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1 Introduction

Luminosity determination in ALICE (A Large Ion Collider Experiment) [1] at the LHC is based
on visible cross sections measured in van der Meer (vdM) scans [2, 3]. The visible cross section
σvis seen by a given detector (or set of detectors) with a given trigger condition is a fraction of the
total inelastic interaction cross sectionσinel: σvis = ǫσinel, whereǫ is the fraction of inelastic events
which satisfy the trigger condition. In the following, an inelastic event satisfying a given trigger
condition will be referred to as a reference process. Once the reference-process cross section (σvis)
is measured, the collider luminosity can be determined as the reference-process rate divided by
σvis. This procedure does not require the knowledge ofǫ.

In vdM scans the two beams are moved across each other in the transverse directionsx and
y. Measurement of the rateR of the reference process as a function of the beam separation∆x, ∆y
allows one to determine the luminosityL for head-on collisions of a pair of bunches with particle
intensitiesN1 andN2 as

L = N1N2 frev/(hxhy), (1.1)

where frev is the accelerator revolution frequency andhx andhy are the effective beam widths in the
two transverse directions. The effective beam widths are measured as the area below theR(∆x,0)

andR(0,∆y) curve (scan area), respectively, each divided by the head-on rateR(0,0). Under the
assumption that the beam profiles are Gaussian, the effective width is obtained as the Gaussian
standard deviation parameter (from a fit) multiplied by

√
2π . However, the Gaussian assumption is

not necessary for the validity of the method. As will be shownin section3, other functional forms
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can be used, as well as numerical integration of the curve. The cross sectionσvis for the chosen
reference process is then

σvis = R(0,0)/L. (1.2)

In 2013, the Large Hadron Collider provided proton-lead andlead-proton collisions at the
center-of-mass energy per nucleon pair

√
sNN = 5.02 TeV. Van der Meer scans were performed

for both configurations of colliding beams, and the cross section was measured for two reference
processes. In section2, the detectors used for the measurements are briefly described, along with
the relevant machine parameters and the adopted scan procedure. In section3, the analysis proce-
dure is described. In section4, the obtained results and uncertainties are presented and discussed.
In section5, the application of the vdM scan results to the measurement of the integrated lumi-
nosity is briefly discussed. In section6, the vdM scan results are used to indirectly determine the
cross section for a third reference process, based on neutron detection by the ALICE Zero Degree
Calorimeters.

2 Experimental setup

At the ALICE experiment, two vdM-scan sessions were carriedout during the 2013 proton-lead
data-taking campaign at the LHC. The proton beam was travelling clockwise in the first session
and counter-clockwise in the second session. In the following, these configurations will be referred
to as p-Pb and Pb-p, respectively.

In each session, the cross section was measured for two reference processes: one is based on
the V0 detector, the other on the T0 detector. A detailed description of these detectors is given
in [1], and their performance is discussed in [4, 5] and [6]. The V0 detector consists of two
hodoscopes, with 32 scintillator tiles each, located on opposite sides of the ALICE Interaction Point
(IP2), at a distance of 340 cm (V0-A) and 90 cm (V0-C) along thebeam axis, covering the pseudo-
rapidity (η) ranges 2.8 < η < 5.1 and−3.7 < η < −1.7, respectively. In the p-Pb configuration
the proton beam is travelling in the direction from V0-A to V0-C. The T0 detector consists of two
arrays of 12 Cherenkov counters each, located on opposite sides of IP2, at a distance of 370 cm
(T0-A) and 70 cm (T0-C) along the beam axis, covering the pseudo-rapidity ranges 4.6 < η < 4.9
and−3.3 < η < −3.0, respectively. In the p-Pb configuration the proton beam istravelling in the
direction from T0-A to T0-C.

The V0-based trigger condition, chosen as the reference process, requires at least one hit in
each detector hodoscope, i.e. on both sides of IP2. As discussed in [7], the efficiency of such a
selection is larger than 99% for non single-diffractive p-Pb collisions. A similar trigger condition
defines the T0-based reference process, with the additionalcondition that the longitudinal coor-
dinate of the interaction vertex, evaluated by the trigger electronics via the difference of arrival
times in the two arrays (measured with a resolution of 20 ps),lies in the range|z| < 30 cm (where
z = 0 is the nominal IP2 position). This online cut aims to reject the background from beam-gas
and beam-satellite interactions. The cut value of 30 cm is much larger than the r.m.s. longitudinal
size of the interaction region (≃ 6 cm), making signal loss induced by the cut negligible (<10−5).
Since the two LHC beams have the same magnetic rigidity and different projectile mass, the energy
per nucleon of lead ions (1.58 TeV) differs from that of protons (4 TeV). Hence, the p-Pb (Pb-p)

– 2 –
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Figure 1. (Colour online) Bunch intensitiesN1 andN2 for all colliding bunches, for an arbitrary timestamp
during the p-Pb (left) and Pb-p (right) scan sessions.

collision center-of-mass frame is shifted by 0.47 (-0.47) units of rapidity with respect to the ALICE
frame. Due to this shift and the asymmetric setup of both detectors, there is no reason to expect
identical cross sections for the p-Pb and Pb-p configurations. Therefore, the results obtained in the
two scan sessions are not combined.

