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Abstract

In this work we improve existing calculations of radiative energy loss by computing corrections that implement energy-momentum
conservation, previously only implemented a posteriori, in a rigorous way. Using the path-integral formalism, we compute in-
medium splittings allowing transverse motion of all particles in the emission process, thus relaxing the assumption that only the
softest particle is permitted such movement. This work constitutes the extension of the computation carried out for x → 1 in
Phys. Lett. B718 (2012) 160-168, to all values of x, the momentum fraction of the energy of the parent parton carried by the
emitted gluon. In order to accomplish a general description of the whole in-medium showering process, in this work we allow for
arbitrary formation times for the emitted gluon (the limit of small formation times was previously employed in [J.-P. Blaizot, F.
Dominguez, E. Iancu, and Y. Mehtar-Tani, JHEP1301 (2013) 143], for the g → gg splitting). We provide general expressions and
their realisation in the path integral formalism within the harmonic oscillator approximation.
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1. Introduction

Jet Quenching mechanisms, the generic name given to a collection of energy loss processes that high transverse
momentum objects suffer when propagating through a very hot and dense medium, are one of the best tools to analyze
this new state of matter. This phenomenon has been experimentally confirmed through several observations made
firstly at the Relativistic Heavy Ion Collider (RHIC) and presently at the Large Hadron Collider (LHC) (as an example,
see [1–3]). Through the comparison of jet quenching models with data, it is possible to see that most models claim
to describe some or all of jet quenching observables at the same time (as an example, see [4]). But even though there
is a qualitative agreement with data, there is also space for improvements. The ones that will be addressed in this
manuscript are related to finite energy corrections. These are particularly relevant to obtain an analytical expression
that can represent the full in-medium gluon emission kinematics beyond current limitations. In this way, this new
ingredient can be used as an input for Monte Carlo codes avoiding further assumptions lacking a theoretical basis.
Some efforts in this direction have been already made in [5, 6]. This manuscript is organized as follows: in section 2,
the setup of the calculation and the results for the total spectrum are presented, including the results of the Dirac and
colour structure (medium averages) in section 2.1. The final conclusions are presented in section 3.

2. Medium-induced gluon radiation

During the propagation trough an extended coloured medium, a particle can experience energy loss phenomena
that can occur by medium-induced gluon radiation (the dominant mechanism for high energy particles). The inter-
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action is mediated by very soft gluons with only transverse momenta of the order of the characteristic scale of the
medium. The resulting propagator is a Green’s function

Gα fαi (x f +, x f ; xi+, xi|p+) =

∫ r(x f +)=x f

r(xi+)=xi

Dr(ξ) exp

 ip+

2

∫ x f +

xi+

dξ
(

dx
dξ

)2
 Wα fαi (x f +, xi+; r(ξ)) , (1)

that describes the Brownian motion of the particle in the transverse plane, from time1 xi+ and initial transverse position
xi to time x f + and final transverse coordinate x f , at the same time that its colour field is rotated from αi to α f by the
action of the Wilson line,

Wα fαi (x f +, xi+; r(ξ)) = P exp
{

ig
∫ x f +

xi+

dξA−(ξ, r(ξ))
}
. (2)

To describe the gluon emission off a quark in a finite medium, carrying a finite fraction x of the initial energy p, two
separate contributions must be considered: the gluon emission vertex can take place outside (eq. (4)) or inside (eq.
(5)) the medium. In each case, a Green’s function is associated with every in-medium propagator. This kinematical
description was already made in [6] for the case of the 3-gluon vertex, but assuming small formation times, t f orm,
with respect to the medium length L+, t f orm << L+ (infinite medium limit). While this approximation may be valid
for a comfortable region of phase space, it may not hold for the partons radiated near the edge of the medium. As
most Monte Carlo codes need this correction, we do not assume such constrain in the description of the in-medium
showering process. The total double differential spectrum of the in-medium process where a gluon with 4-momentum
k = xp is emitted from a quark that remains with a 4-momentum q = (1−x)p, will be the sum of the two contributions:

d2I
dΩkdΩq

=
〈
|Mtot |

2
〉

=
〈
|Mout |

2
〉

+
〈
|Min|

2
〉

+ 2Re
〈
MinM†out

〉
, (3)

where dΩk = (2π)−3dkdk+/(2k+), and similarly for dΩq. Since the calculation is performed for a fixed, but arbitrary,
medium configuration, an average over all possible coloured configurations must be carried out. This is represented
in the above equation by 〈· · · 〉.The amplitudes for each diagram, after some algebraic simplifications, can be written
as

