
C
ER

N
-A

C
C

-2
01

4-
00

42
25

/0
4/

20
14

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN-ACC-2014-0042

ANALYSIS OF ADIABATIC TRAPPING FOR
QUASI-INTEGRABLE AREA-PRESERVING MAPS

A. Bazzani, C. Frye, M. Giovannozzi, C. Hernalsteens

Abstract

Trapping phenomena involving non-linear resonances have been considered in the past in the frame-
work of adiabatic theory. Several results are known for continuous-time dynamical systems gener-
ated by Hamiltonian flows in which the combined effect of non-linear resonances and slow time-
variation of some system parameters is considered. The focus of this paper is on discrete-time
dynamical systems generated by two-dimensional symplectic maps. The possibility of extending the
results of neo-adiabatic theory to quasi-integrable area-preserving maps is discussed. Scaling laws
are derived, which describe the adiabatic transport as a function of the system parameters using a
probabilistic point of view. These laws can be particularlyrelevant for physical applications. The
outcome of extensive numerical simulations showing the excellent agreement with the analytical
estimates and scaling laws is presented and discussed in detail.

Accepted for publication in Phys. Rev. E

Geneva, Switzerland

April 29, 2014



ANALYSIS OF ADIABATIC TRAPPING FOR QUASI-INTEGRABLE

AREA-PRESERVING MAPS

Armando Bazzani∗

Physics and Astronomy Department, Bologna University, V. Irnerio 46, Bologna - IT

Christopher Frye†

Departments of Physics and Mathematics, University of Central Florida, Orlando, Florida - US and

Beams Department, CERN, 1211 Genève 23 - CH

Massimo Giovannozzi‡

Beams Department, CERN, 1211 Genève 23 - CH
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I. INTRODUCTION

The neo-adiabatic theory [1–12] has been developed to estimate the change of the adiabatic invariant when
separatrix-crossing phenomena occur in slowly modulated one-degree of freedom Hamiltonian systems. The the-
ory provides explicit formulæ for the trapping probabilities into a resonance region [2], for the change of the adiabatic
invariant due to separatrix crossing, and for the error estimate defining the regions of validity in phase space [3].

Adiabatic transport is also possible under these conditions. An ensemble of particles trapped into a resonance region
can be moved at a distance of order O(1) in a time O(1/ǫ), where ǫ is the adiabatic parameter that defines the slow time
scale. The adiabatic transport by means of non-linear resonances has relevant applications in plasma physics [8, 13],
accelerator physics [14–17], celestial mechanics [18–20], and in general for controlling a particle distribution under the
effect of non-linear dynamics. It is also worth mentioning that even if plasma and accelerator physics are the typical
domains of applicability of adiabatic theory, fields as diverse as quantum systems, nanostructures, and superconductors
are also dealing with problems of adiabatic transport (see, e.g., Refs. [21–23]).
The application of the theoretical results to physical experiments encounters the problem of a quantitative evaluation

of the theory’s limits and of the extension of the analytical results to realistic models. In several situations the theory
suggests the existence of simple relations among physical observables, which can be extended to very generic situations
due to their robust character. Along this line, we perform analytical and numerical studies to derive scaling laws
for the efficiency of the adiabatic trapping and transport in quasi-integrable Hamiltonian systems. In particular we
consider the possibility to extend the neo-adiabatic theory to analytic area-preserving maps in a neighbourhood of a
stable elliptic fixed point, for which, to the best of our knowledge, no rigorous result exists, yet.
The numerical simulations show that such scaling laws are robust and they apply to a wide class of models even if

a rigorous extension of the neo-adiabatic invariance theory is not possible, due to the presence of infinite non-linear
resonances in phase space [24, 25].
This is the case for quasi-integrable systems like the Hénon map [26], which is a relevant model to study non-

linear effects in celestial mechanics and accelerator physics [27]. To cope with the problem of non-integrability we
take advantage of the existence of an interpolating Hamiltonian, i.e., a Hamiltonian whose phase flux interpolates
at integer times the orbits of the maps, in a neighbourhood of the elliptic fixed point with an error that can be
exponentially small in the distance from the elliptic fixed point [28].
The interpolating Hamiltonian can be perturbatively computed using Birkhoff Normal Forms [27, 29, 30]. To

extend, at least partially, the neo-adiabatic theory to area-preserving maps we have to consider the effect of the
discrete time dependence, which implies the existence of an infinite number of resonances in phase space. In this
paper it is shown that the formulæ for continuous-time can also be applied to discrete-time systems, as long as the
definition of the improved adiabatic invariant (IAI) is modified to control the dynamics near the separatrix curve.
This requires a cut-off in the Fourier expansion in the action-angle variables to be introduced. Moreover, thanks to
the theoretical considerations outlined here, which set a rigorous framework for the analysis of discrete time systems,
it is possible to compute explicitly the dependence of the trapping efficiency from the adiabatic parameter and the
properties of the resonance under consideration.
It is worth mentioning that numerical simulations on slowly modulated Hamiltonian systems have been performed

by various authors, mainly to study the weak chaotic regions swept by a moving resonance and the diffusive behaviour
of orbits in phase space [9, 31–33]. In this paper, however, we adopt a different and original point of view. On one
hand we use numerical simulations to study the limits of the theoretical results, which require specific conditions on
the adiabatic parameters and the resonance structure. Also, we aim at evaluating the efficiency of adiabatic transport
under different situations relevant for applications. On the other hand, the numerical simulations allow us to define
specific protocols of time-variation of the free parameters of the system under consideration, and this is a crucial
point in view of optimising the adiabatic transport in the presence of specific requirements, e.g., the control of final
particle distribution in phase space such as in Refs. [34–36]. It is worth stressing that the points addressed in this
paper are extremely relevant in applications. In particular, in the field of beam physics, where crossing a non-linear
resonance has been proposed as a means to split the beam in the transverse phase space [14–17] to perform a multi-
turn extraction from a circular particle accelerator. This novel technique requires an accurate control of the intensity
sharing between the various beamlets as well as of the losses during transport of the trapped beamlets. Therefore,
theoretical and robust scaling laws describing the detail of the trapping process are essential for optimising the actual
beam manipulation.
The plan of this paper is as follows: in Section II some results of the neo-adiabatic theory for Hamiltonian flows

are presented and extended to discrete-time systems (maps) as required for our study. The analysis of pendulum-like
systems is presented in Section III, discussing the details of the trapping process, its optimisation, and the efficiency
of transport of the trapped initial conditions. Analytical area-preserving maps, a generalisation of the Hénon map,
are dealt with in Section IV, where the detail of the trapping process is studied, with particular emphasis on the
dependence of the fraction of trapped orbits on the distribution of initial conditions and on the system’s parameters.
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Furthermore, scaling laws for the size of the phase space area where trapping into resonance cannot occur are also
presented and discussed in detail. Finally, some conclusions are drawn in Section V, and in the Appendix a number
of results used in the main text are collected.

