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Abstract

In 2013, the Large Hadron Collider provided proton-lead andlead-proton collisions at the center-
of-mass energy per nucleon pair

√
sNN = 5.02 TeV. Van der Meer scans were performed for both

configurations of colliding beams, and the cross section wasmeasured for two reference processes,
based on particle detection by the T0 and V0 detectors, with pseudo-rapidity coverage 4.6< η < 4.9,
−3.3< η <−3.0 and 2.8< η < 5.1,−3.7< η <−1.7, respectively. Given the asymmetric detec-
tor acceptance, the cross section was measured separately for the two configurations. The mea-
sured visible cross sections are used to calculate the integrated luminosity of the proton-lead and
lead-proton data samples, and to indirectly measure the cross section for a third, configuration-
independent, reference process, based on neutron detection by the Zero Degree Calorimeters.
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1 Introduction

Luminosity determination in ALICE (A Large Ion Collider Experiment) [1] at the LHC is based on
visible cross sections measured in van der Meer (vdM) scans [2, 3]. The visible cross sectionσvis

seen by a given detector (or set of detectors) with a given trigger condition is a fraction of the total
inelastic interaction cross sectionσinel: σvis = εσinel, whereε is the fraction of inelastic events which
satisfy the trigger condition. In the following, an inelastic event satisfying a given trigger condition will
be referred to as a reference process. Once the reference-process cross section (σvis) is measured, the
collider luminosity can be determined as the reference-process rate divided byσvis. This procedure does
not require knowledge ofε.

In vdM scans the two beams are moved across each other in the transversedirectionsx andy. Measure-
ment of the rateR of the reference process as a function of the beam separation∆x, ∆y allows one to
determine the luminosityL for head-on collisions of a pair of bunches with particle intensitiesN1 andN2

as
L = N1N2 frev/(hxhy), (1)

where frev is the accelerator revolution frequency andhx andhy are the effective beam widths in the
two transverse directions. The effective beam widths are measured as the area below theR(∆x,0) and
R(0,∆y) curve (scan area), respectively, each divided by the head-on rateR(0,0). Under the assumption
that the beam profiles are Gaussian, the effective width is obtained as the Gaussian standard deviation
parameter (from a fit) multiplied by

√
2π. However, the Gaussian assumption is not necessary for the

validity of the method. As will be shown in section 3, other functional forms canbe used, as well as
numerical integration of the curve. The cross sectionσvis for the chosen reference process is then

σvis = R(0,0)/L. (2)

In 2013, the Large Hadron Collider provided proton-lead and lead-proton collisions at the center-of-mass
energy per nucleon pair

√
sNN = 5.02 TeV. Van der Meer scans were performed for both configurations

of colliding beams, and the cross section was measured for two referenceprocesses. In section 2, the
detectors used for the measurements are briefly described, along with the relevant machine parameters
and the adopted scan procedure. In section 3, the analysis procedureis described. In section 4, the
obtained results and uncertainties are presented and discussed. In section 5, the application of the vdM
scan results to the measurement of the integrated luminosity is briefly discussed. In section 6, the vdM
scan results are used to indirectly determine the cross section for a third reference process, based on
neutron detection by the ALICE Zero Degree Calorimeters.

2 Experimental setup

At the ALICE experiment, two vdM-scan sessions were carried out during the 2013 proton-lead data-
taking campaign at the LHC. The proton beam was travelling clockwise in the first session and counter-
clockwise in the second session. In the following, these configurations willbe referred to as p–Pb and
Pb–p, respectively.

In each session, the cross section was measured for two reference processes: one is based on the V0
detector, the other on the T0 detector. A detailed description of these detectors is given in [1], and
their performance is discussed in [4], [5] and [6]. The V0 detector consists of two hodoscopes, with
32 scintillator tiles each, located on opposite sides of the ALICE Interaction Point (IP2), at a distance
of 340 cm (V0-A) and 90 cm (V0-C) along the beam axis, covering the pseudo-rapidity (η) ranges
2.8<η < 5.1 and−3.7<η <−1.7, respectively. In the p–Pb configuration the proton beam is travelling
in the direction from V0-A to V0-C. The T0 detector consists of two arrays of 12 Cherenkov counters
each, located on opposite sides of IP2, at a distance of 370 cm (T0-A) and 70 cm (T0-C) along the beam
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axis, covering the pseudo-rapidity ranges 4.6< η < 4.9 and−3.3< η <−3.0, respectively. In the p–Pb
configuration the proton beam is travelling in the direction from T0-A to T0-C.