In the p-Pb (Pb-p) scan session the proton beam consisted of 272 bunches, while the Pb beam
consisted of 338 (314) bunches. In the p-Pb (Pb-p) scan session 264 (244) bunch pairs per LHC
orbit were colliding at IP2. For both beams and sessions, theminimum spacing between two con-
secutive bunches was 200 ns. The reference-process rates were recorded (and the cross section
measured) separately for each colliding bunch pair. For each session, two independent measure-
ments per bunch pair were performed by repeating the (horizontal and vertical) scan pair twice:
from negative to positive separation and then in the opposite direction. The maximum beam sep-
aration during the scan was about 0.15 mm, corresponding to about six times the RMS of the
transverse beam profile. In both sessions, theβ ∗ value1 in IP2 was 0.8 m. The current in the AL-
ICE solenoid (dipole) was 30 kA (6 kA), corresponding to a field strength of 0.5 T (0.7 T). In both
sessions, the proton and lead bunch intensities were on the order of 1010 p/bunch and 108 Pb/bunch,
as shown in figure1. While the proton bunch intensity is reasonably constant across bunches, large
variations are seen for the lead bunches. The structure of such variations as a function of the bunch
position can be explained by different sensitivities to losses in the injection chain [8].

The bunch-intensity measurement is provided for both scan sessions by the LHC instrumen-
tation [9]: a DC current transformer (DCCT), measuring the total beamintensity, and a fast beam
current transformer (fBCT), measuring the relative bunch populations. The measured beam inten-
sity is corrected by the fraction of ghost and satellite charge.2 The measurement of ghost charge

1The β (z) function describes the single-particle motion and determines the variation of the beam envelope as a
function of the coordinate along the beam orbit (z). The notationβ ∗ denotes the value of theβ function at the inte-
raction point.

2The radio-frequency (RF) configuration of the LHC is such that the accelerator orbit is divided in 3564 slots of
25 ns each. Each slot is further divided in ten buckets of 2.5 ns each. In nominally filled slots, the particle bunch is
captured in the central bucket of the slot. Following the convention established in [10], the charge circulating outside
of the nominally filled slots is referred to as ghost charge; the charge circulating within a nominally filled slot but not
captured in the central bucket is referred to as satellite charge.

– 3 –
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Figure 2. (Colour online) Raw rate of the T0 (left) and V0 (right) process for a typical colliding bunch pair,
as a function of time, during the p-Pb scan session. In each plot, the first (second) bell-shaped structure
corresponds to the beam separation in the horizontal (vertical) direction being varied from negative to pos-
itive values. The third (fourth) bell-shaped structure corresponds to the beam separation in the horizontal
(vertical) direction being varied from positive to negative values.

is provided by the LHCb collaboration, via the rate of beam-gas collisions occurring in nominally
empty bunch slots, as described in [11]. The obtained ghost-charge correction factor to the bunch-
intensity productN1N2 is 0.991±0.001 (0.986±0.002) for the p-Pb (Pb-p) session. The bunch
intensity is further corrected by the fraction of satellitecharge measured by the LHC Longitudinal
Density Monitor (LDM), which measures synchrotron radiation photons emitted by the beams [12].
The obtained satellite-charge correction factor to the bunch-intensity productN1N2 is 0.998±0.004
(0.996±0.001) for the p-Pb (Pb-p) session. This correction is implemented by multiplying the
N1N2 product by both the ghost- and satellite-charge factors.

3 Data analysis

An example of the measured raw rate for one typical pair of colliding bunches during the p-Pb scan
is shown in figure2 for both the T0- and the V0-based processes.

Three corrections are applied to the measured raw rate for each of the two reference processes.
First, the contamination by beam-satellite and beam-gas interactions in the V0 rate is removed

using the detector timing capabilities. The background is identified via the sum and difference
of arrival times in the two V0 arrays from offline analysis of the data collected during the scan.
The arrival times are obtained by averaging over the signal times of all hits of each array. The
background contamination is measured as the fraction of events in which the sum and difference
of times lie outside of a window of±4 ns around the values expected for beam-beam collisions
(figure3). The measurement is performed for each separation value and the corresponding raw rate
is corrected by the obtained fraction. The background contamination in the V0-triggered sample is
about 0.5-1% at zero separation and about 20-40% at a separation corresponding to five times the
beam RMS. This procedure has negligible effect (< 0.1%) when applied to the T0 rates, due to the
vertex cut in the T0 trigger logic described in section2. In order to study a possible contamination
of the trigger rate by the intrinsic noise counts of the detectors, the rate of both trigger signals in
absence of beam was measured and found to be zero. The rate in empty bunch slots with beam
circulating was also measured and found to be zero for T0. ForV0, a non-zero rate is measured up