II. ADIABATIC THEORY AND TRAPPING INTO RESONANCE

A. Adiabatic theory for quasi-integrable area-preserving maps

The extension of adiabatic theory to area-preserving maps has to address a number of specific issues due to the
discontinuous nature of their time-dependence. Indeed if one considers a slowly modulated area-preserving map
written in the form

(qn+1, pn+1) = M(qn, pn, ǫn) ǫ≪ 1 (1)

a discontinuous change in the dynamics occurs at each iteration. Letting λ = ǫn we initially assume that the frozen

map is integrable, so that there exists an Hamiltonian H(q, p, λ) such that

M(q, p, λ) = exp[DH(q,p,λ)](q, p) (2)

where the operator DH(q,p,λ) is the Lie derivative defined using the Poisson Bracket [·, ·] as

DH(q,p,λ)f(q, p) = [f(q, p), H(q, p, λ)] =
∑

i

∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi
.

As a consequence, H(q, p, ǫt) is an interpolating Hamiltonian for the map (1) with an error of order O(ǫ), i.e., the
phase flow associated with H(q, p, ǫt) interpolates the orbits (qn, pn) up to an error O(ǫ). This fact prevents the
possibility of applying directly the results of adiabatic theory for Hamiltonian systems to the modulated map (1). In
the Appendix we show how the existence of an interpolating Hamiltonian allows extending the adiabatic theory to
maps of type (1) under suitable conditions. By using the generating function F (q, I, λ) (see Eq. (A1) in the Appendix)
to compute the action-angle variables (θ, I) for frozen system, it is possible to write the modulated map (2) in the
form

M(θn, In, λ) = exp[ǫD∂F/∂λ(θn, In, λ)] exp[DH(In,λ)](θn, In) +O(ǫ2) λ = ǫn , (3)

Then perturbation theory allows to introduce improved action-angle variables (φ, J), such that the modulated map
(3) reads

φn+1 = φn +Ω(Jn, φn, nǫ) +O(ǫ2)

(4)

Jn+1 = Jn +O(ǫ2)

as long as no resonances

kΩ(I, λ) = 2π h k, h ∈ Z (5)

are present in the phase space region under consideration, taking also into account the values spanned by varying
λ, provided |k| ≤ kmax, where kmax is an appropriate cut-off (see the Appendix). To control the evolution of the
adiabatic invariant up to the separatrix we have to show that the cut-off error does not depend on the distance to
the separatrix curve. This is indeed the case and the detail of the approach to be used to prove these statements is
given in the Appendix.
In section IV we show, using numerical simulations, that the previous results can be extended to area-preserving

maps in a neighbourhood of an elliptic fixed point. Indeed, in this case the Birkhoff Normal Forms theory suggests
the existence of an interpolating Hamiltonian for the frozen map in a neighbourhood of the elliptic fixed point,
whose error becomes exponentially small ∝ exp[−(r0/r)

η] with respect to the distance r from the elliptic fixed point
when r → 0 [28], where r0, η are suitable positive constants depending on the arithmetic properties of the linear
frequency. Even if the explicit calculation of the optimal interpolating Hamiltonian is not possible, the perturbative
approach based on Birkhoff Normal Forms allows to point the dependence of the phase space structure from the map
parameters. Therefore according to the previous assumptions, by considering the neighbourhood of the origin where
the error is O(ǫ3), we can prove the existence of an IAI for the modulated map.
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B. Trapping into resonance and change of adiabatic invariant when crossing a separatrix

According to Birkhoff Normal Forms, the interpolating Hamiltonian for an analytic area-preserving map in a
neighbourhood of an elliptic fixed point can be written in the form [27]

H(ρ, ψ, λ) = H0 (ρ, λ) +A(λ) ρm/2 cosmψ +O(ρm+1) (6)

where m is the order of the resonance under consideration and

ρ =
q2 + p2

2
ψ = atan

q

p
. (7)

Without loss of generality we assume that

H0 (ρ, λ) ≃ ω1(λ) ρ+
ω2(λ)

2
ρm̂ (8)

where ω2(λ) < 0 and ω1(λ) is a monotonic function, satisfying ω1 ∈ [−µ, µ] when λ ∈ [0, 1]. The applicability of
adiabatic theory to this time-dependent, quasi-integrable map is discussed at the end of the Appendix. If m̂ < m
then the resonance is stable; otherwise it is unstable, as the separatrices can pass through the origin. Most of the
computations reported in this paper refer to m = 4 and m̂ = 2.
The existence of real, positive solutions in ρ to the equation ∂H0/∂ρ = 0 for fixed λ implies the existence of

separatrix curves for the frozen system and we distinguish three different regions in phase space (see also Fig.1, left):

• the region above the resonance islands (Region I);

• the region below the resonance islands (Region II);

• the region inside the resonance islands (Region III).

According to the remarks in the previous section and in the Appendix, we can compute an IAI for an adiabatically
modulated map in the form (see Eq. (A16) for the definition of the operator TΩ)

J = I +
ǫ

2π

∫ T

0

(T
2
− t

)

TΩ

{

∂H

∂λ

}

≤kmax(Ω(I,λ),ǫ)

dt (9)

where T (I, λ) is the orbit period of the frozen system, and {·}k stands for the truncation of the Fourier expansion to
order k, using the same approach as for Hamiltonian systems. The change of the adiabatic invariant due to separatrix
crossing is estimated applying Neishtadt’s theory [3–5], since the IAI (9) tends to the IAI of the interpolating
Hamiltonian. Moreover, the evolution of the frozen energy H(ρ, ψ, λ) = E and of the scaled period ǫ T (J, λ) can be
described by the dynamics of the interpolating Hamiltonian up to an error O(ǫ2).
We are interested in describing the time-evolution of an ensemble of particles initially distributed in Region I of

phase space under the effect of surface increase, induced by the change of parameter λ, of both Regions II and III.
Following Neishtadt, we consider the phase space areas ΣII,III(λ) enclosed by the separatrix curves in Regions II
and III, which are both bounded, and we define

ΣI = ΣII +ΣIII ,
dΣi

dλ
= Θi(λ) > 0 i = I, II, III ; (10)

then ΘI = ΘII +ΘIII represents also the derivative of the surface of Region I, but with opposite sign. The condition
ΘII,III > 0 is mandatory to have a non-zero trapping probability in Regions II and III, as they are growing during
the resonance crossing process.
For each particle, we introduce the so-called crossing parameter λ∗ according to the equation ΣI(λ∗) = 2πJ− where

J− is the initial value of the invariant J in Region I. The existence of the crossing parameter implies that the particle
can enter into either Region II or III by the effect of the separatrix crossing.

When the adiabatic theory holds, it is possible to prove that the transition probability P from Region I to Regions II
and III is given by

PI→II =
ΘII

ΘI
PI→III =

ΘIII

ΘI
. (11)
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FIG. 1. (Color online) Schematic view of the regions generated by the separatrix of the frozen system (6) (left) and position of
the separatrix for the same system, but including the λ-dependence (right).

