CP violation in the B system at LHCb

J.J. Saborido Silva
On behalf of the LHCb collaboration

Department of Particle Physics, University of Santiago de Compostela, Spain

A selection of recent LHCb results on CP violation in the B system is presented. These include direct CP violation measurements in $B^0 \to \phi K^*(892)^0$, $B^0_{(s)} \to K^\pm \pi^\pm$, $B^\pm \to K^\pm \pi^+ \pi^-$, $B^\pm \to K^\pm K^+ K^-$ and $B^\pm \to \phi K^\pm$ decays; time-dependent CP violation measurements in $B^0_s \to K^+ K^-$ and $B^0 \to \pi^+ \pi^-$ decays; determination of the flavour-specific CP-violating asymmetry a^s_{sl} in B^0_s decays; and study of the mixing-induced CP violation in $B^0_s \to J/\psi K^+ K^-$ and $B^0_s \to J/\psi \pi^+ \pi^-$ decays.

1 Introduction.

A selection of recent LHCb¹ measurements on CP violation and related results in the B system is presented. Unless otherwise explicitly stated, all measurements reported here are based on the analysis of a data sample corresponding to 1.0 fb⁻¹ of integrated luminosity from pp collisions at a centre-of-mass energy of $\sqrt{s} = 7$ TeV. The inclusion of charge-conjugate decay modes is implied throughout.

2 Direct CP violation.

Direct CP violation occurs when the decay rate of a B meson to a final state f differs from the decay rate of the \overline{B} antimeson to the CP-conjugate final state \overline{f} . We start this section reporting recent measurements in the $B^0 \to \phi K^*(892)^0$ decay, and continue with a summary of results on CP-violating asymmetries in several two-body and three-body charmless B decays.

2.1 Polarization amplitudes and CP asymmetries in $B^0 \to \phi K^*(892)^0$.

The measurement of observables related to CP violation in the decay $B^0 \to \phi K^*(892)^0$, which proceeds in the Standard Model (SM) mainly through a gluonic penguin, is a sensitive probe for contributions from new physics in the loop. Since this decay involves two spin-1 vector mesons $(B \to VV)$, an angular analysis is needed to distinguish the three independent configurations of the final-state spin vectors: a longitudinal component where in the B^0 rest frame both resonances are polarized in their direction of motion, and two transverse components with collinear and orthogonal polarizations.

The angular analysis reported in Ref.² is performed in terms of three helicity angles $(\theta_1, \theta_2, \Phi)$, where θ_1 (θ_2) is defined as the angle between the K^+ direction and the reverse of the B^0 direction in the K^{*0} (ϕ) rest frame, and Φ is the angle between the decay planes of the ϕ and K^{*0} mesons in the B^0 rest frame. To determine the polarization amplitudes, the B^0 and \bar{B}^0 decays are combined. In addition to the three dominant vector-vector (P-wave) amplitudes, contributions

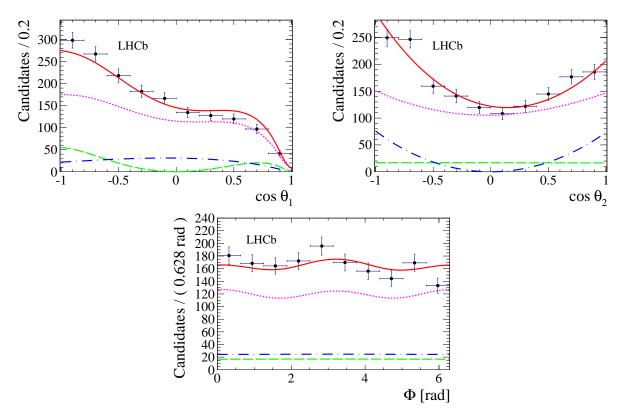


Figure 1 – Background-subtracted data distributions for the helicity angles in $B^0 \to \phi K^*(892)^0$ decays with the different fit components superimposed. The dashed-dotted blue line is the $K\pi$ S-wave, the dashed-green line is the KK S-Wave, the dotted purple line is the P-wave and solid red line is the overall fit.

where either the K^+K^- or the $K^+\pi^-$ pair is produced in a spin-0 (S-wave) state are also taken into account. Fig. 1 shows the background-subtracted data distributions for the helicity angles.