– 4 –



2
0
1
4
 
J
I
N
S
T
 
9
 
P
1
1
0
0
3

 [ns]
C

 - t
A
t

-30 -20 -10 0 10 20 30 40

 [n
s]

C
 +

 t
At

-20

-10

0

10

20

30

40

50

1

10

210

310

410 = 5.02 TeVNNsp-Pb 
          ALICE

Beam separation = 0 mm

 [ns]
C

 - t
A
t

-30 -20 -10 0 10 20 30 40

 [n
s]

C
 +

 t
At

-20

-10

0

10

20

30

40

50

1

10

210

310 = 5.02 TeVNNsp-Pb 
          ALICE

Beam  separation = 0.12 mm

Figure 3. (Colour online) Correlation between the sum and difference of arrival times (relative to the bunch
crossing) on the two V0 arrays. The left plot was obtained at zero beam separation; the right plot was
obtained at a beam separation of 0.12 mm, roughly corresponding to five times the RMS of the beam profile.
Events lying inside the area within the continuous lines areflagged as beam-beam interactions.

to the fourth empty bunch slot after a filled slot. Since the minimum spacing between filled slots is
eight slots, such an after-pulsing effect does not affect the measurement of the rate in colliding slots.

Second, the probability of multiple interactions in the same bunch crossing (pileup) is taken
into account according to Poisson statistics. The trigger rateR is smaller than the rate of visible
interactions by a factor[1−exp(−µvis)]/µvis, whereµvis = − ln(1−R/ frev) is the average num-
ber of visible interactions occurring in one bunch crossing. The pileup-corrected rate for bunch
crossingi, RPU,i , is thus given by

RPU,i = − frev ln(1−RBB,i/ frev) (3.1)

whereRBB,i is the background-corrected rate. In both scan sessions, the maximum value ofµvis

during the scan for the V0 (T0) reference process is about 0.05 (0.03), leading to a maximum
correction of about 2.5% (1.5%).

The third correction takes into account that the luminositydecreases with time (as can be seen
in figure 2) due to the beam-intensity decay and to the growth of emittances. In order to correct
for this effect, the evolution of the head-on luminosity in time is parameterised via a fit to the rates
at zero separation measured before, after and in-between scans. The decay rate is satisfactorily
described by an exponential function. Figure4 shows an example of such a fit. The obtained fit
parameters are used to normalize all rates of a given scan pair to an arbitrary reference time, chosen
to lie between the horizontal and vertical scans.

An example of the obtained correction factors as a function of the beam separation is shown
in figure5.

The corrected rates obtained with the above-described procedure are used to compute the
effective beam widthshx andhy. This is done with both a fit and a numerical method. For the fit
method, it was found that a Gaussian (or double-Gaussian) function does not describe satisfactorily
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Figure 4. (Colour online) Background- and pileup-corrected head-on rates of the T0 (left) and V0 (right)
reference process as a function of time for one interacting bunch crossing in the p-Pb scan session. The solid
red curve is an exponential fit to the data points.
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Figure 5. (Colour online) Background (RBB/Rraw), pileup (RPU/RBB) and luminosity decay (RDC/RPU)
correction factors to the T0 (left) and V0 (right) rates as a function of the beam separation for one typical
pair of colliding bunches during the first p-Pb vertical scan. Due to the different size of the background
correction factor for T0 and V0, the two figures have different vertical scales.

the measured shapes, while reasonable values ofχ2 per degree of freedom (χ2/nd f ≃ 1 on average,
and typicallyχ2/nd f < 2) are obtained by using a modified Gaussian function

R(∆x,0) = R(0,0)exp[−(∆x−µ)2/2σ2] [1+ p2(∆x−µ)2 + p4(∆x−µ)4 + p6(∆x−µ)6] (3.2)

and a similar one forR(0,∆y). An example of the quality of the fit is shown in figure6. In the
fit approach, the scan area and the head-on rateR(0,0) are obtained from the fit parameters. In
the numerical method, the scan area is obtained as the sum of all rates multiplied by the step size,
andR(0,0) is the measured rate at zero separation. The effective beam widths and head-on rates
obtained with the two methods agree within 0.5%. Since the effective beam widths are independent
of the process used to measure them, a consistency check is performed by computing the ratio of

– 6 –



2
0
1
4
 
J
I
N
S
T
 
9
 
P
1
1
0
0
3

Beam separation [mm]
-0.15 -0.1 -0.05 0 0.05 0.1 0.15

R
at

e 
[H

z]

-210

-110

1

10

210

 / ndf 2χ   10.6 / 15

R(0,0)        2± 244 

       µ  0.0004± 0.0017 

       σ  0.003± 0.035 

       
2

p  90± 82 

       
4

p   2e+03± -1.2e+04 

       
6

p  1.6e+05± 4.0e+05 

 = 5.02 TeVNNsp-Pb 
          ALICE

T0

Beam separation [mm]
-0.15 -0.1 -0.05 0 0.05 0.1 0.15

R
at

e 
[H

z]