The transition phenomenon induced by the separatrix crossing is described in a probabilistic way [4, 5, 37] by using
the random variables

ξI =
|hI0|
ǫΘI

ξII =
|hII0 |
ǫΘII

(12)

where hI0 and hII0 are the orbit energy computed via the interpolating Hamiltonian, at Poincaré sections of phase
space just before entering into Region III or just after entering into Region II, respectively. It turns out that the
variables ξi are uniformly distributed in the interval [0, 1] and they are quite sensitive to the value of J−. Moreover,
the theory is correctly applied only when K

√
ǫ < ξi < 1 −K

√
ǫ for a suitable positive constant K. This condition

allows an easy estimate of the fraction of particles whose evolution is not described by the adiabatic theory. Once the
separatrix crossing phenomenon occurs, one can compute the change of the IAI in the new phase space region. For
the transition I → III in a generic case we have the estimate

2πJ+ − ΣIII(λ∗) = −ǫ αΘIII

(

ξI −
1

2

) (

ln ǫΘI −
2ΘI

ΘIII
ln ǫΘIII

)

+O(ǫ) (13)

where J+ is the final value of the IAI, and α is the inverse of the logarithm of the eigenvalue of the frozen map at the
unstable hyperbolic fixed point. Similarly, the transition I → II gives a change in the IAI of

2πJ+ − ΣII(λ∗) = −ǫ αΘII (ξII − 1)

(

ln ǫΘI +
ΘI

ΘII
ln ǫΘII

)

+O(ǫ) . (14)

In the previous estimates we have only reported the leading terms of order O(ǫ ln ǫ) in a generic system (for a more
detailed result see Refs. [3, 31]) since our goal is to describe the adiabatic trapping into resonance region for an
ensemble of particles. Referring to the phase space structure of the Hamiltonian (6), we assume that when the
parameter λ is varied, the resonance region is enlarged and moved outwards (see Fig. 1, right). As a consequence the
areas of Regions II and III increase and an orbit starting in Region I can be trapped in Regions II or III provided
that adiabatic theory applies. An orbit starting in Region I tends to preserve the IAI value during the slow variation
of λ until it reaches the separatix when λ = λ∗. Then, it is possible to describe the separatrix crossing phenomenon
if the orbit is not too close to the hyperbolic point (condition on the ξi variables) neglecting terms of order O(ǫ3/2)
and the IAI performs a pseudo-stochastic dynamics according to Eqs. (13) and (14).
Some conditions need to be fulfilled for the adiabatic theory to be applicable. For the Hamiltonian (6) we define

the adiabatic parameter ε as the ratio between ǫ and the square of the secondary frequency ω2
e , i.e., the frequency of

small oscillations around the elliptic fixed point inside the resonance region. When the adiabatic parameter ε is O(1)
one cannot justify the estimates (13) and (14). As a consequence, we lose the control of the adiabatic invariant at
the separatrix crossing and the adiabatic trapping into resonances is not possible. When the resonance is stable and
ω1 ≪ ω2 (see Eq. (8)), a perturbative approach [27] applied to the Hamiltonian (6) provides the estimates for the
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frequency of the elliptic fixed points

ω2
e ≃ A

ω2

(

ω1

ω2

)m/2

whereas the resonance distance from the origin is

ρe ∝
√

ω1

ω2
.

Then the smallness condition on the adiabatic parameter reads

ε =
ǫ

ω2
e

∝ ǫ ω2

ρme
≪ 1 ⇒ ǫ≪ ρme

ω2
(15)

and we derive the following scaling law for the minimum distance of the resonance from the origin, which allows the
trapping phenomenon to start (trapping radius in the following):

Rmin ∝ ǫ1/m . (16)

In a similar way one can prove that if the condition (15) holds, then the change of the IAI is small compared to the

area of the resonance Region III, which also scales as ρ
m/2
e (λ) for the Hamiltonian (6).

The situation changes for the case of unstable resonances. As an example, we consider the third order resonance
(m = 3), for which the interpolating Hamiltonian is approximated by

H ≃ −ω1ρ−Aρ3/2 cos 3ψ + ω2
ρ2

2

and the hyperbolic fixed points are located at ψh = π/3 and at a distance

ρh = − 3A

4ω2
+

√

(

3A

4ω2

)2

+
ω1

ω2
≃ 2ω1

3A

so that ρh ∝ ω1, which is the frequency of the elliptic fixed point at the origin. The condition on the adiabatic
parameter reads

ǫ

ω2
1

≪ 1

and the radius ρh satisfies the scaling law

ǫ

ρ2h
≪ 1 ⇒ Rmin ∝ ǫ1/2 . (17)

For a generic unstable resonance of order m we can perform similar calculations obtaining a scaling law for the
minimum radius

Rmin ∝ ǫ1/2(m−2) . (18)

The trapping efficiency can be evaluated considering that the theory applies to the orbits not passing too close to
the hyperbolic fixed points, i.e., ξi ∈ [K

√
ε, 1−K

√
ε]. Therefore, whenever ΘIII > 0 the trapping efficiency is given

by

cI→III(λ) =
ΘIII(λ)

ΘI(λ)

(

1− 2K
√
ε
)

. (19)

Letting n(ρ) be the radial density of the ensemble of particles, then the total number of trapped particles will be
given by

NIII =

∫ λ1

λ0

n(ρ(λ))
ΘIII(λ)

ΘI(λ)

[

1− 2K

√
ǫ

ωe(λ)

]

d λ (20)
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and we have the relation

NIII = c0 − c1
√
ǫ = c0 − c1

√

|λ1 − λ0|
T

(21)

where T = |λ1 − λ0|/ǫ is the time interval over which the trapping process takes place. It is worth stressing that
indeed the lower limit of integration λ0 might need to be replaced by min (λ0, Rmin) to take into account the loss of
adiabaticity close to the origin of phase space. This phenomenon occurs also for the particles that enter into Region II
from Region I. In fact, a fraction proportional to

cI→II(λ) =
ΘII(λ)

ΘI(λ)
(1− 2K

√
ε) (22)

changes the IAI according to the theory, whereas the other particles may be scattered in phase space [19].

The particles not trapped may feature a large variation in the adiabatic invariant, thus changing the particles’
distribution in phase space. This point is essential for our considerations. In fact, if the initial distribution is strongly
affected by the change of IAI during the crossing process, then the estimate provided by Eq. (20) (and similarly for
NII) is no longer correct, as n(ρ) should account also for the dynamical change of shape during the resonance crossing
process.