The V0-based trigger condition, chosen as the reference process, requires at least one hit in each detector
hodoscope, i.e. on both sides of IP2. As discussed in [7], the efficiency of such a selection is larger
than 99% for non single-diffractive p–Pb collisions. A similar trigger condition defines the T0-based
reference process, with the additional condition that the longitudinal coordinate of the interaction vertex,
evaluated by the trigger electronics via the difference of arrival times in thetwo arrays (measured with a
resolution of 20 ps), lies in the range|z|< 30 cm (wherez = 0 is the nominal IP2 position). This online
cut aims to reject the background from beam-gas and beam-satellite interactions. The cut value of 30 cm
is much larger than the r.m.s. longitudinal size of the interaction region (≃ 6 cm), making signal loss
induced by the cut negligible (<10−5). Since the two LHC beams have the same magnetic rigidity and
different projectile mass, the energy per nucleon of lead ions (1.58 TeV)differs from that of protons (4
TeV). Hence, the p–Pb (Pb–p) collision center-of-mass frame is shifted by 0.47 (-0.47) units of rapidity
with respect to the ALICE frame. Due to this shift and the asymmetric setup of both detectors, there is
no reason to expect identical cross sections for the p–Pb and Pb–p configurations. Therefore, the results
obtained in the two scan sessions are not combined.

In the p–Pb (Pb–p) scan session the proton beam consisted of 272 bunches, while the Pb beam consisted
of 338 (314) bunches. In the p–Pb (Pb–p) scan session 264 (244) bunch pairs per LHC orbit were
colliding at IP2. For both beams and sessions, the minimum spacing between twoconsecutive bunches
was 200 ns. The reference-process rates were recorded (and thecross section measured) separately
for each colliding bunch pair. For each session, two independent measurements per bunch pair were
performed by repeating the (horizontal and vertical) scan pair twice: from negative to positive separation
and then in the opposite direction. The maximum beam separation during the scan was about 0.15 mm,
corresponding to about six times the RMS of the transverse beam profile. In both sessions, theβ ∗ value1

in IP2 was 0.8 m. The current in the ALICE solenoid (dipole) was 30 kA (6 kA), corresponding to a
field strength of 0.5 T (0.7 T). In both sessions, the proton and lead bunchintensities were on the order
of 1010 p/bunch and 108 Pb/bunch, as shown in figure 1. While the proton bunch intensity is reasonably
constant across bunches, large variations are seen for the lead bunches. The structure of such variations
as a function of the bunch position can be explained by different sensitivities to losses in the injection
chain [8].
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Fig. 1: (Colour online) Bunch intensitiesN1 andN2 for all colliding bunches, for an arbitrary timestamp during
the p–Pb (left) and Pb–p (right) scan sessions.

The bunch-intensity measurement is provided for both scan sessions by the LHC instrumentation [9]:

1Theβ (z) function describes the single-particle motion and determines the variation ofthe beam envelope as a function of
the coordinate along the beam orbit (z). The notationβ ∗ denotes the value of theβ function at the interaction point.
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a DC current transformer (DCCT), measuring the total beam intensity, anda fast beam current trans-
former (fBCT), measuring the relative bunch populations. The measuredbeam intensity is corrected
by the fraction of ghost and satellite charge2. The measurement of ghost charge is provided by the
LHCb collaboration, via the rate of beam-gas collisions occurring in nominally empty bunch slots, as
described in [11]. The obtained ghost-charge correction factor to the bunch-intensity productN1N2 is
0.991±0.001 (0.986±0.002) for the p–Pb (Pb–p) session. The bunch intensity is further corrected by
the fraction of satellite charge measured by the LHC Longitudinal Density Monitor (LDM), which mea-
sures synchrotron radiation photons emitted by the beams [12]. The obtained satellite-charge correction
factor to the bunch-intensity productN1N2 is 0.998±0.004 (0.996±0.001) for the p–Pb (Pb–p) session.
This correction is implemented by multiplying theN1N2 product by both the ghost- and satellite-charge
factors.
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Fig. 2: (Colour online) Raw rate of the T0 (left) and V0 (right) process for a typical colliding bunch pair, as a
function of time, during the p–Pb scan session. In each plot,the first (second) bell-shaped structure corresponds to
the beam separation in the horizontal (vertical) directionbeing varied from negative to positive values. The third
(fourth) bell-shaped structure corresponds to the beam separation in the horizontal (vertical) direction being varied
from positive to negative values.

