
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 188.184.3.56

This content was downloaded on 17/06/2015 at 07:30

Please note that terms and conditions apply.

 Resurrecting quadratic inflation in no-scale supergravity in light of BICEP2

View the table of contents for this issue, or go to the journal homepage for more

JCAP05(2014)037

(http://iopscience.iop.org/1475-7516/2014/05/037)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1475-7516/2014/05
http://iopscience.iop.org/1475-7516
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
C
A
P
0
5
(
2
0
1
4
)
0
3
7

ournal of Cosmology and Astroparticle Physics
An IOP and SISSA journalJ

Resurrecting quadratic inflation in
no-scale supergravity in light of
BICEP2
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1 Introduction

The discovery of primordial tensor perturbations by the BICEP2 experiment [1] would be an
important step in fundamental physics, if it is confirmed, since it would prove the existence of
quantum gravitational radiation. The BICEP2 result would demonstrate simultaneously the
reality of gravitational waves, whose existence had previously only been inferred indirectly
from binary pulsars [2], and quantization of the gravitational field. The existence of such
tensor perturbations is a generic prediction of inflationary cosmological models [3–6], and
the BICEP2 result is strong evidence in favour of such models, the ‘smoking graviton’, as
it were.

Moreover, different inflationary models predict different magnitudes for the tensor per-
turbations, and the BICEP2 measurement [1] of the tensor-to-scalar ratio r discriminates
powerfully between models, favouring those with a large energy density V ∼ (2×1016 GeV)4.
As such, it disfavours strongly the Starobinsky R + R2 proposal [7–9] and similar models,
such as Higgs inflation [10] and some avatars of supergravity models [11–19]. That said, the
BICEP2 result is in some tension with previous experiments such as the WMAP [20] and
Planck satellites [21], which established upper limits on r and seemed to favour very small
values. We are not qualified to comment on the relative merits of these different experiments,
which may be reconciled if the scalar spectral index runs fast, but for the purposes of this
paper we take at face value the BICEP2 measurement of r [1] while retaining the measure-
ments of the tilt in the scalar spectrum, ns, found by the previous experiments [20, 21], with
which BICEP2 is consistent.

Planck and previous experiments were in some tension with the single-field power-law
inflationary potentials of the form µ4−nφn where µ is a generic mass parameter. Among mod-
els with n ≥ 2, that might be related directly to models with fundamental scalar fields φ,
models with n = 2 provided the least poor fits to previous data. However, even such quadratic
models were barely compatible with the Planck results at the 95% CL [21]. Quadratic mod-
els [22, 23] are, in some sense, the simplest, since just such a single form of the potential could
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describe dynamics throughout the inflationary epoch and the subsequent field oscillations,
unlike monomial potentials of the form φn : n 6= 2, which would require modification at small
φ in order to accommodate a particle interpretation. Moreover, there are motivated particle
models that would yield a quadratic potential, e.g., for the scalar supersymmetric partner
of a singlet (right-handed) neutrino in a Type-I seesaw model of neutrino masses [24–26].
Such a model would make direct contact with particle physics, and the decays of sneutrino
inflatons could naturally yield a cosmological baryon asymmetry via leptogenesis. Such a
scenario would be a step towards a physical model of inflation.

In this paper we first set the scene by revisiting simple slow-roll inflationary models based
on single-field monomial potentials of the form µ4−nφn in light of the BICEP2 result [1]. We
derive and explore the validity of a general consistency condition on monomial models:

r = 8

(
1− ns −

1

N

)
, (1.1)

where N is the number of e-folds of inflation. This consistency condition is comfortably
satisfied for the value r = 0.16+0.06

−0.05 (after dust subtraction) indicated by BICEP2 [1], and the
values ns = 0.960±0.008 and N = 50±10 consistent with this and other experiments [20, 21].
The consistency condition (1.1) is independent of the monomial power index n, but in the
quadratic case n = 2 one finds for N = 50 that ns = 0.960 and r = 0.16, in perfect agreement
with the data. On the other hand, an n = 4 potential would have δχ2 ∼ 8, as we discuss
later.