The measured polarization fractions are a $f_{\rm L} = 0.497 \pm 0.019 \pm 0.015$, $f_{\perp} = 0.221 \pm 0.016 \pm 0.013$, $f_{\rm S}(K\pi) = 0.143 \pm 0.013 \pm 0.012$, and $f_{\rm S}(KK) = 0.122 \pm 0.013 \pm 0.008$. The results for the P-wave polarization fractions are consistent with the presence of a large transverse component. A significant S-wave contribution is also observed. For the CP asymmetries (A_{CP}) the flavour of the decaying B^0 meson is determined by the charge of the kaon from the K^{*0} decay. Instrumental and production asymmetries are corrected for using as a control channel the $B^0 \to J/\psi K^{*0}$ decay, where A_{CP} is assumed to be zero, therefore $A_{CP}(\phi K^{*0}) - A_{CP}(J/\psi K^{*0}) \approx A_{CP}(\phi K^{*0})$. The final result is $A_{CP}(\phi K^{*0}) = (+1.5 \pm 3.2 \pm 0.5)\%$, which is consistent with zero asymmetry, in agreement with Babar³ and Belle⁴ results, but a factor two more precise.

2.2 CP violation in $B \to K\pi$ decays.

LHCb has performed the first measurement of CP violation in the B^0_s meson system⁵. Direct CP violation in $B^0_s \to K^-\pi^+$ decays is measured to be $A_{CP}(B^0_s \to K^-\pi^+) = 0.27 \pm 0.04 \pm 0.01$, with a significance exceeding five standard deviations. An improved determination of direct CP violation in $B^0 \to K^+\pi^-$ decays is also performed, giving a value of $A_{CP}(B^0 \to K^+\pi^-) = 0.080 \pm 0.007 \pm 0.003$, which is the most precise measurement of this quantity to date. These results allow a stringent test of the validity of the relation between $A_{CP}(B^0 \to K^+\pi^-)$ and $A_{CP}(B^0 \to K^-\pi^+)$ in the SM based on arguments of approximate flavour symmetry⁶

$$\Delta = \frac{A_{CP}(B^0 \to K^+ \pi^-)}{A_{CP}(B^0_s \to K^- \pi^+)} + \frac{\mathcal{B}(B^0_s \to K^- \pi^+)}{\mathcal{B}(B^0 \to K^+ \pi^-)} \frac{\tau_d}{\tau_s} = 0.$$
 (1)

^aUnless otherwise stated, all results reported in this paper are quoted with the statistical uncertainty followed by the systematic uncertainty.

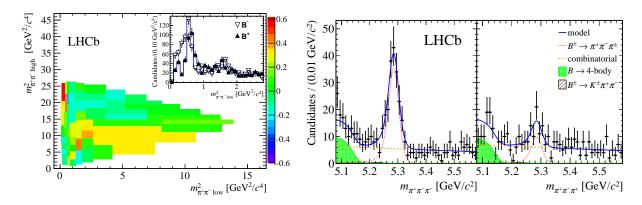
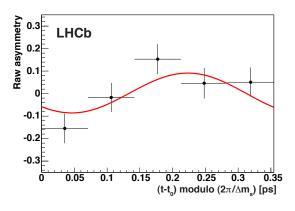


Figure 2 – Asymmetries of the number of events in bins of the Dalitz plot for $B^{\pm} \to \pi^+\pi^-\pi^{\pm}$ decays (left), and invariant mass spectra in selected regions of large asymmetries. The inset figure shows the projection of the number of events in bins of the $m_{\pi^+\pi^-\text{low}}^2$ variable for $m_{\pi^+\pi^-\text{high}}^2 > 15 \text{ GeV}^2/c^4$.

Using CP-averaged branching fractions⁷ and the world averages for the B^0 and B^0_s mean lifetimes, the result obtained is $\Delta = -0.02 \pm 0.05 \pm 0.04$, where the first uncertainty is from the measurements of the CP asymmetries and the second is from the input values of the branching fractions and the lifetimes. No evidence for a deviation from zero of Δ is observed with the present precision.


2.3 CP violation in the phase space of three-body charmless B decays.

Inclusive charge asymmetries were measured in the three-body charmless decays $B^{\pm} \to K^{\pm}\pi^{+}\pi^{-}$ and $B^{\pm} \to K^{\pm}K^{+}K^{-}$. The results are $A_{CP}(B^{\pm} \to K^{\pm}\pi^{+}\pi^{-}) = 0.032 \pm 0.008 \pm 0.004 \pm 0.007 (J/\psi K^{\pm})$ and $A_{CP}(B^{\pm} \to K^{\pm}K^{+}K^{-}) = -0.043 \pm 0.009 \pm 0.003 \pm 0.007 (J/\psi K^{\pm})$, where the third uncertainty is due to the CP asymmetry of the $B^{\pm} \to J/\psi K^{\pm}$ reference mode $A_{CP}(B^{\pm} \to K^{\pm}K^{+}K^{-})$ exceeds three standard deviations, yielding the first evidence of an inclusive CP asymmetry in charmless three-body decays. Large CP asymmetries are also observed in localized regions of the phase space outside resonances.