3 Data analysis

An example of the measured raw rate for one typical pair of colliding bunches during the p–Pb scan is
shown in figure 2 for both the T0- and the V0-based processes.

Three corrections are applied to the measured raw rate for each of the tworeference processes.

First, the contamination from beam–satellite and beam–gas interactions in the V0 rate is removed using
the detector timing capabilities. The background is identified via the sum and difference of arrival times
in the two V0 arrays from offline analysis of the data collected during the scan. The arrival times are
obtained by averaging over the signal times of all hits of each array. The background contamination is
measured as the fraction of events in which the sum and difference of times lieoutside of a window of
±4 ns around the values expected for beam-beam collisions (figure 3). The measurement is performed
for each separation value and the corresponding raw rate is correctedby the obtained fraction. The
background contamination in the V0-triggered sample is about 0.5-1% at zero separation and about
20-40% at a separation corresponding to five times the beam RMS. This procedure has negligible effect
(< 0.1%) when applied to the T0 rates, due to the vertex cut in the T0 trigger logic described in section 2.

2The radio-frequency (RF) configuration of the LHC is such that the accelerator orbit is divided in 3564 slots of 25 ns each.
Each slot is further divided in ten buckets of 2.5 ns each. In nominally filled slots, the particle bunch sits in the central bucket of
the slot. Following the convention established in [10], the charge circulating outside of the nominally filled slots is referred to
as ghost charge; the charge circulating within a nominally filled slot but notsitting in the central bucket is referred to as satellite
charge.
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Fig. 3: (Colour online) Correlation between the sum and differenceof arrival times (relative to the bunch crossing)
on the two V0 arrays. The left plot was obtained at zero beam separation; the right plot was obtained at a beam
separation of 0.12 mm, roughly corresponding to five times the RMS of the beam profile. Events lying inside the
area within the continuous lines are flagged as beam-beam interactions.

In order to study a possible contamination of the trigger rate from the intrinsic noise counts of the
detectors, the rate of both trigger signals in absence of beam was measured and found to be zero. The
rate in empty bunch slots with beam circulating was also measured and found to be zero for T0. For
V0, a non-zero rate is measured up to the fourth empty bunch slot after a filled slot. Since the minimum
spacing between filled slots is eight slots, such an after-pulsing effect does not affect the measurement of
the rate in colliding slots.

Second, the probability of multiple interactions in the same bunch crossing (pileup) is taken into account
according to Poisson statistics. The trigger rateR is smaller than the rate of visible interactions by a
factor [1−exp(−µvis)]/µvis, whereµvis = -ln(1−R/ frev) is the average number of visible interactions
occurring in one bunch crossing. The pileup-corrected rate for bunch crossingi, RPU,i, is thus given by

RPU,i =− frev ln(1−RBB,i/ frev) (3)

whereRBB,i is the background-corrected rate. In both scan sessions, the maximum value of µvis during
the scan for the V0 (T0) reference process is about 0.05 (0.03), leading to a maximum correction of about
2.5% (1.5%).

The third correction takes into account that the luminosity decreases with time (as can be seen in figure 2)
due to the beam-intensity decay and to the growth of emittances. In order to correct for this effect, the
evolution of the head-on luminosity in time is parameterised via a fit to the rates at zero separation
measured before, after and in-between scans. The decay rate is satisfactorily described by an exponential
function. Figure 4 shows an example of such a fit. The obtained fit parameters are used to normalize all
rates of a given scan pair to an arbitrary reference time, chosen to lie between the horizontal and vertical
scans.

An example of the obtained correction factors as a function of the beam separation is shown in figure 5.