-210

-110

1

10

210

 / ndf 2χ  11.1 / 16

R(0,0)        2± 321 

       µ  0.0002± 0.0017 

       σ  0.001± 0.034 

       
2

p  40± 96 

       
4

p   3.4e+03± -6.2e+03 

       
6

p  2.2e+05± 0.0e+05 

 = 5.02 TeVNNsp-Pb 
          ALICE

V0
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thehxhy quantities of equation (1.1), obtained with T0 and V0, for each colliding bunch. The results
are shown in figure7. For both scan sessions, the bunch-averaged value of the ratios is compatible
with unity within 0.2%.

The measured beam widths are corrected by a length-scale calibration factor. This correction
aims to fine tune the conversion factor (known with limited precision) between the current in the
steering magnets and the beam displacement. The calibration is performed in a dedicated run,
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vertex coordinate as a function of the nominal horizontal beam displacement in the length-scale calibration
run, with superimposed linear fit (solid red line).

where the two beams are moved simultaneously in the same direction in steps of equal size; the
changes in the interaction vertex position provide a measurement of the actual beam displacement,
which is used to extract a correction factor to the nominal displacement scale. The displacement of
the vertex position is measured using data from the ALICE Inner Tracking System [13] and Time
Projection Chamber [14]. This is shown in figure8, left, for the horizontal length-scale calibration
run. For each step, the vertex position and its uncertainty are obtained from a Gaussian fit to
the vertex distribution. The length-scale correction factor is obtained as the slope parameter of a
linear fit to the measured vertex displacement as a function of the nominal displacement (figure8,
right). Since this correction affects the global beam-displacement scale, all measured beam widths
are multiplied by the correction factors 0.98±0.01 for the horizontal scale and 1.02±0.01 for the
vertical scale.

The cross section for each colliding bunch pair and reference process is calculated according
to eq. (1.1) and (1.2) from the measured bunch intensities, beam widths and head-on rates. As there
are two measured head-on rates per scan pair (one from the vertical and one from the horizontal
scan), the arithmetic mean of the two is used, after checkingthat the two values are compatible
within statistical uncertainties.

The measured cross sections (obtained with the numerical method) for the T0- and V0-based
processes during the first scan of the p-Pb and Pb-p sessions are shown in figure9 for all the
colliding bunch pairs, as a function of the product of the colliding bunch intensities (N1N2). No
dependence of the results onN1N2 is observed. For the p-Pb session, fluctuations beyond the
statistical uncertainties are observed, and accounted foras a source of systematic uncertainty (see
section4).
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Figure 9. (Colour online) Cross sections for the T0 and V0 processes measured in the first scan of the p-Pb
(left) and Pb-p (right) sessions, as a function of the product of the intensities of the colliding bunch pair. The
results are obtained with the numerical method. Only the statistical uncertainties are shown.

Table 1. Cross section for the V0- and T0-based reference process intwo p-Pb vdM scans, as obtained
with the numerical and fit methods. The weighted average between the numerical results of the two scans,
retained as the final result, is also reported. The quoted uncertainties are statistical.

Method σV0 [b] σT0 [b]

First scan Second scan Average First scan Second scan Average
Num. 2.087±0.001 2.098±0.001 2.093±0.001 1.590±0.001 1.598±0.001 1.594±0.001
Fit 2.086±0.001 2.099±0.001 1.595±0.001 1.602±0.001

4 Results and systematic uncertainties

For both processes and scan sessions the weighted average ofresults from all colliding bunch pairs
is computed, for each scan and method. The results for all scans and methods are summarised in
tables1 and2. The numerical and fit method agree to better than 0.3% for allscans. The numerical
result is preferred, because it implies a weaker assumptionon the scan shape and to be consistent
with earlier ALICE results in pp and Pb-Pb collisions [4, 15]. For each session, the weighted
average of the results of the two performed scans is retainedas the final result. The differences
between the two methods and between different scans in the same session are taken into account in
the evaluation of the systematic uncertainties.

The sources of systematic uncertainty considered are listed below; unless otherwise specified,
the quoted uncertainties apply to both the T0 and the V0 cross-section measurements.

• Transverse correlations: the formalism of equation (1.1) assumes complete factorisation of
the beam profiles in the two transverse directions, such thatthe beam overlap region is fully
described by thehxhy quantity. Luminosity measurements at the LHC [11, 16] have shown
that factorisation can be broken at a non-negligible level.In previous studies [16–18], the
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Table 2. Cross section for the V0- and T0-based reference process intwo Pb-p vdM scans, as obtained
with the numerical and fit methods. The weighted average between the numerical results of the two scans,
retained as the final result, is also reported. The quoted uncertainties are statistical.