III. ADIABATIC TRANSPORT FOR PENDULUM-LIKE SYSTEMS

In order to study the parametric dependence of the adiabatic transport in this section we consider pendulum-like
Hamiltonian systems whose Hamiltonian function has the form

H(θ, I, λ) =
1

2
[ I − δ(λ) ]

2 − [ 1 + β(λ) ] cos θ , (23)

where δ, β are functions with β(λ) > −1. This Hamiltonian has been also considered in Ref. [38] to study transport
due to resonance trapping. The expression for the fixed points is given by

I = δ(λ) and θ = nπ n ∈ Z (24)

and it is easy to find that for n = 0 the fixed point is elliptic, while for n = 1 it is hyperbolic. The equation of the
separatrix emanating from the hyperbolic fixed point reads

I∗±(λ, θ) = δ(λ)± 2 cos

(

θ

2

)

√

1 + β(λ) , (25)

while the area of the stable island and its λ-derivative is given by

ΣIII = 16
√

1 + β(λ) ΘIII =
8 β̇(λ)

√

1 + β(λ)
. (26)

The last quantity that is relevant for our analysis is the angular frequency of oscillation around the elliptic fixed point,
which is equal to

ωe(λ) =
√

1 + β(λ) . (27)

The meaning of the auxiliary functions δ and β is clear: δ(λ) represents the shift along the I-axis of the fixed point,
while β(λ) is related with the size of the stable island. Therefore, these two parameters allow controlling the resonance
position and size in an independent way. This is an essential feature of this model, which enables an optimal control of
the global dynamics to allow an accurate assessment of the impact of the island growth and transport on the trapping
phenomenon. Unfortunately, such an independent control is lost in the case of the area-preserving maps that will be
considered in Section IV.
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A. Analysis of trapping efficiency

To illustrate the analytic results and their predictive power we consider a rather complex variation of the free
parameters of the pendulum-like system in order to mimic what could be an optimised trapping and transport
process. A uniform initial distribution of particles given by

n(θ, I) =

{

N/2π for (θ, I) ∈ [−π, π]× [0, 1]
0 otherwise

(28)

has been used in the numerical simulations. We will also let δ increase linearly from δ(0) = 0.5 to δ(1) = 1.5 during
a time T = 1/ǫ , where λ = ǫ t = t/T , and

δ(λ) =
1

2
+ λ . (29)

Furthermore, β will increase quadratically from β(0) = βi (if βi = −1 the stable island begins as a slit with zero size
at the centre of the initial conditions) to some β(1) = βf which we keep arbitrary for now:

β(λ) = (βf − βi)λ
2 + βi . (30)

A key quantity that will be considered throughout this paper is the so-called trapping fraction τ , which is defined
as the ratio between the initial conditions that are trapped into the non-linear resonance and the total number of
initial conditions. For the case under consideration, after some algebra and assuming a uniform distribution of initial
conditions and a perfect adiabaticity of the process, which corresponds to neglecting the correction factor depending
on K in cI→III , cI→II and that the integral in Eq. (20) should be computed taking care of the sign of the Θi in case
of shrinking regions, then the estimate of τ reads

τ =















4
√

1+βf

π+4
√

1+βf

for − 1 ≤ βf ≤ π2

16 − 1 ,

4
π

√

1 + βf − 1
2 for π2

16 − 1 ≤ βf ≤ 9π2

64 − 1 ,

1 for βf ≥ 9π2

64 − 1 .

(31)

This prediction is depicted as the solid line in Fig. 2.
We set up simulations with parameters identical to those described above, while T has been considered to be

30, 100, 3500 turns, respectively. The results of the numerical simulations are shown in Fig. 2 as series of symbols of
different colours for the different values of T . The agreement between the numerical simulations and the prediction
improves as a function of T = 1/ǫ. For shorter T the motion of the separatrix is not adiabatic and the trapping is
shown to be less efficient in the part where τ varies quadratically. However, when τ varies linearly the trapping is even
higher than the theoretical prediction. This might be due to the impact of the non-adiabaticity of the initial part of
the trapping process that could have generated higher-density regions in the distribution, e.g., in the tails. This, in
turn, could lead to an apparent increase of trapping efficiency since in the theoretical model the particle distribution
is assumed to be constant throughout the whole process.

B. Optimisation of the trapping process

With the previous case we showed that the theory is capable of describing the adiabatic trapping phenomenon
with generic variation of the free parameters of the Hamiltonian (23). This opens up the possibility of performing an
optimisation of the overall trapping process.
The first step consists in exploiting the possibility of controlling independently the island position and its surface.

The ideal case could be a fixed, but growing island, which would trivially trap all initial conditions intercepted by the
expanding separatrix.
Another possibility consists in fixing the value of the Θi in order to impose a well-defined trapping probability.

Once more, the presence of two free parameters can be used for this purpose. It is easy to see that the phase space
area beneath the stable island varies in time as

ΘII = 2π δ̇ − ΘIII

2
. (32)
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FIG. 2. (Color online) The results of the trapping fraction study when we let δ(λ) increase linearly while β(λ) increases
quadratically. The curve represents the predicted trapping fraction, while the symbols stand for the results of numerical
simulations. A close match between predictions and simulation results is visible for T = 3500.

Therefore, if ΘII is set to zero, then cI→II will be zero, too, thus providing a full trapping into Region III. The
condition to impose is

δ̇ =
ΘIII

4π
=

2 β̇(λ)

π
√

1 + β(λ)
. (33)

Integrating with respect to λ, we find

δ(λ) = δ0 +
4

π

√

1 + β(λ) (34)

where we have assumed that β(0) = −1, corresponding to zero initial size for the island. This relation can also be
inverted to give β(λ) with the required dependence on δ(λ):

β(λ) =
π2

16
[δ(λ)− δ0]

2 − 1 . (35)

It is worth noting that since the area of Region II remains constant, particles in that region must remain there
since passing the separatrix would result in a decrease in the adiabatic invariant orbit-area. Therefore, under these
conditions the trapping process will satisfy the following relations

NII = N0
II and NIII = N0

III +N0
I . (36)

These considerations have been probed by a number of numerical simulations, whose results are presented in
Fig. 3. The upper left plot refers to simulations performed with 105 initial conditions distributed uniformly over
[−π, π]× [2.2, 2.4] and where both δ(λ), β(λ) vary linearly in time in such a way that both ΘII ,ΘIII > 0. The results
are qualitatively as expected with particles in both Region II and III.
The remaining three plots refer to simulations with δ(λ), β(λ) varying according to the relationship (35). Depending

on where the island is created it is possible to share equally the initial conditions in Regions II and III ( lower right
plot of Fig. 3), or to have particles only in Region III ( upper right plot). Finally, in the lower left plot a case in
which β(λ) is varying more slowly than imposed by Eq. (35) is shown, which should simulate a non-optimal control
of the system parameters. Of course, in this case some initial conditions are trapped in Region II.
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FIG. 3. (Color online) Examples of final distributions generated from the same initial distribution and different relationships
between β and δ during the trapping process. (a): Transport of a growing island, obtained by a linear variation of both
δ(λ), β(λ). (b): 100 % trapping into resonance obtained by using Eq. (35), δ(λ) = 5λ/3000, and a resonance starting just below
the initial distribution. (c): less than 100 % trapping into resonance obtained by using the same parameters as (b), but with
β(λ) increasing more slowly, and a resonance starting just below the initial distribution. (d): 50 % trapping into resonance
obtained by using the same parameters as (b), and a resonance starting in the middle of the initial distribution.

