithms
of ICA to extract the mixing matrix A and source signals
s are discussed.
First, a whitening procedure is applied to preprocess the

raw data. The zero time-lagged covariance matrixCXð0Þ is
decomposed by singular valued decomposition (SVD):

CXð0Þ ¼ ðU1;U2Þ
�1 0

0 �2

 !
UT

1

UT
2

 !
; (4)

where U1 and U2 are orthogonal matrices, �1 and
�2 are diagonal matrices with minðdiag½�1�Þ �
�c >maxðdiag½�2�Þ � 0, �c is a threshold to remove the
singularity of the covariance matrix, and the elements of
the l� l (l � n) diagonal matrix �1 are arranged in a
descending manner �1 � �2 � � � � � �l. Using the matrix

V � ��1
1 UT

1 ; (5)

an l-dimensional vector Z ¼ VX is constructed. Z is
spatially white because it satisfies hZZTi ¼ I, where I is
the l� l identity matrix. The whitening procedure removes
redundant information and noise from the raw data and
decorrelates and normalizes the data to facilitate the next
step.
Using the whitened data Z and a set of time-lag con-

stants f�kg (k ¼ 1; 2; . . . ; K), the time-lagged covariance
matrices are computed as fCZð�kÞ ¼ hZðtÞZðtþ �kÞig. The
symmetrized time-lagged covariance matrices are formed
as �CZð�kÞ ¼ ½CZð�kÞ þCT

Zð�kÞ�=2 such that they are real
and symmetric and thus their eigenvalue decompositions
are well defined. At last, a Jacobi-like algorithm [17] is
applied to find a unitary matrix W to joint diagonalize
�CZð�kÞ such that �CZð�kÞ ¼ WDkW

T , where Dk’s are
diagonal matrices. The source signals are given by
s ¼ WTVX and the mixing matrix by A ¼ V�1W.
The turn by turn BPM data is normally composed of

beam motions driven by different physical sources with
their own characteristic frequencies, such as betatron
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oscillation, synchrotron oscillation, and electronic noises.
A physical decomposition of the BPM data into these
individual beam motions is of great interest for deeper
understanding of beam dynamics. The source signals sepa-
rated by ICA have nonoverlapping power spectra because
of their properties of mutual independence. Therefore ICA
is particularly suitable for the task of physical decomposi-
tion of BPM data. To apply ICA, we organize the data
matrix as

X ¼

x1ð1Þ x1ð2Þ . . . x1ðNÞ
x2ð1Þ x2ð2Þ . . . x2ðNÞ
..
. ..

. . .
. ..

.

xMð1Þ xMð2Þ . . . xMðNÞ

0
BBBBBB@

1
CCCCCCA; (6)

where xiðjÞ is the output of the ith BPM at the jth turn.
The ICA algorithm is used to extract the source signal s
and mixing matrix A in Eq. (1). s and A are also known as
temporal function and spatial function, respectively. The
combination of the ith row of s, si, and the ith column ofA,
Ai is defined as the ith mode. The correspondence of the
ith mode to a certain beam motion is identified by compar-
ing the frequency of the temporal function si to the char-
acteristic frequency of the beam motion. The spatial
function Ai will then provide important information of
beam motion. For example, the free betatron oscillation
component xfðtÞ of BPM data involves two modes with

identical frequency spectra,

xfðtÞ ¼ Af1sf1ðtÞ þAf2sf2ðtÞ; (7)

where Af1 and Af2 are the spatial functions. sf1ðtÞ and
sf2ðtÞ are the cosinelike and sinelike source signals,

respectively. The fast Fourier transform of these source
signals reveals the betatron tune �f. Using the spatial

functions Af1 and Af2, the betatron amplitude function

�f;i and phase advance c f;i at the ith BPM can be

extracted as [7]

�f;i ¼ F ðA2
f1;i þ A2

f2;iÞ; (8)

c f;i ¼ arctan

�
Af2;i

Af1;i

�
; (9)

where F is a constant depending on initial conditions.
In the presence of the driven oscillation excited by an ac

dipole, the measured optics are modified. The modified
betatron amplitude function �d;i and phase advance c d;i

observed at the ith BPM are related to the optical functions
in free betatron oscillation as [10]