The corrected rates obtained with the above-described procedure areused to compute the effective beam
widthshx andhy. This is done with both a fit and a numerical method. For the fit method, it was found
that a Gaussian (or double-Gaussian) function does not describe satisfactorily the measured shapes, while
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Fig. 4: (Colour online) Background- and pileup-corrected head-onrates of the T0 (left) and V0 (right) reference
process as a function of time for one interacting bunch crossing in the p–Pb scan session. The solid red curve is an
exponential fit to the data points.
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Fig. 5: (Colour online) Background (RBB/Rraw), pileup (RPU/RBB) and luminosity decay (RDC/RPU) correction
factors to the T0 (left) and V0 (right) rates as a function of the beam separation for one typical pair of colliding
bunches during the first p–Pb vertical scan. Due to the different size of the background correction factor for T0
and V0, the two figures have different vertical scales.

reasonable values ofχ2 per degree of freedom (typically<2) are obtained by using a modified Gaussian
function

R(∆x,0) = R(0,0)exp[−(∆x−µ)2/2σ2] (1+ p2∆x2+ p4∆x4+ p6∆x6) (4)

and a similar one forR(0,∆y). An example of the quality of the fit is shown in figure 6. In the fit approach,
the scan area and the head-on rateR(0,0) are obtained from the fit parameters. In the numerical method,
the scan area is obtained as the sum of all rates multiplied by the step size, andR(0,0) is the measured
rate at zero separation. The effective beam widths and head-on ratesobtained with the two methods agree
within 0.5%. Since the effective beam widths are independent of the process used to measure them, a
consistency check is performed by computing the ratio of the widths obtained with T0 and V0, for each
colliding bunch. The results are shown in figure 7 for the p–Pb scan. Although the average value of the
ratios is compatible with unity, fluctuations beyond statistical uncertainties are observed, which are taken
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Fig. 6: (Colour online) Rates of the T0 (left) and V0 (right) reference process as a function of beam separation
for one typical pair of colliding bunches in the first vertical p–Pb scan. The solid red curve is a fit according to
equation 4.

into account in the evaluation of the systematic uncertainties.

The measured beam widths are corrected by a length-scale calibration factor. This correction aims to fine
tune the conversion factor (known with limited precision) between the current in the steering magnets
and the beam displacement. The calibration is performed in a dedicated run, where the two beams are
moved simultaneously in the same direction in steps of equal size; the changes inthe interaction vertex
position provide a measurement of the actual beam displacement, which is used to extract a correction
factor to the nominal displacement scale. The displacement of the vertex position is measured using
data from the ALICE Inner Tracking System [13] and Time Projection Chamber [14]. This is shown in
figure 8, left, for the horizontal length-scale calibration run. The correction factor is obtained as the slope
parameter of a linear fit to the vertex displacement as a function of the nominaldisplacement (figure 8,
right). Since this correction affects the global beam-displacement scale, all measured beam widths are
multiplied by the correction factors 0.98±0.01 for the horizontal scale and 1.02±0.01 for the vertical
scale.

The cross section for each colliding bunch pair and reference process is calculated according to equa-
tions 1 and 2 from the measured bunch intensities, beam widths and head-onrates. As there are two
measured head-on rates per scan pair (one from the vertical and one from the horizontal scan), the
arithmetic mean of the two is used, after checking that the two values are compatible within statistical
uncertainties.

The measured cross sections (obtained with the numerical method) for the T0- and V0-based processes
during the first scan of the p–Pb and Pb–p sessions are shown in figure9 for all the colliding bunch
pairs, as a function of the product of the colliding bunch intensities (N1N2). No dependence of the
results onN1N2 is observed. Fluctuations beyond the statistical uncertainties are observed, and are more
pronounced for the p–Pb session: such an effect is taken into account as a systematic uncertainty (see
section 4).
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Fig. 7: (Colour online) Ratio between the horizontal (left) and vertical (right) effective beam widths obtained (via
numerical method) with the T0 and V0 reference processes in the p–Pb scan session, as a function of the colliding
bunch pair ID number. The solid red lines are zero-order-polynomial fits to the data.

Method σV0 [b] σT0 [b]
First scan Second scan Average First scan Second scan Average

Numerical 2.087±0.001 2.098±0.001 2.093±0.001 1.590±0.001 1.598±0.001 1.594±0.001
Fit 2.087±0.001 2.099±0.001 1.596±0.001 1.599±0.001

Table 1: Cross section for the V0- and T0-based reference process in two p–Pb vdM scans, as obtained with the
numerical and fit methods. The weighted average between the numerical results of the two scans, retained as the
final result, is also reported. The quoted uncertainties arestatistical.

Method σV0 [b] σT0 [b]
First scan Second scan Average First scan Second scan Average

Numerical 2.110±0.002 2.141±0.003 2.122±0.002 1.586±0.002 1.607±0.003 1.594±0.002
Fit 2.106±0.002 2.138±0.002 1.581±0.002 1.605±0.002

Table 2: Cross section for the V0- and T0-based reference process in two Pb–p vdM scans, as obtained with the
numerical and fit methods. The weighted average between the numerical results of the two scans, retained as the
final result, is also reported. The quoted uncertainties arestatistical.