C. Transport Efficiency

We are also interested in testing how efficiently a moving resonance can hold onto the particles undergoing libration
around its point of stable equilibrium. This aspect is interesting as it could be combined with the trapping phenomena
to transport towards higher values of I the conditions initially trapped into the islands. To this aim we define the
transport efficiency ν(ǫ) as

ν(ǫ) =
Nf

III

N i
III

,

where N i
III , N

f
III stand for the number of particles trapped in Region III at the beginning or at the end of the

resonance transport, respectively. The theory predicts (see below) that a simple power law should exist between the
transport efficiency ν(ǫ) and the adiabatic parameter ǫ/ω2

e .
To test this, we set up initial conditions for 105 particles in the rectangle [−π, π] × [0, 1], and let the stable island

begin as a zero-size slit at I = 1/2. Then, we let the island grow adiabatically until achieving a given area and thus
capturing a given number of particles proportional to this area. Subsequently, we let the island move at various speeds
by changing δ from 1/2 to 3.
The results for many different final island sizes ΣIII ∈ [0, 2π] and various moving speeds, represented by the

adiabatic parameter in the plot, are displayed in Fig. 4. A fit through the region between 10 % and 60 % of
transport efficiency, in order to probe the regime where adiabatic theory applies, provides a simple power law:

1− ν(ǫ) = (1.132± 0.004)

(

ǫ

ω2
e

)0.754±0.003

. (37)

It is interesting to investigate how de-trapping from the island region, also indicated as loss of particles, is distributed
during the transport part of the process. The simulation results are shown in Fig. 5 where the losses as a function of
turn number are depicted for several values of the adiabatic parameter. It is clearly seen that they occur at the very
beginning of such a stage, hence only the trapped particles close to the separatrix are lost during transport and no
mechanism of re-filling this region is acting during the whole transport process.
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FIG. 4. (Color online) Transport efficiency results after an island, full of particles in libration, moves at various speeds. The
various curves refer to different values of the final island’s size ΣIII . The numerical results can be interpolated by a power-law
dependence ∝ ǫ3/4 of the transport efficiency as a function of the adiabatic parameter as shown in the inset.

The pendulum-like Hamiltonian (23) allows to infer a simple interpretation for this scaling law. Since the parameter
δ(λ) is varied linearly during transport, whereas the parameter β is kept constant, one can perform the canonical
change of variables associated to the generating function G(J, θ, λ) = [J + δ(λ)] θ and the new Hamiltonian turns out
to be that of a forced pendulum, where the forcing term is proportional to the adiabatic parameter ǫ

H(θ, J, λ) =
1

2
J2 − [ 1 + β ] cos θ + δ̇(λ) θ . (38)

In the new variables, the phase space area A of stability region around the elliptic fixed point is reduced by terms
of order O(ǫ | ln ǫ|) and we expect that all particles contained in this area can be transported, whereas those outside
are quickly lost. Neglecting the contribution of the logarithm this result suggests a direct proportionality between
the fraction of lost particles and the adiabatic parameter. Therefore the empirical scaling law ν(ǫ) ∝ ǫ3/4 for the
transport efficiency (see Fig. 4) could be the consequence of a non-uniform distribution of trapped particles due to
the change of trapping efficiency during the modulation of the β-parameter and to the slow dynamics close to the
separatrix. When the adiabatic parameter tends to 1 the stability region of the Hamiltonian (38) shrinks to the origin
so that all particles are lost and no transport is possible. Despite of the simplicity of the pendulum-like systems,
similar mechanisms are observed in generic models, like the Hénon map.
In terms of control of the adiabatic trapping and transport, this result suggests that the strategy of separating

the process into two well-distinct phases might not be the best option. In fact, the possible advantage of generating
a growing but standing island in terms of trapping efficiency might be lost due to the losses appearing during the
separate transport stage.

IV. ADIABATIC TRAPPING FOR AREA-PRESERVING MAPS

The second class of models under consideration is a generalisation of the quadratic polynomial 2D map, the so-called
Hénon map [26]. The map reads

(

q
p

)

n+1

= R(ω)

(

q
p+ q2 + κ q3

)

n

(39)
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FIG. 5. (Color online) Time-evolution of the losses during the transport stage of the process under study.

where R(ω) is a 2D rotation matrix of an angle ω and κ ∈ R.
The corresponding interpolating Hamiltonian [27] is of the form (6), which, specialised to the case of the fourth-order

resonance (m = 4), reads

H(ψ, ρ, λ) = λ ρ+
ω2(λ)

2
ρ2 + λ |u0,3(λ)| ρ2 cos 4ψ , (40)

in which

ω2(λ) = − 1

16

[

3 cot
ω(λ)

2
+ cot

3ω(λ)

2
+ 6κ

]

(41)

and

u0,3(λ) =
1

16

[

cot
ω(λ)

2
− cot

3ω(λ)

2
− 2κ

]

, (42)

with

ω(λ) = λ+
π

2
λ =

∆ω

T
t . (43)

The fixed points satisfy the following conditions

ρ+(λ) = − λ

ω2(λ) + 2 |u0,3(λ)|λ
and ψ+ = k

π

2
(44)

or

ρ−(λ) = − λ

ω2(λ)− 2 |u0,3(λ)|λ
and ψ− =

π

4
+ k

π

2
. (45)

Since the coordinate ρ is non-negative, we see that for the fixed points to exist we need the condition λω2(λ) < 0.
Furthermore, the stability analysis shows that the fixed points (ψ+, ρ+) are stable while the (ψ−, ρ−) are unstable.
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The separatrices have the form

ρ±sep(λ, ψ) =

−λ± 2

√

|u0,3(λ)|λ3 cos2 2ψ

2 |u0,3(λ)|λ− ω2(λ)

ω2(λ) + 2 |u0,3(λ)|λ cos 4ψ
(46)

and the surface of one island out of the chain of four is given by

ΣIII = 2

√

λ2

4λ2|u0,3(λ)|2 − ω2
2(λ)

tanh−1

√

4λ |u0,3(λ)|
ω2(λ) + 2λ |u0,3(λ)|

. (47)

Finally, the angular frequency of oscillations around the elliptic fixed points is equal to

ωe(λ) = 4λ

√

∣

∣

∣

∣

λu0,3(λ)

ω2(λ)

∣

∣

∣

∣

. (48)

This model is more complex than the pendulum-like model. First of all some symmetries are lost, as is the case for
the separatrices, for which the lower and upper separatrix branches are no more symmetric. Furthermore, the fact
that all the coefficients of the Hamiltonian (6) are λ-dependent implies that this parameter affects simultaneously
position and size of the island. A possibility to overcome this difficulty would be to use the additional free parameter
κ as an additional tuning knob, making it a function of λ. This option has not been considered, yet.
The main features of the trapping process can be seen in Fig. 6. The initial conditions have been identified on the

basis of the location at the end of the trapping process. It is clearly seen that the islands start trapping only at a
finite distance from the origin. Then, in a given amplitude interval a well-defined area in phase space is trapped in

FIG. 6. Details of the trapping phenomenon for the map (39) with κ = −1.1, ∆ω/T ≈ 4.4 × 10−6, and a Gaussian initial
distribution of 5 × 105 particles with σ = 0.1. The initial conditions (left) have been coloured in order to identify in which
island they will eventually be trapped (right).

the islands. At even larger amplitudes a chaotic region appears and initial conditions arbitrarily close can end up in
different islands.
The numerical studies presented in the following section aim at probing the quantitative aspects of the scaling law

of the no-trapping area around the origin and of the trapping efficiency.