�d;i ¼
1þ �2 � 2� cos½2ðc f;i � ��Þ�

1� �2
�f;i; (10)

tanðc d;i � ��dÞ ¼ 1þ �

1� �
tanðc f;i � ��fÞ; (11)

where � ¼ sin½�ð�d � �fÞ�= sin½�ð�d þ �fÞ�, �d is the

driving tune of the ac dipole, and �f is the betatron tune

of free oscillation. In Eq. (11), the reference point for phase
advance is chosen to be the location of the ac dipole.
Equations (10) and (11) show there is a systematic error
in the measured optics. With a distance between the driven
and the betatron tunes �� ¼ j�d � �fj ¼ 0:01, maximum

systematic error on beta-beat and relative phase-beat be-
tween the ith and jth BPMs is approximately 7.0% and
5:5� 10�3 rad. Here relative phase-beat is defined as
�c ij ¼ ðc i;measured � c j;measuredÞ � ðc i;model � c j;modelÞ.
The maximum systematic error of beta-beat and relative
phase-beat can be reduced to 0.3% and 1:0� 10�3 rad,
respectively, with the same operational conditions by aver-
aging the optical functions from two measurements in
which �� is of opposite signs. These residual systematic
errors from the ac dipole can be negligible in comparison
to the systematic error due to realistic BPM calibration
error and noise. The systematic error of beta-beat from
RHIC BPM calibration error is estimated to be approxi-
mately 2.0%. RHIC BPM noise also introduces 2.0%
systematic error on beta-beat. However, the relative
phase-beat is immune to BPM calibration error and the
contribution of BPM noise to relative phase-beat system-
atic error is below 0.01 rad. Details on the systematic error
of optics measurement due to BPM errors are reported in
the Appendix at the end of this paper.
Figure 1 shows the beta-beat for the 255 GeV polarized

proton beams in the Blue and Yellow rings during RHIC
operation in 2013. In the horizontal plane, beta-beat is
distributed smoothly along the Blue and Yellow rings. In
both rings, the horizontal peak beta-beat is approximately
15%. In the vertical plane, the peak beta-beat reaches 30%
in the Blue ring and 60% in the Yellow ring. Hence, global
beta-beat correction was explored.
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FIG. 1. Measured beta-beat with error bars in the horizontal
(bottom) and vertical (top) plane for both rings at RHIC. A peak
beta-beat of approximately 15% is observed in the horizontal
plane for both rings. A 30% vertical peak beta-beat is found in
the Blue ring and 60% in the Yellow ring.
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III. BETA-BEAT RESPONSE MATRIX
CORRECTION METHOD

The beta-beat of betatron motion obeys a linear second
order differential equation [11]. The beta-beat response
matrix R with respect to the change of integrated strength
�ðK1LÞ of the quadrupoles is defined as

B ¼ RK; (12)

where BT ¼ ð ~��x

�x
;

~��y

�y
;��x;��yÞ is composed of the

beta-beat vectors and tune variations, and KT ¼
ð�K1L1;�K1L2; . . . ;�K1LNÞ represents the change of
integrated strength of N quadrupoles. In this case, N quad-
rupoles are used to correct beta-beat measured from M
BPMs. In the presence of a limited number of quadrupole
correctors, i.e., M � N, Eq. (12) describes an overdeter-
mined system in which beta-beat is minimized. In practice,
uncalibrated BPMs should be excluded from the measure-
ment. Beta-beat measured from noisy BPMs should be
assigned low weights. The tune variations must receive
high weight in order to avoid large tune shifts which
can cause excessive beam loss as well as polarization
loss. Hence, different weighting factors are applied to
Eq. (12) as

WB ¼ WRK; (13)

where

W ¼

w1 0 . . . 0

0 w2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . wM

0
BBBBBB@

1
CCCCCCA: (14)

Each diagonal element wi is the weighting factor for
different BPMs and variations of tunes. The required cor-
rection strengths are computed by inverting the weighted
response matrix WR to solve Eq. (13). Singular value
decomposition (SVD) can be applied to decomposeWR as

WR ¼ U�VT; (15)

where U is a real orthogonal M�M matrix, and VT

is a real orthogonal N � N matrix. � is a real diagonal
M� N matrix with singular values �11 ¼ �1 � �22 ¼
�2 � � � � � 0. To remove singularities, all �i � �c

(i > r) are set to �i ¼ 0 (i > r), where �c is called toler-
ance level and r is called the rank ofWR. Once the SVD of
WR is obtained, the generalized inverse ðWRÞy is given by