Method σV0 [b] σT0 [b]

First scan Second scan Average First scan Second scan Average
Num. 2.110±0.002 2.141±0.003 2.122±0.002 1.586±0.002 1.607±0.003 1.594±0.002
Fit 2.105±0.002 2.138±0.002 1.581±0.002 1.605±0.002

bias arising from such an effect was quantified by comparing the results obtained with the
standard analysis method with those obtained from a correlated two-dimensional double-
Gaussian fit to the data. The same method was applied to this analysis, using the fitting func-
tion defined in [18]. As already observed for the one-dimensional case, the double-Gaussian
function provides a rather poor description of the data, with χ2/nd f ranging from≃ 140/32
to≃ 1200/32 across scans and bunches. A better agreement (χ2/nd f ranging from≃ 20/32
to ≃ 800/32) is found if the standard double-Gaussian function is modified by dropping
the requirement that the coefficients of both Gaussian functions be positive (unconstrained
double-Gaussian). The bunch-by-bunch difference betweenthe cross section obtained with
the unconstrained two-dimensional double-Gaussian (DG2D) fit model and that obtained
with the one-dimensional fit model of eq. (3.2) (gPol6) shows a two-fold behaviour, depend-
ing on how well the scan shape is reproduced by the DG2D fit. Forfits with relatively small
χ2/nd f, the difference fluctuates by at most≃ 1% around zero and shows no dependence
on χ2/nd f. For fits with largeχ2/nd f, the difference is large (up to≃ 5%) and system-
atically negative, and it exhibits a strong dependence onχ2/nd f, its magnitude increasing
linearly with

√

χ2/nd f. The negative difference values observed in the high-χ2/nd f region,
as well as their trend as a function ofχ2/nd f, are identically observed when comparing the
results of a one-dimensional double-Gaussian (DG1D) fit with those of the gPol6 fit. Hence,
they are not interpreted as the effect of transverse correlations, but rather as a fit-model bias
occurring when the scan shape is not well reproduced by the double-Gaussian fit. Such an
interpretation is supported by the previously-cited studies [11, 16, 17], where it is reported
that the presence of transverse correlation systematically leads to positive discrepancies be-
tween the two-dimensional and the one-dimensional fit. For bunches in the small-χ2/nd f
region, where no fit bias is expected, the transverse correlation uncertainty is evaluated as the
full envelope of the bunch-by-bunch difference between theDG2D and the gPo6 fit result.
Operationally, the small-χ2/nd f region is defined as the one where there is no correlation
between the DG2D-gPol6 difference and the value ofχ2/nd f. The thresholdχ2/nd f value
corresponding to such a definition varies slightly across scans and luminometers, ranging
from 58/32 to 105/32. For both the p-Pb and Pb-p scan sessions, the full envelope is at
most 2.2% across scans and luminometers (figure10), hence such a value is retained as un-
certainty. For bunches in the large-χ2/nd f region the uncertainty could not be evaluated
with the above-described method, due to the double-Gaussian fit bias. If these bunches are
affected by transverse correlations in a different way thanthe small-χ2/nd f bunches, they
may in principle bias the measured, bunch-averaged, cross section. In order to quantify a
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Figure 10. Relative difference between the cross section obtained with the two-dimensional DG2D and
the one-dimensional gPol6 fit models, as a function of the

√

χ2/nd f value of the two-dimensional fit, for
χ2/nd f < 105/32. Left: results for V0 in the first p-Pb scan. Right: results for V0 in the first Pb-p scan.

possible bias, the average cross sections obtained from thetwo sub-sets of bunches are com-
pared. They are found to be consistent within 1.3% (0.6%) forthe p-Pb (Pb-p) scan session.
These values are assigned as additional uncertainty, leading to a total transverse-correlation
uncertainty of 2.6% (2.3%) for the p-Pb (Pb-p) cross sections.

• Bunch-by-bunch consistency: an uncertainty of 1.6% is assigned to the results of the p-Pb
session. It is obtained from the RMS of the distribution of the cross section measured for
all colliding bunch pairs, after subtracting in quadraturethe bunch-averaged statistical uncer-
tainty. For the Pb-p session the RMS is smaller than the average statistical uncertainty, hence
no systematic uncertainty is assigned.

• Scan-to-scan consistency: the difference between the firstand second scan in the same ses-
sion (0.5% for the p-Pb scans and 1.5% for the Pb-p scans) is retained as a systematic uncer-
tainty.

• Length-scale calibration: 1.5%, from the quadratic sum of the statistical uncertainties on the
horizontal and vertical scale factors reported in section3.

• Background subtraction: in order to evaluate a possible bias arising from beam-beam events
identified as beam-gas by the cut described in section3, the analysis has been repeated by
increasing the width of the window for beam-beam events from8 to 14 ns: for the V0 cross
section, a difference of 0.45% is found and added to the systematic uncertainty for both
configurations. The difference is negligible (≪ 0.1%) for the T0 cross section.