A. Analysis of Rmin

It is clear that Rmin is essential for any application aiming at a well-defined sharing of particles between islands
and core. Simulations have been performed by using a uniform distribution of initial conditions and determining the
fraction of trapped particles as a function of the radius R of the initial distribution. A fine scan over R has been
performed, together with a fit of the computed trapping fraction to estimate its zero-crossing, which corresponds to
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Rmin. This procedure has been repeated for several values of T and the resulting function Rmin(T ) are shown in Fig. 7
together with fit functions based on the scaling (16) for several values of the parameter κ and also resonance order
m. The log-log plot shows an excellent agreement between the scaling law and the numerical results.
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FIG. 7. (Color online) Rmin as a function of the adiabatic parameter ∆ω/T in log-log scale. Different stable resonances and
values of the parameter κ are shown together with the fit functions in which the exponents have been fixed according to the
theory. The agreement with the proposed scaling law a (∆ω/T )1/m is remarkable.

Additional numerical tests have been performed using the 1/3 and the 1/4 unstable resonances. Indeed, while the
first is generically unstable [27], the latter can be either stable or unstable. In our case, a modified version of the
map (39) has been used, where the parameters controlling the strength of the non-linear terms have been used to
set ω2(λ) = 0 in the Hamiltonian (6), which corresponds to turning the origin unstable, as described in Ref. [39]. In
this case the control parameter λ has been changed in order to shrink the separatrix down to the origin, which is
possible due to the unstable character of the resonance. Hence, the trapping process is somewhat different from the
one considered so far. An example of the phase space topology for the m = 4 stable and unstable resonances is shown
in Fig. 8. The results of the numerical simulations for the computation of Rmin(T ) are shown in Fig. 9. This scaling
law agrees with the theoretical prediction given by the equation (18).
The summary of the fit parameters for both stable and unstable resonances is given in Table I for the fit functions

a/T b. In the case of the stable 1/4 resonance it has been possible to derive a scaling law for the fit parameter a, which

TABLE I. Summary of the fit parameters of the scaling law a/T b for the evolution of Rmin.

Stability type Resonance order κ a±∆a b±∆b

stable 1/4 −1.1 1.31± 0.08 0.246± 0.003

stable 1/4 −1.9 1.11± 0.08 0.247± 0.005

stable 1/5 −1.1 1.51± 0.09 0.184± 0.003

stable 1/6 −1.1 1.6± 0.3 0.15± 0.01

unstable 1/3 −5.0 3± 1 0.48± 0.01

unstable 1/4 N.A. 1.7± 0.4 0.24± 0.01
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FIG. 8. (Color online) Example of phase space portraits for the map (39) close to the stable resonance with m = 4 (left) and
its unstable version (right) based on the approach described in Ref. [39].
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FIG. 9. (Color online) Rmin as a function of the adiabatic parameter ∆ω/T in log-log scale. The 1/3 and 1/4 unstable
resonances have been used. The curves represent the fit curves a (∆ω/T )b. The exponents of the theoretical scaling law are
also reported in the plot. The agreement between scaling law and numerical simulations is remarkable.

is a(κ) = a0+a1 κ with a0 = 0.3±0.1, a1 = 1.6±0.2 obtained by analysing numerical simulations for −1.9 ≤ κ ≤ −1.1
in steps of 0.1.

B. Analysis of trapping efficiency

An extensive campaign of numerical simulations has been performed, with the parameter κ scanned, as well as T .
As far as the initial distribution is concerned, both Gaussian and uniform functions have been used, performing scans
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over their rms width.
The results of numerical simulations are reported in Fig. 10 (upper) where the trapping fraction as a function of T

is plotted for several values of the σ of the Gaussian distribution and for two values of κ. The numerical data have
been fitted using the scaling law (21) and added to the plot as continuous lines. The agreement is remarkable and
some discrepancy is visible only for the case referring to the smallest value of σ. It is important to point out that from
the considerations of the previous section, where Rmin(T ) has been discussed, the lower limit of the integral (20) has
to be modified to take into account that no trapping can occur for amplitudes smaller than Rmin. Moreover, as Rmin

depends on the adiabatic parameter, the trapping process will be affected differently as a function of T . Furthermore,
as σ becomes smaller, the impact of Rmin(T ) becomes larger; this explains why the agreement between the numerical
data and the scaling law gets worse for small values of σ. However, such an effect can be exactly quantified. The
first step consists in computing the value λmin corresponding to Rmin, which is given by

2πR2
min =

∫ 2π

0

ρ+sep(λmin, ψ) dψ . (49)

As Rmin ≪ 1 it is possible to develop Eq. (49) and retain only the lower order term in λmin, thus obtaining

λmin ∝ R2
min ∝ ǫ2/m (50)

where the last step is valid in the case of stable resonances. The expression for NIII can be re-analysed by considering
that in our simulations the lower limit of integration can be assumed to be zero, but the effect of Rmin has to be taken
into account. Hence, Eq. (20) can be recast in the form

NIII =

∫ λ1

λmin

n(ρ(λ))
ΘIII(λ)

ΘI(λ)

[

1− 2K

√
ǫ

ωe(λ)

]

d λ

=

∫ λ1

0

n(ρ(λ))
ΘIII(λ)

ΘI(λ)

[

1− 2K

√
ǫ

ωe(λ)

]

d λ+

−
∫ λmin

0

n(ρ(λ))
ΘIII(λ)

ΘI(λ)

[

1− 2K

√
ǫ

ωe(λ)

]

d λ

≈ c0 − c1 ǫ
1/2 + c2 λmin + c3 λ

−1/2
min ǫ1/2

≈ c0 − c1 ǫ
1/2 + c2 ǫ

1/2 + c3 ǫ
1/2−1/m.