Global supersymmetry accommodates very naturally [27–29] a single-field φ2 model, one
example being the sneutrino model [24–26] mentioned above. However, one should embed
such a model in the framework of supergravity [30, 31]. The first attempt at constructing
an inflationary model in N = 1 supergravity proposed a generic form for the superpotential
for a single inflaton [32], the simplest example being W = m2(1 − Φ)2 [33]. However, these
models relied on an accidental cancellation between contributions to the inflaton mass [34].
Such cancellations are absent in generic supergravity models, which typically yield effective
potentials with higher powers of the inflaton field [4–6, 35, 36]. These problems can be
alleviated either by employing a shift symmetry in the inflaton direction [37] or through no-
scale supergravity [38–41]. Since no-scale supergravity arises as the effective field theory of
compactified string theory [42], and is an attractive framework for sub-Planckian physics [43,
44], this is an appealing route towards embedding quadratic inflation in a more complete
theory.

The bulk of this paper explores possibilities for obtaining a quadratic inflaton potential
in the context of supergravity. After briefly reviewing models that invoke a shift symme-
try, we turn our focus to no-scale supergravity models. We distinguish two classes of such
models, which are differentiated by how the moduli in the theory obtain their vevs. We
give an explicit example that incorporates supersymmetry breaking and a simple quadratic
inflationary potential embedded in no-scale supergravity with a stabilized Kähler modulus.

2 Inflation with power-law potentials

2.1 General power-law potentials

We work in the slow-roll approximation [6], where the magnitude of the scalar density per-
turbations implies that (

V

ε

) 1
4

= 0.0275×MPl , (2.1)
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where V is value of the effective inflationary potential and ε is a slow-roll parameter given
by [6]

ε =
1

2
M2

Pl

(
V ′

V

)2

, (2.2)

where, here and subsequently, the prime denotes a derivative with respect to the inflaton
field φ, and MPl corresponds to the reduced Planck mass, 2.4 × 1018 GeV. Other slow-roll
parameters are [6]

η = M2
Pl

(
V ′′

V

)
; ξ = M4

Pl

(
V ′V ′′′

V 2

)
. (2.3)

CMB observables can be expressed as follows in terms of the slow-roll parameters:

Tensor-to-scalar ratio r: r = 16ε , (2.4)

Scalar spectral tilt ns: ns = 1− 6ε+ 2η , (2.5)

Running of scalar index αs: αs = 2ξ + 16 η ε− 24 ε2 . (2.6)

In addition to the above expressions, we note the formula

N =

∫ φe

φi

(
V

V ′

)
dφ (2.7)

for the number of e-folds of inflation between the initial and final values of the inflaton field
φi,f . Within this framework, the BICEP2 measurement r = 0.16+0.06

−0.05 [1] (after subtraction
of an estimated dust contribution) provides a first direct determination of ε ∼ 0.01 and
hence, via (2.1), a determination of the potential energy density during inflation: V '
(2 × 1016 GeV)4. The measurement of ns ' 0.960 then implies that also η ∼ 0.01. Clearly,
these determinations are consistent with the slow-roll approximation.

As already mentioned, there is tension between the BICEP2 measurement of r and the
Planck upper limit, which could be alleviated if there were significant running of the scalar
index: αs ∼ −0.02 [1]. Since ε and η are both O(10−2), corresponding to V ′ ∼ 0.1/MPl

and V ′′ ∼ 0.01/M2
Pl, such a magnitude of the scalar spectral index would require ξ ∼ 0.01

and hence V ′′′ ∼ 0.1/M3
Pl. In this case, the variation in V ′′ over a range ∆φ = O(10MPl) is

∆V ′′ ∼ 1/M2
Pl, which is difficult to reconcile with the estimate of η from measurements of r

and ns, and indeed the slow-roll approximation in general. We therefore assume instead that
the running of the spectral index is negligible, in which case the tension between BICEP2
and Planck cannot be alleviated.

