

The LHCb Upgrade

Outline

- LHCb Detector
- Selected Physics Results
- Upgrade Plans
- Summary

On behalf of the LHCb Collaboration

Tomasz Szumlak AGH-UST

XXII International Workshop on Deep-Inelastic Scattering (DIS) 28/04 - 02/05/2014, Warsaw, POLAND

- ☐ LHCb is dedicated for studying heavy quark flavour physics
- \square It is a single arm forward spectrometer with pseudorapidity coverage 2 < η < 5
- □ Precise tracking system (VELO, upstream and downstream tracking stations and 4 Tm magnet)
- □ Particle identification system (RICH detectors, calorimeters and muon stations)
- □ Partial information from calorimeters and muon system contribute to L0 trigger (hardware) that works at LHC clock 40 MHz
- ☐ Full detector readout at 1 MHz

"Input" for the LHCb detector – LHC performance

	design	2011	2012	
beam energy	7 TeV	3.5 TeV	4 TeV	
bunches	2808	1380	1380	
bunch spacing	25 ns	50 ns	50 ns	
bunch intensity	1.15x10	1.45x10	1.7x10	
peak luminosity	10	≈3.5×10	≈7.7×10	

Operation conditions of the LHCb in 2011

- \square recorded luminosity L \approx 1,2 [fb⁻¹] at beam energy 3.5 [TeV]
- \square LHCb stably operated at $L_{inst} = 4.0 \times 10^{32} [cm^{-2}s^{-1}]$ (nominal 2.0 $\times 10^{32}$)
- \square Average number of visible interactions per x-ing $\mu = 1.4$ (nominal 0.4)
- □ Data taking efficiency ~90 % with 99 % of operational channels
- ☐ HLT (High Level Trigger) input ~ 0.85 MHz, output ~ 3 kHz
- ☐ Ageing of the sub-detectors monitored according to expectations

Luminosity leveling

- ☐ Use displaced p-p beams
- ☐ Lower inst. Luminosity
- ☐ Stable conditions during the run
- ☐ Lower pile-up

Operation conditions of the LHCb in 2012

- ☐ Beam energy **4.0** [TeV] (15 % increase of the b-barb x-section)
- \Box Keep the luminosity at $L_{inst} = 4.0 \times 10^{32} \text{ [cm}^{-2}\text{s}^{-1}\text{]}$ for this year
- \square Average number of visible interactions per x-ing slightly higher $\mu = 1.6$
- ☐ Keep high data taking efficiency and quality
- ☐ HLT (High Level Trigger) input ~ 1.0 MHz, output ~ 5 kHz (upgraded HLT farm and revisited code)
- □ Collected ~ 2.1 fb⁻¹ of collision data

Selected physics results (1)

CMS-PAS-BPH-13-007 LHCb-CONF-2013-012

$B^0 \rightarrow K^* \mu^+ \mu^-$: NP in loops

- ☐ The largest sample collected
- Clear theoretical quantity
- Sensitive to Wilson coefficients
- World's best measurement

$$q_0^2 = 4.9 \pm 0.9 \text{ GeV}/c^2$$

 $q_{0,SM}^2 \in [3.9, 4.4]\text{GeV}/c^2$

$B_s \rightarrow \mu^+\mu^-$: constraining SUSY

- ☐ Strongly suppressed in the SM
- Theory known with high precision
- Enhanced in MSSM
- World's best measurement **LHCb & CMS**

$$BR(B^0 \to \mu^+ \mu^-) = (3.6^{+1.6}_{-1.4}) \times 10^{-10}$$

$$BR(B_S^0 \to \mu^+ \mu^-) = (2.9 \pm 0.7) \times 10^{-9}$$

Selected physics results (2)

$B^0 \rightarrow K^*\mu^+\mu^-$: NP in loops

- □ Observed forward-backward asymmetry very similar to that predicted by the SM
- ☐ Cannot clearly state any discrepancy sample limitation
- New base of observables proposed
- ☐ Reduced dependency on hadronic form factors
- ☐ Observed discrepancy may be a hint of new heavy neutral Z' particle

(PRL 111, 191801 (2013))

8

Overall summary of Run I

LHCb:

- ☐ Superb performance greatly exceeded any expectations
- □ Stable operation at inst. luminosity **100%** higher than nominal
- □ General purpose detector in forward direction
- Many world leading results
- □ Over 180 papers published!