Tout = −
g

(2π)3

∫ +∞

−∞

dx dx0 e−ix·(k+q)+ix0·p0 T a
BA1

GA1A(L+, x; x0+, x0|p0+)
1

4(k · q)
ū(q)ε∗k (k + q)γ+γ−

× Mh(p0+)δ(k + q − p0)+ , (4)

Tin =
ig

(2π)3

∫ L+

x0+

dx1+

∫ +∞

−∞

dx0 dx1 dy dz e−iz·k−iy·q+ix0·p0GBB1 (L+, y; x1+, x1|q+)T a1
B1A1

GA1A(x1+, x1; x0+x0|p0+)

×Gaa1 (L+, z; x1+, x1|k+)
1
2

ū(q)ε∗kγ−Mh(p0+)δ(k + q − p0)+ , (5)

where
〈
|Mout |

2
〉

=
〈|Tout |

2〉
σel

, and σel is the cross section of the in-medium elastic channel. The fundamental coloured
indices are represented by uppercase Latin letters and the adjoint ones by lowercase Latin letters. The coordinate x0+

refers to the beginning of the medium, x1+ is the longitudinal position of the in-medium emission vertex, and x0, x1,
y and z are the transverse coordinates of the corresponding propagators at times x0+, x1+ and L+ respectively. The
Mh(p0+) represents the hard scattering amplitude that generates the original quark and is assumed to be unmodified
by the medium.

2.1. Computing the medium averages

Due to the high energy limit that is assumed throughout this calculation, the medium averages can be computed
locally, i.e., it is understood that the dynamics that lead to the modifications of the medium colour structure occur
in a timescale that is much larger than the propagation time of the penetrating particle. This fact, together with the
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I II III
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The amplitudes for each diagram, after some algebraic simplifications,
can be written as

Tout = − g

(2π)3

� +∞

−∞
dx dx0 e−ix·(k+q)+ix0·p0 T a

BA1
GA1A(L+,x; x0+,x0|p0+)

× 1

4(k · q)
ū(q)�∗k(k + q)γ+γ−Mh(p0+)δ(k + q − p0)+ , (4)

for the left diagram of figure 1 and

Tin =
ig

(2π)3

� L+

x0+

dx1+

� +∞

−∞
dx0 dx1 dy dz e−iz·k−iy·q+ix0·p0

× GBB1(L+,y; x1+,x1|q+)T a1
B1A1

GA1A(x1+,x1; x0+x0|p0+)

× Gaa1(L+, z; x1+,x1|k+)
1

2
ū(q)�∗kγ−Mh(p0+)δ(k + q − p0)+ , (5)

for the right diagram, where �|Mout|2� =
�|Tout|2�

σel
, being σel the cross section43

of the in-medium elastic channel. The fundamental coloured indices are44

represented by uppercase latin letters and the adjoint ones by lowercase latin45

letters. The coordinate x0+ refers to the beginning of the medium x1+ the46

longitudinal position of the in-medium emission vertex, and x0, x1, y and z47

the transverse coordinates of the corresponding propagators at times x0+, x1+48

and L+ respectively. The Mh(p0+) represents the hard scattering amplitude49

that generates the original quark and is assumed to be unmodified by the50

medium.51

It can be shown that the Dirac algebra for each contribution from equation
(3) reads to:

�
|Mout|2

�
∝ 2g2x(1 − x)

((1 − x)k − xq)2
Pg←q(x) , (6)

�
MinM

†
out

�
∝ g2

xp+

(1 − x)k − xq

((1 − x)k − xq)2 · ((1 − x)(1 + (1 − x))k1 − xq1) , (7)

�
|Min|2

�
∝ g2

2p2
+x2(1 − x)

((xq1 − (1 − x)k1) · (xq2 − (1 − x)k2)

+(1 − x)2k1 · k2

�
, (8)

where k, q refer to the gluon and quark transverse momenta outside of the52

medium respectively and k1(2), q1(2) to the transverse momenta inside of53
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Figure 1: Diagrammatic separation of the
〈
|Min|

2
〉
, where the amplitude is represented by black lines and the conjugate

one by red lines. The solid lines represent the quarks while the dashed ones the gluons.

decoupling of the Brownian propagator from the Wilson line in equation (1), allows us to perform a diagrammatic sep-
aration into regions where there is a fixed number of Wilson lines. Consequently, it is possible to solve independently
the colour structure and the transverse momentum broadening.