We now consider the simplest possible class of single-field models of inflation, namely a
monomial of the form V = µ4−nφn. In this case, the slow-roll parameters have the expressions

ε =
n2

2

M2
Pl

φ2
; η = n(n− 1)

M2
Pl

φ2
, (2.8)

corresponding to

r = 8n2M
2
Pl

φ2
; ns = 1− n(n+ 2)

M2
Pl

φ2
, (2.9)

where we have now suppressed the suffix i in φi, and the number of e-folds is

N =
1

2n

φ2

M2
Pl

, (2.10)
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if we assume that φf � φi = φ. These expressions yield one consistency condition that is
independent of n and φ, namely

r = 8

(
1− ns −

1

N

)
, (2.11)

as noted earlier. As also noted earlier, the 68% CL ranges indicated by BICEP2 and other
experiments [1, 20, 21], r = 0.16+0.06

−0.05, ns = 0.960±0.008, combined with the expected number
of e-folds N = 50 ± 10, satisfy comfortably the consistency relation (2.11). This is not the
case for the Planck upper limit on r if the scalar spectral index does not run, namely r < 0.08
at the 68% CL.

2.2 Quadratic inflation

Given the consistency of the single-field monomial potential with experiment, one may then
ask what value of n is favoured. The expressions (2.9), (2.10) can be used to derive two
expressions for n that are independent of φ, namely

n =
rN

4
; n = 2 [N(1− ns)− 1] , (2.12)

which can be combined to yield (2.11). Inserting r = 0.16+0.06
−0.05, N = 50 ± 10 and ns =

0.960± 0.008, we find the values

n = 2.0+0.9
−0.8; n = 2.0± 1.1 . (2.13)

Clearly these are highly consistent with the quadratic case n = 2. The cases n = 1, 3 (∆χ2 ∼
2) cannot be excluded, whereas n = 4 (∆χ2 ∼ 8) is strongly disfavoured.1 However, since
the φ and φ3 potentials are not bounded below for negative φ, they would certainly require
modification in this region, as well as near φ = 0 in order to have a particle interpretation,
so we disfavour them. We are therefore led to consider quadratic inflation in more detail.

In the case n = 2, the analysis of [24–26] showed that mass of the inflaton, m =
√

2µ =
1.8× 1013 GeV = O(10−5MPl), and we see from (2.10) that one requires an initial field value
φ =

√
200MPl, corresponding to V = µ2φ2 ' (2 × 1016 GeV)4. The small value of m (or,

equivalently, µ) raises the usual problems of fine-tuning and naturalness in the presence of
quadratic divergences in the quantum corrections to the effective field theory. This issue
would not arise if the inflaton φ is embedded in a supersymmetric theory. We also note that,
if one relaxes the monomial assumption, any contribution of the form ∆V = λφ4 would need
to have λ <∼ 10−13. In a supersymmetric theory, λ = 2y2, where y is some Yukawa coupling.
Both λ and y would receive only logarithmic wave-function renormalization, so that small
values are technically natural. Moreover, since the Yukawa coupling of the electron∼ 2×10−6,
the constraint on λ does not seem unreasonable in a supersymmetric model. These are among
the reasons why we think that “inflation cries out for supersymmetry” [27–29]. Within this
framework, we pointed out specifically that suitably small values of the density perturbations
could be accommodated naturally.

Supersymmetrizing the m2φ2/2 potential is a first step in incorporating BICEP2-
compatible inflation into a more complete physics model. A second step is to identify the
inflaton with the scalar partner of a singlet (right-handed) neutrino in a Type-I seesaw model

1Potentials with combinations of quadratic and quartic terms have also been considered recently in light
of BICEP2: see [45, 46].
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of neutrino masses [24–26]. In this case, the sneutrino inflaton decays directly into Standard
Model Higgs bosons and leptons, and one-loop effects naturally generate a CP-violating lep-
ton asymmetry. It was shown in [24–26] that there is a large range of parameters in which
sphalerons then generate an acceptable cosmological baryon asymmetry.2 Sneutrino infla-
tion seems to us a very attractive scenario for linking early cosmology to particle physics in a
testable way. In this scenario, requiring that lepton-number violation be absent would forbid
any trilinear Yukawa interaction between neutrino superfields that could generate a quartic
sneutrino coupling λ.

Within the Type-I seesaw model one is led naturally to consider the possibility that two
or three sneutrinos might play rôles during the inflationary epoch [47]. It was found that they
could, in general, decrease r compared to the single-sneutrino model. This reduction would
be accompanied by an increase in ns in a two-sneutrino model, but not necessarily in a three-
sneutrino model. These possibilities illustrate the importance of detailed measurements of
the tensor modes as well as refining the measurement of ns. A multi-sneutrino scenario could
accommodate a value of r intermediate between the values currently favoured by Planck and
BICEP2. Another example capable of yielding an intermediate value of r is the Wess-Zumino
model [48, 49], but we do not pursue these possibilities here.