ðWRÞy ¼ V��1UT; (16)

where ��1 is a diagonal matrix with ��1
11 ¼ 1=

�1; . . . ;�
�1
rr ¼ 1=�r and 0 for all diagonal elements with

i > r. The required correction strengths for global beta-beat
correction Kcor are computed as

Kcor ¼ �ðWRÞyWB: (17)

The solution given in Eq. (17) is equivalent to a weighted
	2 minimization of the beta-beat. In the event of large beta-
beat, multiple iterations of correction based on Eq. (17) are
necessary.
According to the method discussed above, systematic

computer simulations were carried out to find the optimum
correction. A total of 72 triplets and trim quadrupoles in the
interaction regions with independent power supplies are
used as beta-beat correctors, while two families of arc
quadrupoles are also included as tune correctors. Table I
summarizes parameters for beta-beat corrections in both
rings. Since the horizontal and vertical ac dipole are com-
mon to both rings, the betatron tunes of both rings were
adjusted to be the same in the corresponding plane for
simultaneous optics measurement.
The response matrixR was numerically computed from

the design model by individually perturbing the integrated
strength of each quadrupole and recording the unit re-
sponse of beta-beat and tunes. The correction is computed
with a careful choice of weighting factors and rank of
response matrixR such that the global beta-beat is reduced
as much as possible with minimum tune variations.
Figure 2 shows the computed relative correction

strengths �ðK1LÞ=K1L for the Blue ring. All of the rela-
tive corrections are within 1.0%. The relative changes in
many trim quadrupoles are large because trim quadrupoles
are normally set at a low field. Figure 3 shows a simulation
of the evolution of tunes and rms beta-beat in the Blue ring
along a ramp-up process of the computed correction. There
are no tune variations after 100% correction strength.
During the ramp-up process, the excursions of tune
changes are within 5� 10�4. The rms beta-beat in both
planes is reduced smoothly during the correction ramp-up
process. The small increase of horizontal rms beta-beat at
the end of the correction ramp-up process is because of
decreasing vertical beta-beat and tune compensation. The
measured rms beta-beat in Fig. 3 shows a good agreement
with the predicted values.
Figure 4 shows the measured beta-beat with and without

correction. The horizontal peak beta-beat was successfully
reduced from 15% to 8%. In the vertical plane, significant
suppression of beta-beat was also achieved in the arc
between IP6 and IP8 as well as the one between IP2 and

TABLE I. Parameters for optics measurement and correction.

Parameter Blue Yellow

Horizontal tune �x 28.6975 28.6975

Vertical tune �y 29.6838 29.6838

Number of horizontal BPM (used/total) 157=160 156=160
Number of vertical BPM (used/total) 158=160 158=160
Number of beta-beat correctors 72 72

Number of tune corrector families 2 2
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IP4. The vertical peak beta-beat was reduced from 40% to
14%.

Now we discuss the Yellow ring which has excessively
large beta-beat in the vertical plane. The relative correction
strengths for the first trial of corrections are shown in Fig. 5
by the hollow bars. All relative correction strengths are
within 0.6%. The large relative correction strengths in the
arc quadrupoles were due to compensation of the large tune
shifts caused by the triplet and trim quadrupoles employed
to minimize the beta-beat. Figure 6 shows the simulated
evolution of tunes and rms beta-beat along the ramp-up
process of the first correction as well as the measured rms
beta-beat at 100% correction strength. The excursions of
tune variations are within 2� 10�3. The rms beta-beat is
reduced smoothly as correction strength increases. At full
correction strength, the 5% measured horizontal rms beta-
beat is lower than the predicted 5.4% value. The top plots

in Figs. 7 and 8 show the measured beta-beat of the Yellow
ring with and without the correction. The horizontal peak
beta-beat was reduced to 12%. However, in the vertical
plane there was still a peak beta-beat as large as 20%, and
the 11% measured vertical rms beta-beat is about 2 times
of the prediction shown in Fig. 6. This is due to the initial
large beta-beat in the vertical plane. Hence, a second
iteration was exercised.
The results of the second iteration of correction along

with the first iteration are shown in the two bottom plots in
Figs. 7 and 8. After the second iteration, significant vertical
beta-beat reduction was achieved, and the peak beta-beat
was successfully reduced to approximately 10% for both
planes. The computed relative correction strengths are
shown in Fig. 5 by the solid bars. The relative correction
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strengths are smaller than those for the first iteration.
Similar to Fig. 6, the evolution of tunes and rms beta-
beat for the second iteration was also computed and shown
in Fig. 9. The excursions of tune variations are within
4� 10�4 and the changes of rms beta-beat are smooth.
At full correction strength, the 4% measured horizontal
rms beta-beat matches the predicted value of 3.8%, and the
deviation between measured and predicted vertical rms
beta-beat is 0.6% after the second iteration.