The analysis of the charmless decays $B^\pm \to K^+K^-\pi^\pm$ and $B^\pm \to \pi^+\pi^-\pi^\pm$ reported in Ref. ¹⁰ determines the inclusive CP asymmetries to be $A_{CP}(B^\pm \to K^+K^-\pi^\pm) = -0.141\pm0.040\pm0.018\pm0.007\,(J/\psi K^\pm)$ and $A_{CP}(B^\pm \to \pi^+\pi^-\pi^\pm) = 0.117\pm0.021\pm0.009\pm0.007\,(J/\psi K^\pm)$. The left plot of Fig. 2 shows asymmetries in the number of events in bins of the Dalitz plot for $B^\pm \to \pi^+\pi^-\pi^\pm$ decays. Large asymmetries are clearly visible in the localized region of phase space defined by $m_{\pi^+\pi^-\text{high}}^2 > 15~\text{GeV}^2/c^4$ and $m_{\pi^+\pi^-\text{low}}^2 < 0.4~\text{GeV}^2/c^4$. The regional asymmetry is measured to be $A_{CP}^{\text{reg}}(B^\pm \to \pi^+\pi^-\pi^\pm) = 0.584\pm0.082\pm0.027\pm0.007\,(J/\psi K^\pm)$.

2.4 Charge asymmetry in $B^{\pm} \to \phi K^{\pm}$ and search for $B^{\pm} \to \phi \pi^{\pm}$ decays.

The $B^{\pm} \to \phi K^{\pm}$ decay can only occur through loop diagrams in the SM, leading to a branching fraction of the order of 10^{-5} . Because the dominant amplitudes have similar weak phases, the CP-violating charge asymmetry $A_{CP}(B^{\pm} \to \phi K^{\pm})$ is predicted to be very small in the SM, around 1-2%. The measurement of a significantly larger value would signal interference with an amplitude not described in the SM. We have just seen that large CP violation effects are reported in some regions of the $B^{\pm} \to K^+K^-K^{\pm}$ phase space, but not around the ϕ resonance. LHCb has measured¹¹ the CP-violating charge asymmetry in $B^{\pm} \to \phi K^{\pm}$ decays to be $A_{CP}(B^{\pm} \to \phi K^{\pm}) = 0.022 \pm 0.021 \pm 0.009$. In addition, a search for the highly suppressed $B^{\pm} \to \phi \pi^{\pm}$ decay mode has been performed, using the $B^{\pm} \to \phi K^{\pm}$ decay rate for normalization. An upper limit on the branching fraction $\mathcal{B}(B^{\pm} \to \phi \pi^{\pm}) < 1.5 \times 10^{-7}$ is set at a 90% confidence level.

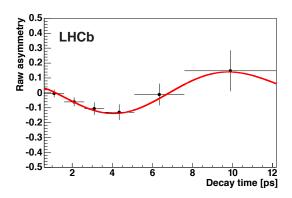


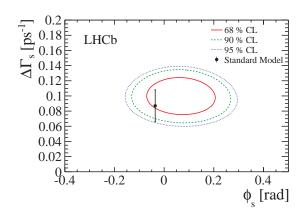
Figure 3 – Time-dependent raw asymmetry for candidates in the signal mass window for $B_s^0 \to K^+K^-$ decays (left) and $B^0 \to \pi^+\pi^-$ decays (right).

2.5 Time-dependent CP violation in $B_s^0 \to K^+K^-$ and $B^0 \to \pi^+\pi^-$ decays.

Assuming CPT invariance, the time-dependent CP asymmetry for neutral B mesons decaying to a CP eigenstate f is given by

$$\mathcal{A}(t) = \frac{-C_f \cos(\Delta m_{d(s)}t) + S_f \sin(\Delta m_{d(s)}t)}{\cosh\left(\frac{\Delta \Gamma_{d(s)}}{2}t\right) - A_f^{\Delta \Gamma} \sinh\left(\frac{\Delta \Gamma_{d(s)}}{2}t\right)},\tag{2}$$

where $\Delta m_{d(s)} = m_{d(s),\mathrm{H}} - m_{d(s),\mathrm{L}}$ and $\Delta \Gamma_{d(s)} = \Gamma_{d(s),\mathrm{H}} - \Gamma_{d(s),\mathrm{L}}$ are the mass and width differences of the $B^0_{(s)} - \bar{B}^0_{(s)}$ system mass eigenstates. The subscripts H and L denote the heaviest and lightest of these eigenstates, respectively. The terms C_f and S_f parameterize direct and mixing-induced CP violation, respectively.


