

Measurements of vector boson production in lead-lead and proton-lead collisions with the ATLAS detector

Iwona Grabowska-Bold (AGH-UST) on behalf of the ATLAS Collaboration Darmstadt, Germany, May 19th, 2014

- Introduction
 - Physics motivation
 - ATLAS experiment
- Overview of measurements on vector bosons
 - Photons
 - Inclusive photons in Pb+Pb

(ATLAS-CONF-2012-051)

- γ+jet momentum imbalance in Pb+Pb (ATLAS-CONF-2012-121)
- Z bosons
 - Z bosons in Pb+Pb (Phys.Rev.Lett 110 (2013) 022301)
 - Z+jet momentum imbalance
 - Z boson production in p+Pb
- W bosons
 - W bosons in Pb+Pb
- Summary

(ATLAS-CONF-2014-023)

(ATLAS-CONF-2012-119)

(ATLAS-CONF-2014-020)

Old measurements New measurements

One of the main goals of heavyion physics is to study QGP

- Electroweak (EW) bosons are produced in hard processes before quark-gluon plasma (QGP) is formed
- They are colorless probes which are supposed not to interact with QGP
 - Leptons which are produced as decay products of weak bosons are colorless as well \rightarrow QGP is transparent to them
- One can explore jet quenching in EW+jet events using EW bosons as calibration tools
- In addition, the EW boson production mechanism (e.g. via qq-bar annihilation) makes them sensitive to parton distribution functions (PDFs)
 - Since studies are done in the heavy-ion (HI) environment, one can investigate nuclear modifications to PDFs (nPDFs)
 - Proton-lead collisions are a perfect tool to disentangle initial- from final-state effects

AGH

Three main components: Inner tracker, electromagnetic (EM) and hadronic (HAD) calorimeters, and muon system

Centrality ATLAS Pb+Pb $\sqrt{s_{NN}}$ =2.76 TeV 10⁶ PbPb 10⁵ PPb 10⁴ 40-100)% (20-40)% (10-20)% (01-0)% 10³ 10² 1.5 0 0.5 2 2.5 3 3.5 1 FCal Σ E_T (3.2 FCal $E_T \rightarrow centrality \rightarrow N_{part} N_{coll}$ In Pb+Pb: total FCal E_T In p+Pb: FCal E_{τ} on Pb-going side **Sub-detectors** lηl coverage Inner Tracker <2.5 **Muon Spectrometer** < 2.7 **EM Calorimeter** <3.2 **HAD** Calorimeter <4.9

dN/dE_T [TeV¹]

Full azimuthal acceptance

PHOTONS

Vector Bosons in ATLAS, May 19th, 2014

inclusive photons in Peter Steinberg's talk

on Tuesday

 No centrality dependence in any of the measured p_T intervals

AGH

■ Photon yields in HI collisions scale linearly with $<T_{AA}>$ (nuclear thickness function) or equivalently with $<N_{coll}>$ → no interaction with QGP

Z BOSONS

Vector Bosons in ATLAS, May 19th, 2014

p_{T} imbalance of Z+jet

in Pb+Pb

AGH

Only 36 events satisfy the analysis criteria in the entire Pb+Pb data sample

- Unfolded and efficiency corrected ratio p^{jet}_{T}/p^{Z}_{T}
- Statistical uncertainty dominates
- Three jet sizes: 0.2, 0.3, 0.4
- Data compared to the PYTHIA-based model which contains no energy loss mechanism – significant deviation from the model
- Both normalized by a number of Z bosons with p^z_T>60GeV

Z bosons in p+Pb

- Proton-lead collisions at Vs_{NN}=5.02 TeV
 - System sensitive to initial-state effects
- Rapidity boost: y*=y-0.465
- Z bosons reconstructed via di-muon and dielectron decays
- Di-muons: -2.5<y^z<2.5, p_T^{leading}>20 GeV
- Di-electrons: -3.5<y^z<4.0, p_T^{leading}>20 GeV
- Good agreement between channels
- → More details in Zvi Citron's talk

- \rightarrow Z boson production yields per minimum bias event divided by $\langle N_{coll} \rangle = \langle N_{part} \rangle - 1$
- Centrality calibrated based on FCal E_T^{Pb}
- Various models explored for collision geometry: standard Glauber (Ω=0), Glauber-Gribov (Ω=0.55, Ω=1.01)

 \rightarrow Z boson production scales with centrality

Vector Bosons in ATLAS, May 19th, 2014

12

→ Total cross-sections for two channels

$ \begin{array}{c} Z \to \mu^+ \mu^- \\ Z \to e^+ e^- \\ Z \to \ell^+ \ell^- \\ Model \end{array} $	$ y^{Z} < 2.5$ $122.1 \pm 3.4 \pm 6.2 \pm 4.2$ $122 \pm 3 \pm 13 \pm 4$ $122.7 \pm 2.4 \pm 5.3 \pm 4.2$ 114.4	$-3.5 < y^{Z} < 4.0$ N/A $144 \pm 5 \pm 17 \pm 5$ $144.1 \pm 4.9 \pm 8.3 \pm 4.9$ 136.8	-	Good agreement
---	--	---	---	-------------------

- → Differential cross-sections in p_T^Z and y^Z are compared to NNLO predictions with CT10 PDFs
 - \rightarrow Good shape description by the model in p_T^z
 - \rightarrow Data reveals excess at negative y^z (Pb-going side)