• Method dependence: 0.3% for both scan sessions, quantified via the maximum difference
between the results obtained with the numerical and the fit method (tables1 and2).

• Beam centering: the measurement ofR(0,0) can be affected by a non-optimal alignment
of the two beams in the head-on position. Such misalignment is quantified, for thex andy
directions, via theµ parameter of eq. (3.2). For about half of the scans, the value ofµ is
compatible with zero; for the first horizontal and the secondvertical p-Pb scan, and for the
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first horizontal Pb-p scan, it reaches up to 2.5µm. The effect of such misalignment on the
measured head-on rates was estimated using eq. (3.2) and the obtained fit parameters: the
resulting systematic uncertainty on the cross-section measurement is 0.3% (0.2%) for the
p-Pb (Pb-p) configuration.

• Trigger dependence of the measured beam widths: 0.2% for both sessions, from the bunch-
averaged difference between thehxhy quantities measured with T0 and V0 (figure7).

• Luminosity-decay correction: when varying the luminositydecay parameters within their
uncertainties, a negligible (< 0.1%) effect on the measured cross section is observed.

• Bunch intensity: the uncertainty on the bunch-intensity productN1N2 arising from the DCCT
calibration [19] is 0.46% (0.54%) for the p-Pb (Pb-p) scan session; given thevery large frac-
tion of colliding over circulating bunches, the uncertainty on the relative bunch populations
has negligible effect on the cross section measurement [20].

• Orbit drift: possible variations of the reference orbit during the scan may lead to a difference
between the nominal and the real beam separation. In order toquantify a possible bias, the
data from the LHC Beam Position Monitors (BPM) [21] in various locations along the ring
are used to extrapolate, with the YASP steering program [22], the transverse coordinates
of the reference orbit of the two beams at IP2, for each scan step. The (small) observed
variations in the orbit are used to correct the separation values, and the cross section is re-
calculated: a difference of 0.4% (0.1%) is found for the p-Pb(Pb-p) configuration results.

• Beam-beam deflection: due to their electric charge, the two beams exert a repulsive force
upon each other [23]. Such repulsion results in a beam separation slightly different than its
nominal value. The variations of the beam separation are calculated using the MAD-X [24]
code: the effect on the measured cross section (partially correlated between the p-Pb and
Pb-p sessions) is found to be 0.2% (0.3%) for the p-Pb (Pb-p) scan, in the same direction for
the two fills.

• Ghost and satellite charge: the uncertainty on the LHCb ghost-charge measurement [11]
propagates to an uncertainty of 0.1% (0.2%) on the p-Pb (Pb-p) cross-section measurement;
the uncertainty in the LDM satellite-charge measurement [12] propagates to an uncertainty
of 0.04% (0.1%) on the p-Pb (Pb-p) cross-section measurement.

• Dynamicβ ∗: due to their electric charge, the two colliding beams (de-)focus each other in
a separation-dependent way, which alters the measured scanshape. Calculations [25] are
used to estimate the variations ofβ ∗ with the separation, according to the prescription given
in [17]; the effect on the measured cross section (partially correlated between the p-Pb and
Pb-p sessions) is found to be≤ 0.1% for all p-Pb and Pb-p scans.

Summing in quadrature all the above-mentioned uncertainties (summarised in table3), one
gets a total systematic uncertainty of 3.5% for the p-Pb cross sections and 3.2% for the Pb-p cross
sections. The uncertainty applies in the same way to the T0 and V0 cross sections, since the only
non-common term is the background subtraction, which becomes negligible in the quadratic sum.
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Table 3. Relative uncertainties on the measurement of the T0 and V0 reference process cross section in p-Pb
and Pb-p collisions.

Uncertainty p-Pp Pb-p Correlated between p-Pb and Pb-p

Transverse correlations 2.6% 2.3% No
Bunch-by-bunch consistency 1.6% - No
Scan-to-scan consistency 0.5% 1.5% No
Length-scale calibration 1.5% 1.5% Yes
Background subtraction (V0 only) 0.5% 0.5% Yes
Method dependence 0.3% 0.3% No
Beam centering 0.3% 0.2% No
Bunch size vs trigger 0.2% 0.2% No
Bunch intensity 0.5% 0.5% No
Orbit drift 0.4% 0.1% No
Beam-beam deflection 0.2% 0.3% Partially
Ghost charge 0.1% 0.2% No
Satellite charge <0.1% 0.1% No
Dynamicβ ∗ <0.1% 0.1% Partially

Total on visible cross section 3.5% 3.2%

V0- vs T0-based integrated luminosity 1% 1% No

Total on integrated luminosity 3.7% 3.4%

The final results for the p-Pb configuration are

σV0 = (2.09±0.07)b, σT0 = (1.59±0.06)b

and those for the Pb-p configuration are

σV0 = (2.12±0.07)b, σT0 = (1.59±0.05)b.