The phase difference between two BPMs c ij, another

measure of linear optics, is highly correlated with beta-
beat. It is expected for a successful optics correction
scheme that the minimization of beta-beat should also
minimize the relative phase-beat �c ij. Thanks to the

high quality BPMs at RHIC and on-going efforts in further

improving BPM performance over a decade of RHIC
operation, our optics correction based on beta-beat
response matrix also results in a significant reduction in
relative phase-beat between consecutive BPMs, especially
in the vertical plane, which is shown in Fig. 10. This also
validates our optics correction method.
Because of the difference between the real machine and

the ideal model, a variation of the tunes on the order of
10�3 was observed after the corrections. This can be
corrected afterward. In conclusion, our optics correction
method based on beta-beat response matrix has success-
fully reduced both horizontal and vertical peak beta-beats
to 10% in both rings. Good agreement was also found
between measurements and predictions. There were no
possibilities to apply additional iterations of correction in
this experiment due to the limited beam time. For further
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correction of arc beta-beat, additional techniques are
needed.

IV. ARC BETA-BEAT CORRECTION USING
CLOSED ORBIT BUMP AND SEXTUPOLE

In high energy accelerators, very often the number of
available arc quadrupoles with independent power supplies
is limited. In RHIC, all arc quadrupoles are grouped into
two families and each family is powered by a common
power supply [16]. Therefore gradient errors in the arcs
cannot be effectively compensated with global correction
using only quadrupoles in the interaction region. However,
horizontal orbit correctors in the arcs with� phase advance
can be paired to generate closed orbit bumps at sextupoles
and achieve a feed-down normal quadrupole field [11],

Bx ¼ B2xcoy; (18)

By ¼ B2xcox; (19)

where B2 ¼ @2By=@x
2 and xco is the horizontal closed

orbit offset. This feed-down quadruple field can be used
to correct arc beta-beat [18]. Once the response matrix of
arc beta-beat to the amplitude of the closed orbit bump is
obtained from the ideal model, an SVD inversion method
discussed in Sec. III can be applied to compute the required
pattern of closed orbit bumps. Although the principle is
well known, yet it still needs to be demonstrated that this
technique can be implemented in a high energy accelerator
like RHIC, as well as LHC, where precise control of linear
optics is required to facilitate optics manipulations. Such
an example can be the achromatic telescopic squeezing
(ATS) [19] for further increasing of luminosity at LHC.

A proof-of-principle experiment was carried out in the
Yellow ring at beam energy of 255 GeV during the RHIC
polarized proton run in 2013. SBST was first applied to

correct large local beta-beat. The beta-beat response matrix
method using quadrupoles in interaction regions and arcs
was applied to reduce peak beta-beat in both planes to
approximately 10% to facilitate arc beta-beat correction.
The computed horizontal closed orbit bumps were then
applied by the closed orbit feedback system [20]. Figure 11
shows the computed horizontal closed orbit required for
arc beta-beat correction. The corresponding measured
horizontal closed orbit in Fig. 11 shows a good agreement
with prediction in all arcs. At around s ¼ 500 m, the
measured closed orbit missed a computed orbit bump.
This is because in the computed closed orbit three hori-
zontal orbit correctors were used to match the closed orbit
at the beginning of the interaction region at IP8. But, in the
experiment the orbit feedback system used more than three
horizontal orbit correctors and resulted in smaller bumps
at the same location. However, these orbit bumps do not
affect the beta-beat correction because there are no sextu-
poles in this location. The large closed orbit bump mea-
sured at around s ¼ 1200 m near IP10 is intrinsic to RHIC
for beam dump. This bump is not considered in the com-
puted closed orbit. However, it does not affect the correc-
tion results since there are no setupoles in this region as
well. No beam loss was observed with this closed orbit
pattern in which a maximum excursion about 8.5 mm was
observed in between IP6 and IP8. The correction results are
shown in Fig. 12. In the horizontal plane, beta-beat reduc-
tion was seen clearly in the arc between IP10 and IP12 as
well as the arc between IP4 and IP6, while beta-beat in the
other arcs remains about the same. Peak beta-beat was
successfully reduced to approximately 7%. In the vertical
plane, significant beta-beat reduction was observed in the
four arcs between IP10 and IP4. Especially in the arc
between IP2 and IP4, peak beta-beat was remarkably
reduced from 10% to 4%. Overall, the vertical peak
beta-beat was reduced from 10% to 7%.
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Because of limited beam time, only one set of measure-
ments was taken such that no error bars are available for
this beta-beat. However, experiences of previous measure-
ments show that a typical average value of error bar is
about 0.5%. There were not any opportunities to further
explore beta-beat correction using larger horizontal closed
orbit bumps within limited beam time. Nonetheless, the
successful demonstration of using horizontal closed orbit
bump at sextupoles to correct arc beta-beat at RHIC
polarized proton store energy shows this technique is
feasible for high energy accelerator operations.