In Ref. ¹² LHCb reported the first measurement of time-dependent CP violation in $B_s^0 \to K^+K^-$ decays. The results are $C_{KK} = 0.14 \pm 0.11 \pm 0.03$ and $S_{KK} = 0.30 \pm 0.12 \pm 0.04$. The corresponding quantities are also determined for $B^0 \to \pi^+\pi^-$ decays to be $C_{\pi\pi} = -0.38 \pm 0.15 \pm 0.02$ and $S_{\pi\pi} = -0.71 \pm 0.13 \pm 0.02$, in good agreement with existing measurements. The significances for (C_{KK}, S_{KK}) and $(C_{\pi\pi}, S_{\pi\pi})$ to differ from (0, 0) are determined to be 2.7σ and 5.6σ , respectively. The time-dependent raw asymmetries are shown in Fig. 3.

3 Mixing and mixing-induced CP violation.

3.1 Flavour-specific CP-violating asymmetry a_{sl}^s in B_s^0 decays.

The CP-violating asymmetry in semileptonic B^0_s decays to a flavour-specific final state f is given by $a^s_{sl} = \frac{\Delta \Gamma}{\Delta M} \tan \phi_{12}$, where the phase $\phi_{12} \equiv \arg(-M_{12}/\Gamma_{12})$ is related to the off-diagonal elements of the effective hamiltonian which describes the B^0_s -mixing, while ΔM and $\Delta \Gamma$ are the mass and width differences of the mass eigenstates, respectively. The term "flavour-specific" means that the final state is only reachable by the decay of a B meson, and consequently reachable by a meson originally produced as a \bar{B} only through mixing.

LHCb has reported in Ref.¹³ the measurement of the asymmetry between $D_s^+ X \mu^- \bar{\nu}$ and $D_s^- X \mu^+ \nu$ decays, with X representing possible associated hadrons. The reconstructed final states are $D_s^\pm \mu^\pm$, with the D_s^\pm particle decaying in the $\phi \pi^\pm$ mode. The $D_s^\pm \mu^\pm$ yields are summed over B_s^0 and \bar{B}_s^0 initial states, and integrated with respect to decay time. Data-driven methods are used to measure efficiency ratios. The result obtained for the CP-violating asymmetry is $a_{sl}^s = (-0.06 \pm 0.50 \pm 0.36)\%$, consistent with previous measurements and with the SM prediction¹⁴.

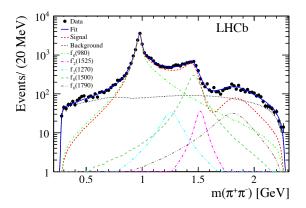


Figure 4 – Left plot: two-dimensional profile likelihood in the $(\Delta\Gamma_s, \phi_s)$ plane for the LHCb $B_s^0 \to J/\psi K^+ K^-$ dataset (left); the SM expectation of $\Delta\Gamma_s = 0.087 \pm 0.021~{\rm ps}^{-1}$ and $\phi_s = -0.036 \pm 0.002~{\rm rad}$ is shown in as a black point with error bar. Right plot: distribution of $m(\pi^+\pi^-)$ for $B_s^0 \to J/\psi \pi^+\pi^-$ candidates, with the fit contributing components superimposed.

3.2 CP violation and $\Delta\Gamma_s$ with $B_s^0 \to J/\psi K^+K^-$ and $B_s^0 \to J/\psi \pi^+\pi^-$ decays.

The interference between B_s^0 meson decay amplitudes to CP eigenstates $J/\psi X$, directly or via mixing, gives rise to a measurable CP-violating phase ϕ_s . Ignoring subleading contributions, for $b \to c\bar{c}s$ transitions this phase is predicted to be $-2\beta_s$ in the SM, where $\beta_s = \arg(-V_{ts}V_{tb}^*/V_{cs}V_{cb}^*)$ and the V_{ij} are elements of the CKM matrix. There is a precise indirect determination of this phase via global fits within the SM, which gives 15 $2\beta_s = 0.0364 \pm 0.0016$ rad. Direct measurements of ϕ_s are therefore of very high interest, since new particles could contribute to the $B_s^0 - \bar{B}_s^0$ mixing box diagrams modifying the SM prediction.