All uncertainties are systematic.
The length-scale calibration and background-subtractionuncertainties are fully correlated be-

tween the p-Pb and Pb-p results, leading to a total correlated uncertainty between the two measure-
ments of 1.5% for T0 and 1.6% for V0.

5 Comparison between V0- and T0-based luminosities

The visible cross sections measured in the vdM scans are usedto determine the integrated lumi-
nosity for the data collected in the 2013 proton-lead run [26–29]. The luminosity is measured
independently via the V0 or the T0 trigger counts, correctedfor pileup and for background con-
tamination in the same way as done for the vdM scan data, divided by the corresponding cross
sections.

The data sample is divided in several smaller datasets (runs). The integrated luminosity cor-
responding to each run is computed using both reference processes, and the results are compared.

– 13 –



2
0
1
4
 
J
I
N
S
T
 
9
 
P
1
1
0
0
3

Run number
10 20 30 40 50 60

(V
0)

in
t

(T
0)

 / 
L

in
t

L

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

 = 5.02 TeVNNsp-Pb 
          ALICE

Run number
10 20 30 40 50 60

(V
0)

in
t

(T
0)

 / 
L

in
t

L

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

 = 5.02 TeVNNsPb-p 
          ALICE

Figure 11. Ratio of T0- to V0-based integrated luminosities as a function of run number for the p-Pb (left)
and Pb-p (right) data taking. The tiny statistical uncertainties are covered by the data-point markers.

Figure11 shows the ratio of the integrated luminosity obtained with T0 to the one obtained with
V0, as a function of the run number, for the p-Pb and Pb-p running modes. Although the overall
agreement is satisfactory, fluctuations of about 1% around unity are seen in the run-by-run ratio;
since these fluctuations are significantly larger than the tiny statistical uncertainties, a 1% additional
systematic uncertainty is considered in the computation ofthe integrated luminosity uncertainty
(table3).

6 Measurement of the ZDC trigger cross section

The ALICE Zero Degree Calorimeter system (ZDC) [30] is composed of two neutron (ZN) and
two proton (ZP) calorimeters, as well as two small electromagnetic calorimeters (ZEM). The two
ZNs (ZNA and ZNC) are located on opposite sides of IP2, 112.5 maway from the interaction
point. Each ZN is placed at zero degrees with respect to the ALICE z axis and is used to detect
neutral particles at pseudo-rapidities|η | > 8.8. The ZNs were used to measure the cross section
for neutron emission in Pb-Pb collisions at the LHC [31]. A similar study is foreseen in p-Pb
collisions. For this purpose, data have been collected witha trigger condition requiring a signal in
the ZN located on the Pb remnant side (i.e. ZNA for p-Pb, ZNC for Pb-p). In this paragraph, the
measured T0 and V0 cross sections are used to determine indirectly the cross section for events
satisfying such a trigger condition. Since the trigger condition is symmetric with respect to the
swapping of the proton and lead beams, one expects the cross section to be the same in the p-Pb
and Pb-p configurations. Thus, such a measurement provides aconsistency check for the analysis
of data from the two sessions.

The ZDC trigger cross section is calculated from the measured T0 and V0 cross sections,
rescaled by the ratio of the ZDC trigger rate to the rate of thetwo reference processes, as measured
during the two vdM scan sessions. All rates are corrected forbackground and pileup. The ratios
and the resulting cross sections for the ZDC trigger are reported in table4. The results obtained in
the two fills are compatible within the uncorrelated uncertainties. The results obtained with T0 and
V0 are also compatible. Thus, all results are combined to get

σZDC = 2.22b±0.01b(stat) ±0.06b(syst).
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Table 4. Ratio of the ZDC to the reference process rates and ZDC crosssections resulting from such ratios,
for all reference processes and beam configurations. The systematic uncertainties are split into correlated
and uncorrelated components between the p-Pb and the Pb-p sessions.

Configuration Reference RZDC/RReference σZDC = σReference
RZDC

RReference
[b]

p-Pb T0 1.380±0.014 (stat) 2.20± 0.02 (stat)± 0.07 (uncorr.)± 0.03 (corr.)
p-Pb V0 1.046±0.012 (stat) 2.19± 0.02 (stat)± 0.07 (uncorr.)± 0.03 (corr.)
Pb-p T0 1.404±0.005 (stat) 2.24± 0.01 (stat)± 0.06 (uncorr.)± 0.03 (corr.)
Pb-p V0 1.050±0.004 (stat) 2.23± 0.01 (stat)± 0.06 (uncorr.)± 0.03 (corr.)