Figure 12 also shows a modulation of the measured beta-
beat such that the offset of beta-beat varies similarly as a
sinusoidal wave with a period equal to the circumference
of the ring. The amplitude of the variation is about 2%.
This modulation effect may have resulted from distributed
coupling errors, such as triplet quadrupole roll errors and
skew quadrupole errors. Further investigations are needed
to identify the sources of this modulation effect.

V. CONCLUSION AND DISCUSSION

The technique of using ICA to accurately extract optical
functions from turn by turn BPM data of ac dipole driven
betatron oscillation was developed and by the first time
applied to RHIC. With a limited number of quadrupole
correctors, a global correction scheme using the beta-beat
response matrix method was experimentally demonstrated
to reduce the peak beta-beat to 10%. Peak beta-beat was
further reduced to 7% during a proof-of-principle experi-
ment of arc beta-beat correction using horizontal closed
orbit bumps at sextupoles.

ICA may also be applied to measure many other beam
dynamical parameters more precisely, such as global linear
coupling. The response matrix correction method can be
improved by including global linear coupling as well as
dispersion function corrections.
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APPENDIX: ANALYSIS OF OPTICS
MEASUREMENT SYSTEMATIC ERRORS DUE
TO BPM CALIBRATION ERROR AND NOISE

The systematic error in the linear optics measurements
presented in this paper mainly comes from BPM calibra-
tion error as well as BPM noise. Numerical simulations
were carried out to study optics measurement systematic
error due to BPM calibration error and noise. For each
simulation, a single on-momentum particle was driven by
an ac dipole for 3072 turns. The ac dipole kick amplitude
was linearly ramped up to its maximum value during the
first 1024 turns. It was then kept constant for the second
1024 turns, and linearly ramped down during the last
1024 turns. The maximum ac dipole kick amplitude was
chosen to produce a coherent oscillation amplitude about
300 
m in the middle of an arc, a similar level of driven
oscillation amplitude as observed during experiment.
Optics was obtained by averaging the optics from simu-
lated turn by turn data with an ac dipole driven tune set on
either side of the betatron tune at a distance of 0.01.
Figure 13 shows the effect of BPM calibration error on

the systematic error of beta-beat as well as phase-beat. For
each data point in the plot, each BPM was assigned a
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random calibration error with Gaussian distribution.
As shown in Fig. 13, ��=� increases linearly with respect

to �cal, while ��c is immune to BPM calibration error. At

RHIC, BPM calibration error is estimated to be at the 1.0%
level [21], which corresponds to a less than 2.0% system-
atic error on beta-beat based on the simulation result in
Fig. 13.

The effect of BPM noise on the systematic error of beta-
beat as well as phase-beat is shown in Fig. 14. The results
are consistent with the analytic estimation of PCA in
Eq. (17) of Ref. [5]. RHIC BPM noise was then estimated
by SVD analysis of all turn by turn BPM data during
experiment [22]. Figure 15 shows the calculated histogram
of noise level for all BPMs. Evidently, the maximum BPM

noise level is below 60 
m, which contributes to less than
2% systematic error in beta-beat as shown in Fig. 14.
Figure 15 also shows the arc BPMs are less noisy than
the BPMs in the interaction regions.
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