3 Quadratic inflation in simple supergravity

The scalar potential in N = 1 supergravity is given by

V = eG
(
GiG

ij̄Gj̄ − 3
)
, (3.1)

where we can write G in terms of a Kähler potential K and superpotential W

G = K + log |W |2 , (3.2)

giving

V = eK
(
Kij̄DiWD̄j̄W̄ − 3|W |2

)
, (3.3)

where DiW ≡ ∂iW +KiW . The first attempt at chaotic inflation in supergravity was made
in [50].

For generic Kähler potentials, the exponential prefactor typically leads to the η-problem.
An elegant mechanism for avoiding the η-problem in supergravity with canonical kinetic
terms employs a shift symmetry in the Kähler potential [37, 51–66].3 Models of this type
must incorporate at least two complex fields, three if one wants to incorporate supersymmetry
breaking [63]. The general form of the Kähler potential should be K((φ− φ∗)2, SS∗), where
the shift symmetry flattens the potential in the direction of the real part of φ. The simplest
choice of Kähler potential is

K = −1

2
(φ− φ∗)2 + SS∗ , (3.4)

which can be combined with a superpotential

W = Sf(φ) (3.5)

2The large energy density during inflation indicated by BICEP2 tends to indicate a high reheating temper-
ature, which would yield a high gravitino density, but this is not necessarily a problem if the gravitino mass
is high enough - a possibility compatible with the specific inflationary supergravity scenarios discussed later.

3For recent limits on possible departures from shift symmetry, see [64].
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to yield a simple form for the scalar potential:

V = |f(φ)|2 . (3.6)

It is clear that taking f(φ) = mφ leads directly to the desired quadratic potential.
However, it is not immediately apparent how to embed the shift symmetry in a more

fundamental framework, and the choice (3.5) of superpotential does not lend itself to a
sneutrino interpretation of the inflaton.4 We are therefore led to consider other supergravity
models that can yield quadratic inflation.

4 Quadratic inflation in no-scale supergravity

We now consider how an effective potential of the form m2φ2/2 could be obtained in a no-scale
supergravity framework [38, 39], which is motivated by models of string compactification [42],
and is hence a step towards an ultra-violet completion of the m2φ2 potential, as well as being
an attractive framework for sub-Planckian physics [40, 43, 44]. No-scale supergravity [38, 39]
incorporates an SU(N, 1)/SU(N)×U(1) symmetry leading to a Kähler potential of the form

K = −3 ln

(
T + T ∗ − φiφ∗i

3

)
, (4.1)

where the complex field T could be identified as a generic string modulus field that parame-
terizes, together with N − 1 “matter” fields φi, an SU(N, 1) no-scale manifold [38–40].

It is straightforward to show that we must incorporate such matter fields and consider
N ≥ 2. To see this, recall that the minimal no-scale SU(1, 1)/U(1) model may be written in
terms of a single complex scalar field T with the Kähler function

K = −3 ln(T + T ∗) , (4.2)

in which case the kinetic term becomes

LKE =
3

(T + T ∗)2
∂µT

∗∂µT , (4.3)

and the effective potential becomes

V =
V̂

(T + T ∗)2
: V̂ =

1

3
(T + T ∗)|WT |2 − (WW ∗T +W ∗WT ) . (4.4)

There are no polynomial forms of W (T ) that lead to a quadratic potential for a canonically-
normalized field, and we are led to consider N ≥ 2 models with additional matter fields.

For our purposes here, we take N = 2 and consider theories with just two complex
fields. In this case, the no-scale Kähler potential may be written in the form

K = −3 ln

(
T + T ∗ − φφ∗

3

)
, (4.5)

and the canonically-normalized fields can be taken as zR = K/
√

6, zI = eK/3
√

3/2(T − T ∗),
and Φ = eK/6φ.