4 Results and systematic uncertainties

For both processes and scan sessions the weighted average of resultsfrom all colliding bunch pairs is
computed, for each scan and method. The results for all scans and methods are summarised in tables 1
and 2. The numerical and fit method agree to better than 0.4% for all scans.The numerical result is
preferred, since it does not imply any assumption on the scan shape. Foreach session, the weighted
average of the results of the two performed scans is retained as the final result. The differences between
the two methods and between different scans in the same session are taken into account in the evaluation
of the systematic uncertainties.

The sources of systematic uncertainty considered are listed below; unlessotherwise specified, the quoted
uncertainties apply to both the T0 and the V0 cross-section measurements.
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– Bunch-by-bunch consistency: the RMS of the distribution of the cross section measured for all
colliding bunch pairs (2% for the p–Pb scans and 1% for the Pb–p scans)is retained as a systematic
uncertainty.

– Scan-to-scan consistency: the difference between the first and second scan in the same session
(0.5% for the p–Pb scans and 1.5% for the Pb–p scans) is retained as a systematic uncertainty.

– Trigger dependence of the measured beam widths: as shown in figure 7for the p–Pb session,
discrepancies up to 1% are observed between the effective beam widthsmeasured from T0 and
V0 data, for both the horizontal and vertical directions. The same effectis observed in the Pb–p
scan session. Since such discrepancies are beyond the statistical uncertainties, a 1.4% systematic
uncertainty (1% for the vertical and 1% for the horizontal direction) is added to account for them.

– Background subtraction: in order to evaluate a possible bias arising from beam-beam events iden-
tified as beam-gas by the cut described in section 3, the analysis has been repeated by increasing
the width of the window for beam-beam events from 8 to 14 ns: for the V0 cross section, a dif-
ference of 0.45% is found and added to the systematic uncertainty, for bothconfigurations. The
difference is negligible (≪ 0.1%) for the T0 cross section.

– Method dependence, quantified via the maximum difference between the results obtained with the
numerical and the fit method for each scan session: 0.4% for the p–Pb scans and 0.3% for the Pb–p
scans.

– Beam centering: the measurement ofR(0,0) can be affected by a non-optimal alignment of the two
beams in the head-on position. Such misalignment is quantified, for thex andy directions, via the
µ parameter of equation 4. The value ofµ is generally compatible with zero, with the exception of
a few scans (the first horizontal and the second vertical p–Pb scan, the first horizontal Pb–p scan),
where it reaches values up to 2.5µm. The effect of such misalignment on the measured head-
on rates was estimated using equation 4 and the obtained fit parameters: the resulting systematic
uncertainty on the cross-section measurement is 0.3% (0.2%) for the p–Pb (Pb–p) configuration.
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Fig. 9: (Colour online) Cross sections for the T0 and V0 processes measured in the first scan of the p–Pb (left)
and Pb–p (right) sessions, as a function of the product of theintensities of the colliding bunch pair. The results are
obtained with the numerical method. Only the statistical uncertainties are shown.

– Luminosity-decay correction: when varying the luminosity decay parameters within their uncer-
tainties, a negligible (< 0.1%) effect on the measured cross section is observed.

– Length-scale calibration: 1.5%, from the quadratic sum of the statistical uncertainties on the hori-
zontal and vertical scale factors reported in section 3.

– Orbit drift: possible variations of the reference orbit during the scan may lead to a difference
between the nominal and the real beam separation. In order to quantify a possible bias, the data
from the LHC Beam Position Monitors (BPM) [15] in various locations along the ring are used to
extrapolate, with the YASP steering program [16], the transverse coordinates of the reference orbit
of the two beams at IP2, for each scan step. The (small) observed variations in the orbit are used
to correct the separation values, and the cross section is re-calculated:a difference of 0.4% (0.1%)
is found for the p–Pb (Pb–p) configuration results.

– Bunch intensity: the uncertainty on the DCCT beam-current measurement [17] is 0.46% (0.54%)
for the p–Pb (Pb–p) scan session; given the very large fraction of colliding over circulating bunches,
the uncertainty on the relative bunch populations has negligible effect on the cross section mea-
surement [18].