The pinch of salt:

- ☐ No conclusive BSM physics discovered
- ☐ There is still room for NP!
- Need push **precision** to the limits in order to challenge theoretical predictions
- □ Need more data

Data taking road map for LHCb before the upgrade

Upgrade Plans

Why upgrade (i.e., what's wrong with the current design...?)

Superb performance – but 1 MHz readout is a sever limit

- □ can collect ~ 2 fb⁻¹ per year, ~ 5 fb⁻¹ for the "phase 1" of the experiment
- ☐ this is not enough if we want to move from **precision** exp to **discover**y exp
- □ cannot gain with increased luminosity trigger yield for **hadronic events saturates**

Upgrade plans for LHCb do not depend on the LHC machine

■ we use fraction of the luminosity at the moment

Upgrade target

- ☐ full event read-out@40 MHz (flexible approach)
- □ completely new front-end electronics needed (on-chip zero-suppression)
- □ redesign DAQ system
- □ HLT output@20 kHz, more than 50 fb⁻¹ of data for the "phase 2"
- \Box increase the yield of events (up to 10x for hadronic channels)
- □ experimental sensitivities close or better than the theoretical ones
- □ expand physics scope to: lepton flavour sector, electroweak physics, exotic searches and QCD

Installation ~ **2018** - **2019**

Sensitivities to key flavour observables

(for more see: LHCb Upgrade: Technical Design Report, LHCb-TDR-12)

Type	Observable	Current	LHCb	Upgrade	Theory
		precision	(5 fb^{-1})	(50 fb^{-1})	uncertainty
Gluonic	$S(B_s \to \phi \phi)$	-	0.08	0.02	0.02
penguin	$S(B_s o K^{*0}ar{K^{*0}})$	-	0.07	0.02	< 0.02
	$S(B^0 o\phi K^0_S)$	0.17	0.15	0.03	0.02
B_s mixing	$2\beta_s \ (B_s \to J/\psi \phi)$	0.35	0.019	0.006	~ 0.003
Right-handed	$S(B_s \to \phi \gamma)$	-	0.07	0.02	< 0.01
currents	$\mathcal{A}^{\Delta\Gamma_s}(B_s o\phi\gamma)$	-	0.14	0.03	0.02
E/W	$A_T^{(2)}(B^0 \to K^{*0}\mu^+\mu^-)$	_	0.14	0.04	0.05
penguin	$s_0 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	-	4%	1%	7%
Higgs	${\cal B}(B_s o \mu^+ \mu^-)$	-	30%	8%	< 10%
penguin	$\mathcal{B}(B^0 ightarrow \mu^+ \mu^-) \ \mathcal{B}(B_s ightarrow \mu^+ \mu^-)$	-	-	$\sim 35\%$	$\sim 5\%$
Unitarity	$\gamma (B \to D^{(*)} K^{(*)})$	$\sim 20^{\circ}$	$\sim 4^{\circ}$	0.9°	negligible
triangle	$\gamma \ (B_s \to D_s K)$	-	$\sim 7^{\circ}$	1.5°	negligible
angles	$\beta \; (B^0 \to J/\psi K^0)$	l°	0.5°	0.2°	negligible
Charm	A_{Γ}	2.5×10^{-3}	2×10^{-4}	4×10^{-5}	-
CPV	$A_{CP}^{dir}(KK) - A_{CP}^{dir}(\pi\pi)$	4.3×10^{-3}	4×10^{-4}	8×10^{-5}	-

Projected running conditions for the upgrade

- \Box Operational luminosity up to $L_{inst} = 2 \times 10^{33} [cm^{-2}s^{-1}]$
- □ 25 ns bunch time spacing
- \square Average number of visible interaction per x-ing $\mu \approx 2.6$
- ☐ Challenging environment for tracking and reconstruction
- Radiation damage

High μ already seen in LHCb!

Current trigger system

Problem for hadronic channels:

- ☐ saturation with increasing luminosity
- ☐ no gain in event yields

... and the upgraded one

Staged approach:

- use Low Level Trigger (LLT) as a throttle
- \Box enormous gain for hadronic final states such $\Phi\Phi$
- ☐ do as much as you can in HLT

Tracking is at heart of the current LHCb success ☐ Upgrade cannot compromise this performance ☐ This is not an easy task At high luminosity we are expecting ☐ More interactions per x-ing ☐ Higher track multiplicities, more vertices, higher detector occupancy ☐ More ghosts (scary and dangerous in many ways...) ☐ Spill-over We need to maintain \square High tracking efficiency ($\sim 90\%$ for p > 5 GeV) \square High relative momentum resolution ($\sim 3.5 \times 10^{-3}$) ☐ Ghost rate as low as possible (less than ~ 10 %) \square Single event processing time in HLT as short as possible ($\sim 25 \text{ ms}$) ☐ And do not add to the material budget...