LHCb has measured the time-dependent CP asymmetry in $B_s^0 \to J/\psi K^+ K^-$ decays¹⁶. The decay time distribution is characterized by the decay widths $\Gamma_{\rm L}$ and $\Gamma_{\rm H}$ of the light and heavy mass eigenstates of the $B_s^0 - \bar{B}_s^0$ system and by the CP-violating phase ϕ_s . The final state is dominated by the contribution from $B_s^0 \to J/\psi \phi$ decays. These parameters are measured to be $\phi_s = 0.07 \pm 0.09 \pm 0.01$ rad, $\Gamma_s = 0.663 \pm 0.005 \pm 0.006$ ps⁻¹ and $\Delta \Gamma_s = \Gamma_{\rm L} - \Gamma_{\rm H} = 0.100 \pm 0.016 \pm 0.003$ ps⁻¹. These are the single most precise measurements to date. The left plot of Fig. 4 shows the two-dimensional profile likelihood in the $(\Delta \Gamma_s, \phi_s)$ plane. Furthermore, a combined analysis with $B_s^0 \to J/\psi \pi^+ \pi^-$ decays gives $\phi_s = 0.01 \pm 0.07 \pm 0.01$ rad, $\Gamma_s = 0.661 \pm 0.004 \pm 0.006$ ps⁻¹ and $\Delta \Gamma_s = \Gamma_{\rm L} - \Gamma_{\rm H} = 0.106 \pm 0.011 \pm 0.007$ ps⁻¹. All measurements are in agreement with SM predictions.

3.3 Measurement of resonant and CP components in $B_s^0 \to J/\psi \pi^+ \pi^-$ decays.

The last result we are reporting in these proceedings is based on the analysis of the full LHCb data sample collected in 2011 and 2012, which corresponds to 3 fb⁻¹ of integrated luminosity. These data are used in Ref.¹⁷ to study the resonant structure of the decay $B_s^0 \to J/\psi \pi^+ \pi^-$. Five interfering $\pi^+\pi^-$ states are required to describe the decay: $f_0(980)$, $f_0(1500)$, $f_0(1790)$, $f_2(1270)$ and $f_2'(1525)$. The right plot on Fig. 4 shows the contribution of each resonance as a function of $m(\pi^+\pi^-)$. An alternative model including these states and a non-resonant $J/\psi \pi^+\pi^-$ component also provides a good description of the data. Based on the different transversity components measured for the spin-2 intermediate states, the final state is found to be compatible with being entirely CP-odd. The CP-even part is found to be < 2.3% at 95% confidence level.

References

- 1. LHCb Collaboration, A. A. Alves Jr. et al., JINST 3 (2008) S08005.
- 2. LHCb Collaboration, R. Aaij et al., arXiv:1403.2888v1.

- 3. BaBar Collaboration, B. Aubert *et al.*, *Phys. Rev.* D **78**, 092008 (2008).
- 4. Belle Collaboration, M. Prim et al., Phys. Rev. D 88, 072004 (2013).
- 5. LHCb Collaboration, R. Aaij et al., Phys. Rev. Lett. 110, 221601 (2013).
- 6. H. J. Lipkin, Phys. Lett. B 621, 126 (2005).
- 7. LHCb Collaboration, R. Aaij et al., JHEP 10 (2012) 037.
- 8. LHCb Collaboration, R. Aaij et al., Phys. Rev. Lett. 111, 101801 (2013).
- 9. Particle Data Group, J. Beringer et al., Phys. Rev. D 86, 010001 (2012).
- 10. LHCb Collaboration, R. Aaij et al., Phys. Rev. Lett. 112, 011801 (2014).
- 11. LHCb Collaboration, R. Aaij et al., Phys. Lett. B 728, 85-94 (2014).
- 12. LHCb Collaboration, R. Aaij et al., JHEP 10 (2013) 183.
- 13. LHCb Collaboration, R. Aaij et al., Phys. Lett. B 728, 607-615 (2014).
- 14. A. Lenz, arXiv:1205.1444v2.
- 15. J. Charles et al., Phys. Rev. D 84, 03305 (2011).
- 16. LHCb Collaboration, R. Aaij et al., Phys. Rev. D 87, 112010 (2013).
- 17. LHCb Collaboration, R. Aaij et al., arXiv:1402.6248v1.