– Ghost and satellite charge: the uncertainty on the LHCb ghost-charge measurement [11] propa-
gates to an uncertainty of 0.1% (0.2%) on the p–Pb (Pb–p) cross-section measurement; the uncer-
tainty in the LDM satellite-charge measurement [12] propagates to an uncertainty of 0.04% (0.1%)
on the p–Pb (Pb–p) cross-section measurement.

– Dynamicβ ∗: due to their electric charge, the two colliding beams (de-)focus each otherin a
separation-dependent way, which alters the measured scan shape. Calculations [19] are used to
estimate the variations ofβ ∗ with the separation, according to the prescription given in [20]: the
effect on the measured cross section (partially correlated between the p–Pb and Pb–p sessions) is
found to be≤ 0.1% for all p–Pb and Pb–p scans.

– Beam-beam deflection: due to their electric charge, the two beams exert a repulsive force upon
each other [21]. Such repulsion results in a beam separation slightly different than its nominal
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Uncertainty p–Pp Pb–p Correlated between p–Pb and Pb–p
Bunch-by-bunch consistency 2% 1% No
Scan-to-scan consistency 0.5% 1.5% No
Length-scale calibration 1.5% 1.5% Yes
Bunch size vs trigger 1.4% 1.4% No
Background subtraction (V0 only) 0.5% 0.5% Yes
Method dependence 0.4% 0.3% No
Beam centering 0.3% 0.2% No
Bunch intensity 0.5% 0.5% No
Ghost charge 0.1% 0.2% No
Satellite charge <0.1% 0.1% No
Orbit drift 0.4% 0.1% No
Dynamicβ ∗ <0.1% 0.1% Partially
Beam-beam deflection 0.2% 0.3% Partially
Total on visible cross section 3.0% 2.8%
V0- vs T0-based integrated luminosity 1% 1% No
Total on integrated luminosity 3.2% 3.0%

Table 3: Relative uncertainties on the measurement of the T0 and V0 reference process cross section in p–Pb and
Pb–p collisions.

value. The variations of the beam separation are calculated using the MAD-X [22] code: the effect
on the measured cross section (partially correlated between the p–Pb and Pb–p sessions) is found
to be 0.2% (0.3%) for the p–Pb (Pb–p) scan, in the same direction for the two fills.

Summing in quadrature all the above-mentioned uncertainties (summarised in table3), one gets a total
systematic uncertainty of 3.0% for the p–Pb cross sections and 2.8% for the Pb–p cross sections. The
uncertainty applies in the same way to the T0 and V0 cross sections, since the only non-common term is
the background subtraction, which becomes negligible in the quadratic sum.

The final results for the p–Pb configuration are

σV0 = 2.09b±3.0%= (2.09±0.06)b, σT0 = 1.59b±3.0%= (1.59±0.05)b

and those for the Pb–p configuration are

σV0 = 2.12b±2.8%= (2.12±0.06)b, σT0 = 1.59b±2.8%= (1.59±0.05)b.

All uncertainties are systematic.

The length-scale calibration and background-subtraction uncertainties are fully correlated between the
p–Pb and Pb–p results, leading to a total correlated uncertainty between thetwo measurements of 1.5%
for T0 and 1.6% for V0.

The measured V0 cross section for Pb–p collisions is compatible, within uncertainties, with the visible
cross section of (2.09±0.12) b measured by the LHCb experiment for an equivalent beam configuration
in a similar pseudo-rapidity range (3< η < 5) [23].

5 Comparison between V0- and T0-based luminosities

The visible cross sections measured in the vdM scans are used to determine the integrated luminosity for
the data collected in the 2013 proton-lead run [24]. The luminosity is measuredindependently via the
V0 or the T0 trigger counts, corrected for pileup and for background contamination in the same way as
done for the vdM scan data, divided by the corresponding cross sections.
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The data sample is divided in several smaller datasets (runs). The integrated luminosity corresponding to
each run is computed using both reference processes, and the results are compared. Figure 10 shows the
ratio of the integrated luminosity obtained with T0 to the one obtained with V0, as a function of the run
number, for the p–Pb and Pb–p running modes. Although the overall agreement is satisfactory, fluctua-
tions of about 1% around unity are seen in the run-by-run ratio; since these fluctuations are significantly
larger than the tiny statistical uncertainties, a 1% additional systematic uncertainty is considered in the
computation of the integrated luminosity uncertainty (table 3).
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Fig. 10: Ratio of T0- to V0-based integrated luminosities as a function of run number for the p–Pb (left) and Pb–p
(right) data taking. The tiny statistical uncertainties are covered by the data-point markers.