(51)

The term c3 λ
−1/2
min ǫ1/2 is generated by the scaling ωe(λ) ≈ λ−3/2 that can be derived from Eq. (48), while the last

step of Eq. (51) is based on the estimate (50). In the particular case m = 4 the scaling law for NIII simplifies to
NIII ≈ c0 + c1 ǫ

1/2 + c2 ǫ
1/4, with the re-definition of the symbols −c1 + c2 → c1 and c3 → c2. This prediction has

been tested using the data referring to numerical simulations with the smaller σ shown in Fig. 10 (upper). The results
are shown in Fig. 10 (lower). For the sake of comparison, the fit function obtained by neglecting the effect of Rmin

is also shown dotted lines. The improvement in the agreement between numerical data and theoretical prediction is
clearly visible.

V. CONCLUSIONS

In this paper we have shortly reviewed the theory of adiabatic trapping and transport for Hamiltonian systems
and presented an extension suitable for applications to discrete-time systems, i.e., area-preserving modulated maps.
We have explicitly considered two different classes of systems, namely a pendulum-like Hamiltonian and a Hénon
map-like, to compare the analytical results with numerical simulations. The first class allows studying the parametric
dependence of the trapping phenomenon, whereas by means of the second class we face the problem of extending the
theoretical predictions to quasi-integrable discrete-time systems.
Our main goal is to understand the dependence of adiabatic trapping and transport efficiency on the system

parameters and to propose robust scaling laws suitable to be extended to more general models, relevant for physical
applications.
Given the broad range of domains in which adiabatic trapping and transport play a crucial role, these results might

be particularly relevant for applications. In particular, the results of these studies can be used in the process of
optimising adiabatic transport or of mitigating the effects of unavoidable resonance crossing by proper control of the
crossing process. It is worth stressing that these topics are of paramount importance, e.g., in the domain of particle
accelerators, where novel beam manipulations have been proposed, based on adiabatic transport.
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FIG. 10. (Color online) Upper: Trapping fraction τ (see Eq. (31)) as a function of the adiabatic parameter ∆ω/T for different
values of κ and σ of Gaussian distributions. The solid symbols and continuous lines refer to the case κ = −1.1, while the open
symbols and the dotted lines refer to the case κ = −1.9. The fit curves are in very good agreement with the numerical data.
Lower: Comparison of fit curves with (continuous lines) and without (dotted lines) the effect of Rmin(T ) for the simulations
performed with smaller σ. The agreement is remarkable.
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By means of extensive numerical simulations the scaling laws ruling the adiabatic transport and trapping have
been verified and the agreement between predictions and numerical results is excellent. These laws allow us to
understand and explore the domain of validity of the theory, which is essential to shed light on the detail of the
trapping mechanism.
Even if these results have been obtained for rather generic systems, in terms of form of the underlying Hamiltonian,

the dimensionality of the phase space is still too low and hence represents a limit to the applicability of our findings to
realistic physical models. Therefore, the next step will be to attempt extending these results to Hamiltonian systems
with two degrees of freedom, where a richer phase space topology might lead to new phenomena.
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Appendix A: Adiabatic invariance for modulated area-preserving maps

To extend the adiabatic theory to the modulated map (3) we apply perturbation theory by introducing action-angle
variables in each region defined by the separatrix curves. Let us define the generating function

F (q, E, λ) =

∫ q

H(q,p,λ)=E

p(q̂, E, λ) dq̂ (A1)

where E = H(I, λ) is expressed as a function of the action variable

I(E, λ) =
1

2π

∮

H(q,p,λ)=E

p(q, E, λ) dq . (A2)

We perform the change of variables in the modulated map M (1) according to

N (ǫn) = T−1(ǫ(n+ 1)) ◦M(ǫn) ◦ T (ǫn) (A3)

where the symbol ◦ indicates the composition of functions, and the transformation T (ǫn) : (θn, In) → (q, p) is
implicitly defined by

p =
∂F

∂q

∣

∣

∣

∣

I

(q, In, ǫn)

(A4)

θn =
∂F

∂I

∣

∣

∣

∣

q

(q, In, ǫn) .

Remark: the variables (p, q) are uniquely defined, whereas the definition of the variables (θn, In) depends explicitly
on n since the Hamiltonian function changes. According to our assumptions, Eq. (A3) can be written in the form

N (ǫn) = T−1(ǫ(n+ 1)) ◦ T (ǫn) ◦ exp[DH(I,ǫn)]

and we explicitly compute the map T−1(ǫ(n+ 1)) ◦ T (ǫn) tangent to the identity from the relations

p =
∂F

∂q
(q, In+1, ǫ(n+ 1)) =

∂F

∂q
(q, In, ǫn) + ǫ

∂

∂λ

∣

∣

∣

∣

q,p

∂F

∂q
(q, In, ǫn) +O(ǫ2)

(A5)

θn+1 =
∂F

∂I
(q, In+1, ǫ(n+ 1)) =

∂F

∂I
(q, In, ǫn) + ǫ

∂

∂λ

∣

∣

∣

∣

q,p

∂F

∂I
(q, In, ǫn) +O(ǫ2)
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where In = I(q, p, ǫn) and, when not explicitly written, the partial derivatives are computed using F = F (q, I, λ).
From the definition (A4), algebraic calculations give

∂2F

∂q∂λ
+
∂2F

∂q∂I

∂I

∂λ
= 0

(A6)

∂2F

∂I2
+
∂2F

∂I∂q

∂q

∂I
= 0 .

and from these relations we obtain

∂

∂λ

∣

∣

∣

∣

q,p

∂F

∂I
=

∂2F

∂I∂λ
+
∂2F

∂I2
∂I

∂λ

=
∂2F

∂I∂λ
+

∂2F

∂q∂λ

∂q

∂I
=

∂

∂I

∣

∣

∣

∣

θ

∂F

∂λ
. (A7)

The second equation of the system (A4) reads

θ′ = θ + ǫ
∂

∂I

∣

∣

∣

∣

θ

∂F

∂λ
+O(ǫ2) ,

where we identify θ′ = θn+1 and I = In. Finally, the map T−1(ǫ(n + 1)) ◦ T (ǫn) can be obtained by imposing the
symplecticity conditions

θ′ = θ + ǫ
∂

∂I

∣

∣

∣

∣

θ

∂F

∂λ
+O(ǫ2)

(A8)

I ′ = I − ǫ
∂

∂θ

∣

∣

∣

∣

I

∂F

∂λ
+O(ǫ2)

and is related to the phase flow at time ǫ of the Hamiltonian

H1(θ, I, λ) =
∂F

∂λ
(q(θ, I, λ), I, λ) . (A9)

As a consequence, in the action-angle variables the modulated map (1) can be written in the form (3), hence proving
the statement made in Section II. Such map can be represented as a shift along trajectories of a two-frequency
system [40] and the theory for two-frequency systems is applicable for this map. To prove the adiabatic invariance of
the action I we apply a perturbative approach that introduces new action-angle variables (φ, J)

θ = φ+ ǫ
∂G

∂J
(φ, J, λ) +O(ǫ2)

(A10)