7 Conclusions

Van der Meer scans were done for proton-lead collisions at
√

sNN = 5.02 TeV at the LHC. The
cross section was measured for two reference processes, based on particle detection by the T0
(4.6 < η < 4.9 and−3.3 < η < −3.0) and V0 (2.8 < η < 5.1 and−3.7 < η < −1.7) detectors.
For the p-Pb configuration (proton beam travelling clockwise), the cross-section uncertainty is
3.5% and the results are:σV0 = 2.09 b± 0.07 b (syst),σT0 = 1.59 b± 0.06 b (syst). For the Pb-
p configuration (proton beam travelling counter-clockwise), the cross-section uncertainty is 3.2%
and the results are:σV0 = 2.12 b± 0.07 b (syst),σT0 = 1.59 b± 0.05 b (syst). The two reference
processes were independently used for the luminosity determination in the 2013 proton-lead run at
the LHC. The luminosities measured via the two processes differ by at most 1% throughout the
whole data-taking period; with such value quadratically added to the reference process cross section
uncertainties, a total uncertainty on the luminosity measurement of 3.7% (3.4%) for the p-Pb (Pb-p)
configuration is obtained. Finally, the measured referencecross sections were used to indirectly
determine the cross section for a third, configuration-independent, reference process, based on
neutron detection by the Zero Degree Calorimeter:σZDC = 2.22 b± 0.01 b (stat)± 0.06 b (syst).
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F. Antinori102 , P. Antonioli99 , L. Aphecetche107, H. Appelshäuser48 , N. Arbor65 , S. Arcelli26 ,
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S. Gorbunov39 , L. Görlich110 , S. Gotovac109 , L.K. Graczykowski126, A. Grelli52 , A. Grigoras34 ,
C. Grigoras34 , V. Grigoriev70 , A. Grigoryan1 , S. Grigoryan61 , B. Grinyov3 , N. Grion104 ,
J.F. Grosse-Oetringhaus34 , J.-Y. Grossiord122 , R. Grosso34 , F. Guber51 , R. Guernane65 , B. Guerzoni26 ,
M. Guilbaud122, K. Gulbrandsen74 , H. Gulkanyan1 , M. Gumbo83 , T. Gunji119 , A. Gupta84 , R. Gupta84 ,
K. H. Khan15 , R. Haake49 , Ø. Haaland17 , C. Hadjidakis46 , M. Haiduc57 , H. Hamagaki119, G. Hamar128 ,
L.D. Hanratty96 , A. Hansen74 , J.W. Harris129 , H. Hartmann39 , A. Harton13 , D. Hatzifotiadou99 ,
S. Hayashi119 , S.T. Heckel48 , M. Heide49 , H. Helstrup35 , A. Herghelegiu72 ,72 , G. Herrera Corral11 ,
B.A. Hess33 , K.F. Hetland35 , B. Hippolyte50 , J. Hladky55 , P. Hristov34 , M. Huang17 , T.J. Humanic19 ,
D. Hutter39 , D.S. Hwang20 , R. Ilkaev93 , I. Ilkiv 71 , M. Inaba120 , G.M. Innocenti25 , C. Ionita34 ,
M. Ippolitov94 , M. Irfan18 , M. Ivanov91 , V. Ivanov79 , A. Jachołkowski27 , P.M. Jacobs68 , C. Jahnke113 ,
H.J. Jang62 , M.A. Janik126 , P.H.S.Y. Jayarathna115 , S. Jena115 , R.T. Jimenez Bustamante58 , P.G. Jones96 ,
H. Jung40 , A. Jusko96 , V. Kadyshevskiy61 , S. Kalcher39 , P. Kalinak54 ,54 , A. Kalweit34 , J. Kamin48 ,
J.H. Kang130 , V. Kaplin70 , S. Kar124 , A. Karasu Uysal63 , O. Karavichev51 , T. Karavicheva51 ,
E. Karpechev51 , U. Kebschull47 , R. Keidel131 , M.M. Khan,iii ,18 , P. Khan95 , S.A. Khan124 ,
A. Khanzadeev79 , Y. Kharlov106 , B. Kileng35 , B. Kim130 , D.W. Kim62 ,40 , D.J. Kim116 , J.S. Kim40 ,
M. Kim40 , M. Kim130 , S. Kim20 , T. Kim130 , S. Kirsch39 , I. Kisel39 , S. Kiselev53 , A. Kisiel126 ,
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F. Meddi22 , A. Menchaca-Rocha59 , J. Mercado Pérez87 , M. Meres36 , Y. Miake120 , K. Mikhaylov61 ,53 ,
L. Milano34 , J. Milosevic,v,21 , A. Mischke52 , A.N. Mishra45 , D. Miśkowiec91 , J. Mitra124 , C.M. Mitu57 ,
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14 Commissariat à l’Energie Atomique, IRFU, Saclay, France
15 COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan
16 Departamento de Fı́sica de Partı́culas and IGFAE, Universidad de Santiago de Compostela, Santiago de

Compostela, Spain
17 Department of Physics and Technology, University of Bergen, Bergen, Norway
18 Department of Physics, Aligarh Muslim University, Aligarh, India
19 Department of Physics, Ohio State University, Columbus, OH, United States
20 Department of Physics, Sejong University, Seoul, South Korea
21 Department of Physics, University of Oslo, Oslo, Norway
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