6 Measurement of the ZDC trigger cross section

The ALICE Zero Degree Calorimeter system (ZDC) [25] is composed of twoneutron (ZN) and two
proton (ZP) calorimeters, as well as two small electromagnetic calorimeters (ZEM). The two ZNs (ZNA
and ZNC) are located on opposite sides of IP2, 112.5 m away from the interaction point. Each ZN is
placed at zero degrees with respect to the ALICEz axis and is used to detect neutral particles at pseudo-
rapidities|η | > 8.8. The ZNs were used to measure the cross section for neutron emission inPb–Pb
collisions at the LHC [26]. A similar study is foreseen in p–Pb collisions. For this purpose, data have
been collected with a trigger condition requiring a signal in the ZN located on thePb remnant side (i.e.
ZNA for p–Pb, ZNC for Pb–p). In this paragraph, the measured T0 andV0 cross sections are used to
determine indirectly the cross section for events satisfying such a trigger condition. Since the trigger
condition is symmetric with respect to the swapping of the proton and lead beams,one expects the cross
section to be the same in the p–Pb and Pb–p configurations. Thus, such a measurement provides a
consistency check for the analysis of data from the two sessions.

The ZDC trigger cross section is calculated from the measured T0 and V0 cross sections, rescaled by
the ratio of the ZDC trigger rate to the rate of the two reference processes,as measured during the two
vdM scan sessions. All rates are corrected for background and pileup. The ratios and the resulting cross
sections for the ZDC trigger are reported in table 4. The results obtained in the two fills are compatible
within the uncorrelated uncertainties. The results obtained with T0 and V0 arealso compatible. Thus,
all results are combined to get

σZDC = 2.21b±0.3%(stat) ±2.4%(syst) = 2.21b±0.01b(stat) ±0.05b(syst).
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Configuration Reference RZDC/RReference σZDC = σReference
RZDC

RReference
[b]

p–Pb T0 1.380±0.014 (stat.) 2.20±0.02 (stat.)± 0.06 (syst. uncorr.)±0.03 (syst. corr.)
p–Pb V0 1.046±0.012 (stat.) 2.19±0.02 (stat.)± 0.06 (syst. uncorr.)±0.03 (syst. corr.)
Pb–p T0 1.404±0.005 (stat.) 2.24±0.01 (stat.)± 0.05 (syst. uncorr.)±0.03 (syst. corr.)
Pb–p V0 1.050±0.004 (stat.) 2.23±0.01 (stat.)± 0.05 (syst. uncorr.)±0.03 (syst. corr.)

Table 4: Ratio of the ZDC to the reference process rates and ZDC cross sections resulting from such ratios,
for all reference processes and beam configurations. The uncertainties are split into correlated and uncorrelated
components between the p–Pb and the Pb–p sessions.

7 Conclusions

Van der Meer scans were done for proton-lead collisions at
√

sNN = 5.02 TeV at the LHC. The cross sec-
tion was measured for two reference processes, based on particle detection by the T0 (4.6< η < 4.9 and
−3.3< η <−3.0) and V0 (2.8< η < 5.1 and−3.7< η <−1.7) detectors. For the p–Pb configuration
(proton beam travelling clockwise), the measured cross sections areσV0 = 2.09 b± 3.0% (syst) and
σT0 = 1.59 b± 3.0% (syst). For the Pb–p configuration (proton beam travelling counter-clockwise),
the measured cross sections areσV0 = 2.12 b± 2.8% (syst) andσT0 = 1.59 b± 2.8% (syst). The two
reference processes were independently used for the luminosity determination in the 2013 proton-lead
run at the LHC. The luminosities measured via the two processes differ by atmost 1% throughout the
whole data-taking period; with such value quadratically added to the reference process cross section un-
certainties, a total uncertainty on the integrated luminosity measurement of 3.2% (3.0%) for the p–Pb
(Pb–p) configuration is obtained. Finally, the measured reference cross sections were used to indirectly
determine the cross section for a third, configuration-independent, reference process, based on neutron
detection by the Zero Degree Calorimeter:σZDC = 2.21 b± 0.3% (stat)± 2.4% (syst).
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