I = J + ǫ
∂G

∂φ
(φ, J, λ) +O(ǫ2)

to reduce the map (3) to an integrable form up to terms of order O(ǫ2). By changing variables we obtain a homological
equation to define G(φ, J)

G(φ, J, λ)−G(φ− Ω(J, λ), J, λ) = H1(φ, J, λ) , (A11)

where Ω(J, λ) = ∂H(J, λ)/∂J . According to [3] the following equality holds

∂F

∂λ

∣

∣

∣

∣

q,I

(θ, I) = − 1

Ω(E, λ)

∫ θ
(

∂H

∂λ

∣

∣

∣

∣

q,p

−
〈

∂H

∂λ

∣

∣

∣

∣

q,p

〉)

dθ

where 〈 〉 is the average value with respect to the angle variable. Then one can prove

〈

∂F

∂λ

∣

∣

∣

∣

q,I

(θ, I)

〉

= 0 (A12)
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and using the Fourier expansion

∂H

∂λ

∣

∣

∣

∣

q,p

−
〈

∂H

∂λ

∣

∣

∣

∣

q,p

〉

=
∑

k 6=0

hk(I, λ)e
i k θ (A13)

one computes

∂F

∂λ

∣

∣

∣

∣

q,I

(θ, I) = −
∑

k 6=0

hk(I, λ)
ei k θ

i kΩ(I, λ)
. (A14)

Then if Ω(J, λ) 6= 0 we get a formal solution of Eq. (A11) as

G(φ, J, λ) =
∑

k 6=0

hk(J, λ)e
i k φ

i kΩ(J, λ)(1− exp[−i kΩ(J, λ)]) . (A15)

Remark: if we introduce the operator

TΩ

∑

k 6=0

hk(I, λ)e
i k θ =

∑

k 6=0

i kΩ(I, λ)

1− exp[−i kΩ(I, λ)]hk(J, λ)e
i k θ (A16)

and the new Hamiltonian

Ĥ1(θ, I, λ) = TΩ
∂F

∂λ
(θ, I, λ) (A17)

the function G(φ, J, λ) satisfies the homological equation

Ω(J, λ)
∂G

∂φ
(φ, J, λ) = −Ĥ1(φ, J, λ)

corresponding to the perturbation theory for Hamiltonian systems. This remark is useful to extend the adiabatic
theory to slowly modulated area-preserving maps. The operator TΩ changes the θ Fourier components and its kernel
is the average value. Moreover the following limit holds for any finite and fixed k ∈ Z

lim
Ω→0

i kΩ(I, λ)

1− exp[−i kΩ(I, λ)] = 1 ,

meaning that, since the frequency Ω(I, λ) vanishes at the separatrix curve, the operator TΩ can be extended up to
the separatrix curve if finite Fourier series are considered. The operator TΩ is defined in an open set of the action
variable if there are no resonance conditions (5) for each Fourier component k in the expansion (A15). Therefore, a
cut-off kmax has to be introduced in the Fourier expansion (A15) and it should be proved that the remainder is of
order O(ǫ). To this aim it is customary to extend the domain of definition of θ to the complex plane, in order to
make use of the estimates available for analytic functions in C. Assuming that ∂H/∂λ is a bounded analytic function
in a strip |Im θ| ≤ γ(I, λ) such as for a given action value I

∣

∣

∣

∣

∣

∂H

∂λ

∣

∣

∣

∣

q,p

∣

∣

∣

∣

∣

≤M

with M a constant independent from I, then following estimate holds [41]

∑

|k|≥kmax

|hk(I, λ)|
kΩ(I, λ)

≤ e−γ(I,λ) kmax

√

∑

|k|≥kmax

|hk(I, λ)|2e2 γ(I,λ) |k|

√

√

√

√

∑

|k|≥kmax

1

[kΩ(I, λ)]2

(A18)

≤ cM
e−γ(I,λ) kmax

kmax Ω(I, λ)

taking into account the cut-off kmax in the Fourier expansion. Then, by solving the homological equation (A11)
neglecting the Fourier components |k| ≥ kmax the remainder is of order O(ǫ) provided kmax fulfils the condition

cM e−γ(I,λ) kmax

kmax Ω(I, λ)
≤ ǫ . (A19)
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We remark that kmax is a function of I and λ so that it is defined locally in phase space.
The additional step consists in analysing the domain of validity of the cut-off introduced earlier. Under generic

assumptions the relation φ = Ω t suggests the estimate γ(I, λ) ≃ γ0|Ω(I, λ)|. Furthermore, one expects that γ−1
0

can be related to max |Ω(J, λ)| in the considered phase space region, so that from inequality (A19), we obtain the
condition

kmax |Ω(I, λ)| ≥ χ(γ0,M, ǫ) where ǫ =
cM e−γ0 χ

χ
. (A20)

The small denominators 1− exp[−kΩ(J, λ)] in the expansion (A15) can be controlled if

kmax |Ω(J, λ)| ≤ c′ < 2π .

Comparing the constraints on kmax |Ω(J, λ)| we obtain a final condition on γ0 and M in the form:

χ(γ0,M, ǫ) ≤ c′ ,

which is satisfied if

ǫ ≥ cM e−2πγ0

2π
. (A21)

This implies that the adiabatic invariance of the action for such maps cannot hold for arbitrarily small values of ǫ
due to the presence of non-linear resonances. Nevertheless, once condition (A21) is satisfied, it can be applied in a
neighbourhood of the separatrix curve since it holds in the limit Ω → 0, kmax → ∞ with kmax Ω ≃ const. Therefore,
the function

J(θ, I, λ) = I − ǫ

|k|≤kmax(Ω,ǫ)
∑

k 6=0

i k hk(J, λ) e
i k θ

1− exp[−i kΩ(J, λ)] +O(ǫ2) (A22)

can be extended up to the separatrix curve in each phase space region. When approaching the separatrix (Ω → 0)
the function J(θ, I, λ) tends to the IAI [42] of the interpolating Hamiltonian H(q, p, λ) that has been introduced in
Eq. (2). Hence, once the condition (A21) is satisfied, it is possible not only to cast the map (3) in the form (4),
but also to find that the action I is an adiabatic invariant for the initial dynamics (1) if we are not too close to the
separatrix. By performing another perturbative step we can also prove that the new action J is an IAI if we restrict
the condition (A21) to cut-off terms of order O(ǫ2), i.e.

ǫ ≥
√

cM

2π
e−πγ0 . (A23)

Therefore, the application of the adiabatic invariance theory to analytic maps in a neighbourhood of an elliptic fixed
point is justified for ǫ values that satisfy the condition (A23).
The last key observation is that for the special case of Hamiltonian systems of the form (6), it is reasonable to

assume that the parameter γ0 of Eq. (A21) is expected to be of order 1/µ, where µ bounds the variation of the
monotonic function ω1(λ) introduced in Eq. (8), so that if µ is small enough we can apply the adiabatic theory to the
time-dependent map, as ǫ can be chosen small.
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