W BOSONS

Vector Bosons in ATLAS, May 19th, 2014

Centrality dependence of W boson production in Pb+Pb

- Measured via muon and electron channels
- Yields extracted in the fiducial volume: $p_T^{-1}>25$ GeV, $p_T^{-v}>25$ GeV, $m_T>40$ GeV and $|\eta|<2.5$
- Two channels agree, thus they can be combined
- → More details on poster by Rafał Bielski

→Yields are consistent with binary scaling for W[±], W⁺ and W⁻
→W⁺ and W⁻ yields are almost identical
→Yields are consistent with NLO predictions, inconsistent with LO*
→Fiducial charge ratio less sensitive to LO*/ NLO differences

Vector Bosons in ATLAS, May 19th, 2014

Differential yields measured in the fiducial volume for W⁺ and W⁻

→Yields are consistent between muons and electrons
 →They can be combined
 →Differences in shapes of W⁺ and W⁻ are due to isospin effect and spin conservation
 →NLO pQCD describes data well while LO* is underestimated

 \rightarrow No sensitivity of the measurement to nuclear modifications

Lepton charge asymmetry

$$A_{\ell} = \frac{dN_{W^+ \to \ell^+ \nu}/d\eta_{\ell} - dN_{W^- \to \ell^- \bar{\nu}}/d\eta_{\ell}}{dN_{W^+ \to \ell^+ \nu}/d\eta_{\ell} + dN_{W^- \to \ell^- \bar{\nu}}/d\eta_{\ell}}$$

- Many correlated systematics cancel out in the ratio
- Observable which is sensitive to initialstate content + spin conservation

 \rightarrow Clear difference between A_I in Pb+Pb and p+p systems

 \rightarrow Each theoretical prediction describes data well

→Nuclear modifications remain unclear within the experimental precision

- ATLAS experiment has a variety of measurements with vector boson production in heavy-ion collisions based on Run 1 data
 - Direct isolated photons inclusive and in association with jets
 - Z bosons inclusive and in association with jets
 - W bosons inclusive
 - ightarrow Weak bosons have been measured via leptonic decay modes
 - ightarrow Both lead-lead and proton-lead systems explored
- Linear scaling of EW boson production yields with centrality (<N_{part}>) has been established
 - ightarrow Followed by no suppression of leptonic decay products in the QGP
- NLO/NNLO pQCD predictions describe data very well both in shape and normalization
 - \rightarrow Some departure from the predictions in the proton-lead system
- \rightarrow Sensitivity to the isospin effect and nPDFs has been tested
 - \rightarrow W boson yields in $|\eta|$ can be only described taking into account the isospin effect
 - \rightarrow No much sensitivity to nuclear modifications to PDFs within the current experimental precision

Vector Bosons in ATLAS, May 19th, 2014

Back-up slides

Z yield centrality dependence in Pb+Pb

- Clean measurement: very high purity 95% for electrons and 99% for muons
- Corrected Z boson yield scaled by <N_{coll}>
- Electron and muon channels consistent
- Bars: stat uncertainty, boxes: syst uncertainty, brackets: combined, including <N_{coll}>
- Dashed lines are constant fits to combined yields
- Binary collision scaling appears to hold true → no interaction with QGP

19

AGH

p_T and η distributions of Z's in Pb+Pb

→Each decay channel corrected and background subtracted, then channels combined

→PYTHIA normalized to the Z→I⁺I⁻ cross section in p+p from NNLO calculations and scaled by $\langle T_{AA} \rangle$ – agrees well →Incorporating p+n and n+n collisions would increase the cross section by 3% →No centrality dependence of this shape is observed

Heavy Ions in ATLAS

Vector Bosons

21

Heavy-ion runs at $\sqrt{s_{NN}} = 2.76 TeV$

- Data recording efficiency > 95%
- Fraction of data passing data-quality criteria > 99%

• In 2010 ATLAS recorded 9.2 μ b⁻¹ of Pb+Pb data

- With 1µb⁻¹ magnetic field-off data
- Minimum bias triggers only
- Pile-up negligible
- ind TLAS, May 19th, 2014 In 2011 ATLAS recorded 158 µb⁻¹ of Pb+Pb
 - Various High Level Triggers used
 - N_{event} =(1.03±0.02)×10⁹ events probed
 - Pile-up = 0.05%

Z bosons in p+Pb

- Proton-lead collisions at Vs_{NN}=5.02 TeV
 - System sensitive to initial-state effects
- Rapidity boost: y*=y-0.465
- Z bosons reconstructed via di-muon and dielectron decays
- Di-muons: -2.5<y^z<2.5, p_T^{leading}>20 GeV
- Di-electrons: -3.5<y^z<4.0, p_T^{leading}>20 GeV
- Good agreement between channels
- \rightarrow More details in Zvi Citron's talk

Z boson centrality dependence in p+Pb

 \rightarrow Z boson production yields per minimum bias event divided by $\langle N_{coll} \rangle = \langle N_{part} \rangle - 1$

- Centrality calibrated based on FCal E_T^{Pb}
- Various models explored for collision geometry: standard Glauber (Ω=0), Glauber-Gribov (Ω=0.55, Ω=1.01)

→Z boson production scales with centrality
 →Similar behavior to charged particle yields
 →Excess of Z boson production for 0-10%
 bin