As we do not assume constrains for the t f orm three regions are identified, being all non-trivial contributions only
present in the

〈
|Min|

2
〉

term (see figure 1). To calculate the medium averages in each region, we assume that the particle
undergoes multiple soft scatterings with the medium. To simplify the calculation of the several n-point functions from
each region, we work in the large Nc limit, and thus, the gluon can be understood as a quark-antiquark pair. The
procedure to calculate the medium averages is to expand the Wilson lines in an infinitesimal interval,

W(x)i j = W(x)iα

{
δiα

(
1 −

CF

2
B(0)

)
− iT a

α jA
a(x)

}
, (6)

up to second order of the fields, B(x−y) ∝ 〈Aa(x)Aa(y)〉, re-iterate the process until all the longitudinal path is covered
and the result can be exponentiated afterwards. Doing so, the simplest object that one can calculate, the dipole formed
by two Wilson lines (2-point function), reads to2:

1
N

Tr
〈
W(x)W†(y)

〉
= eCF v(x−y) = exp

{
−

CF

2

∫
dx+σ(x − y)n(x+)

}
, (7)

where v(x − y) = B(0) − B(x − y), σ(x − y) is the dipole cross section and n(x+) the longitudinal density of scattering
centers. Applying this procedure, region I is trivially given by a dipole (equation (7)) plus a Dirac delta function that
allows to close region II into a quadrupole structure, that factorizes into two dipoles in the large Nc limit:〈[

W(rq)W†(rg)
]
i j

[
W(rg)W†(rq)

]
kl

〉
−−−−−→
Nc→∞

〈
W(rq)W†(rg)

〉 〈
W(rg)W†(rq̄)

〉
δi jδkl . (8)

The transverse coordinate of the quark in the (complex conjugate) amplitude is denoted by rq(q̄) and the one from the
gluon by rg. Finally, region III, in the large Nc limit, closes as an independent dipole and quadrupole:〈

Tr
(
W†(rḡ)W(rg)

)
Tr

(
W†(rg)W(rḡ)W†(rq̄)W(rq)

)〉
−−−−−→
Nc→∞

〈
Tr

(
W†(rḡ)W(rg)

)〉 〈
Tr

(
W†(rg)W(rḡ)W†(rq̄)W(rq)

)〉
. (9)

It can be shown that, within the employed approximations, where the dipole cross section is approximated by its
small distance component3 [7], σ(r) = 1

2 q̂r2, the 4-point function from the above equation factorizes into a linear
combination of two dipoles with pre-factors A1 and A2:〈

Tr
(
W†(rg)W(rḡ)W†(rq̄)W(rq)

)〉
∝

A1

〈
Tr

(
W†(rg)W(rḡ)

)〉 〈
Tr

(
W†(rq̄)W(rq)

)〉
− A2

〈
Tr

(
W†(rg)W(rq)

)〉 〈
Tr

(
W†(rq̄)W(rḡ)

)〉
. (10)

1Using light-cone coordinates, a = (a0, ax, ay, az) = (a+, a−, a) where a± = (a0 ± az)/
√

2 and a = (ax, ay) the transverse 2-vectors.
2The colour pre-factor CF can be part of the σ definition.
3It is possible to identify the transport coefficient q̂ that translates the average transverse momentum squared acquired by the particle when

crossing the medium per mean free path, λ.
3



/ Nuclear Physics A 00 (2014) 1–4 4

The first term, schematically represented in figure 2 (left), is dominated by an independent propagation with the
factorization of both final particles, a contribution that was already identified in [6]. In this case, the final particles
will experience broadening independently. In the second term both particles are correlated and therefore, will emit
coherently (see figure 2, right).

I II III I II III

Figure 2: Diagrammatic representation of the two propagation regimes found with equation (10). Region I translates
the random walk of the initial quark, region II the gluon formation time, during which quark and gluon are colour
correlated by definition, and finally, in region III (left) quark and gluon propagate independently or (right) remain
colour connected.

The soft [7–10] and hard [5] limit radiation spectra are recovered from equation (10) in the considered limits, i.e.,
when rq = rq̄ and rg = rḡ, respectively. The result is the dipole formed by the final gluon or quark in each case.

3. Conclusions

In this work we were able to extend previous derivations of the in-medium gluon emission off a quark beyond
the eikonal approximation, for the case of a double differential spectrum, in energy and transverse momentum (finite
energy corrections to the inclusive energy spectrum were already calculated in [7]). In particular, we were able to
assign a Brownian motion in the transverse plane to all propagating particles, going beyond our previous work of [5],
and as previously done in [6]. Nonetheless, although the results are presented in the large Nc limit, the results are
improved with respect to [6] as we do not assume any constrain on the t f orm. Still, the results previously derived are
recovered in the considered limit. Moreover, since a finite medium is considered, the vacuum interference term is
included in the calculation of the Dirac and colour structure.
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