And in addition all of this using full detector information@40 MHz

What we must change to cope with the 40 MHz read-out

New front-end electronics

- ☐ Trigger-less
- ☐ Sends out data with the machine frequency
- ☐ On chip zero-suppression (SoC)

VErtex LOcator VELO2

- Current design: R- Φ geometry Si strip sensors with pitch between 38 100 μ m
- To be replaced with pixel based device
 - low occupancy
 - ☐ much easier patter recognition
 - ☐ easier to control alignment
 - radiation hardness
 - □ extremely high data rate ~ 12 Gbit/s
 - ☐ un-uniform data rates/radiation damage
 - ☐ micro-channel CO₂ cooling

Read-out ASIC, VeloPix, based on TimePix/Medipix chip

- □ 256x256 pixel matrix
- equal spatial resolution in both directions
- ☐ IBM 130 nm CMOS process
- ☐ great radiation hardness potential ~ 500 Mrad

VErtex LOcator VELO2

- ☐ Predicted performance superior in almost any aspect w.r.t the current VELO
- ☐ This is essential for physics performance of the upgraded spectrometer
- ☐ TDR document is out!

(VELO Upgrade: Technical Design Report, LHCb-TDR-13)

TT and T (IT + OT) trackers

- TT and IT part of the T stations are Si strips based detectors
 - □ pitch 200 µm
 - □ long strips 11, 22 and 33 cm
- OT is a gaseous detector
 - □ very long (2.4 5 m)
 - ☐ and thin straws (5 mm)
 - \Box occupancy limited to \sim 10 25 %

World's best b hadrons mass measurement!

TT tracker upgrade

Features after the upgrade

- □ high momentum track on-line selection (part of the trigger)
- ☐ reconstruct long lived particles decaying outside the VELO
- momentum estimate for slow particles
- ☐ improved matching with VELO segments

Upgrade technology

- ☐ 4 6 detector planes of Si strip detectors
- \blacksquare reduced silicon thickness 500 \rightarrow 300 μm
- □ strip length 2.5 10 cm
- \Box increase acceptance at low η
- ☐ new read-out electronics with on-chip zerosuppression SALT chip

(Tracking Upgrade: Technical Design Report, LHCb-TDR-15)

T stations upgrade

Central Tracker & Outer Tracker

Full Fibre Tracker

IT must be completely removed

☐ integrated 1 MHz electronics

Decrease the occupancy

- □ central part: scintillating fibers with SiPM readout (128 readout channels)
- □build with 5 layers of 250 µm scintillating fibers
- □outer part is kept as is (straws)
- Second option (Full Fiber Tracker)

(Tracking Upgrade: Technical Design Report, LHCb-TDR-15)

Particle ID and Calorimeters

MaPMTs by Hamamatsu

Both RICH1 and RICH2 remains

- ☐ new photo detectors (MaPMTs)
- □ square design to increase coverage
- ☐ 40 MHz read-out ASIC
- □ remove aerogel (cannot operate at expected luminosities)

ASIC prototype

Calorimeters (ECAL and HCAL) are maintained

- \square PS/SPD removed (no L0!), e/ γ separation provided by tracker (worked out in HLT)
- □ inner modules of the ECAL may be replaced due to radiation damage (LS3)
- ☐ front-end electronics adapted to 40 MHz read-out
- ☐ first prototype ready under study
- lower gain

(PID Upgrade: Technical Design Report, LHCb-TDR-14)

Summary

Run II and the upgrade road map

LHC LS3 HL-LHC

- □ Superb performance of the LHCb experiment during Run I
- ☐ Large number of world's best physics results
- More than 180 papers published
- ☐ We did not make any considerable dents on the Standard Model
- ☐ Upgrade of the present detector essential for discovery potential of the LHCb **origin of the CP violation and NP**
- ☐ Can collect ~ **50 fb**⁻¹ of data between 2019 and 2028
- ☐ Base-line technologies of the upgrade have been chosen
- ☐ Respective TDRs have been/are being submitted to the LHCC
- ☐ Stay tuned! A lot of exciting time is ahead!

Back-up

- Single arm spectrometer geometry
- $_{\circ}$ Fully instrumented in rapidity range 2 < η <5
- $_{ ext{\tiny \square}}$ Capable of reconstructing backward tracks (-4 < η < -1.5)