4For another approach to the η-problem and sneutrino inflation in supergravity, see [67].
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4.1 Models with the Kähler potential fixed dynamically

Within this general framework, one possibility is to fix the argument zR of the Kähler po-
tential, in which case the scalar potential takes a form similar to that in a globally super-
symmetric model, namely

V = eK |WΦ|2, (4.6)

where WΦ = dW/dΦ. It was assumed in [41] that some high-scale dynamics fixes the value of
zR, and a superpotential W = µ2(φ− φ4/4) was used, which yielded a potential of the form
µ4|1 − φ3|2. This is a small-field inflation model that shares many of the same properties
as the simple N = 1 example mentioned earlier [33]. Unfortunately, both models predict
ns = .933 and are now excluded by the Planck and other data [1, 21]. We also note that an
early attempt at a chaotic inflation model in no-scale supergravity was made in [68], though
this model suffers from an instability along the inflationary path [69].

On the other hand, a quadratic potential for the inflation is easily obtained from (4.6)
by taking W = mφ2/2, again with the assumption that there is a fixed vev for zR. A more
complete model of this type was considered in [70], which relied on a stabilizing field as
in (3.4) and (3.5). This model provides for a vev for zR and leads to a quadratic potential
for the inflaton. In fact, the superpotential can be taken exactly as in (3.5), namely f = mφ,
but with a Kähler potential

K = (1 + κS |S|2 + κρρ)|S2| − 3 ln ρ (4.7)

where ρ ≡ e−zR/3. The corresponding potential has a minimum at ρ = −3/4κρ. However, all
these theories contain a nearly massless field associated with zI .

5

4.2 Models with the Kähler potential undetermined

Alternatively, one may leave the argument zR of the Kähler potential undetermined, and
consider instead the possibility that T is fixed. Returning to the no-scale form for the Kähler
potential given by eq. (4.5), it was shown previously [11] that in this case a superpotential
of the form

W = m

(
φ2

2
− λ φ3

3
√

3

)
(4.8)

with m ' 1.3 × 10−5 from the amplitude of density fluctuations and λ ' 1 reproduces
the effective potential of the Starobinsky model [7], which is favoured by Planck data [21]
but disfavoured by BICEP2 [1], under the assumptions that some ‘hard’ dynamics fixes the
Kähler modulus T :

2〈ReT 〉 = c ; 〈ImT 〉 = 〈Imφ〉 = 0 , (4.9)

where we assume henceforth that c = 1. An example of T fixing was given in [12], and
we return below with other examples of such strong stabilization. The model with the
superpotential (4.8) is one of a class of no-scale models that yield Starobinsky-like inflationary
potentials [12], but here we seek variants leading to a BICEP-2 compatible potential.

5For related models, see [69].
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4.2.1 Models with the inflaton identified with the Kähler modulus

Within the N = 2 no-scale framework, one is free to choose either φ or the modulus T as the
inflaton. One example of a superpotential for the latter option is [71]

W =
√

3mφ (T − 1/2) , (4.10)

where m = 1.3× 10−5 as before. It has recently been observed [72] that in this model Im T
has a quadratic potential when Re T is fixed at the global minimum of the effective potential.
Unfortunately, when Im T 6= 0, as would be required during inflation, the effective potential
is minimized at a different value of Re T , and the BICEP2-compatibility of the model is lost.6

Inflationary evolution in this model is illustrated in figure 1, where we define

T ≡ e

√
2
3
ρ

+ i
σ√
6

(4.11)

and assume that ρ is set at its global minimum initially, ρ =
√

3/2 ln(1/2), but assume
a large initial value of σ and follow the evolution of ρ and σ during inflation. We see in
the top panel that ρ quickly jumps to a value > 4 and then decreases gradually towards
zero, exhibiting small oscillations at times > 13 × 106 in Planck units. Conversely, we see
in the middle panel that σ relaxes rapidly to zero, exhibiting a small overshoot at a time
∼ 0.4 × 106 in Planck units. Finally, we see in the bottom panel of figure 1 that most of
the inflationary e-folds occur after σ has settled to zero, and are driven by the roll-down of
ρ. In this particular example, the number of e-folds is 60, set by our choice for the initial
value of ImT = σ/

√
6. However, the inflaton should be identified with ReT , or equivalently

ρ, and it would be Starobinsky-like. We find the following values of the scalar tilt and the
tensor-to-scalar ratio

(ns, r) =

{
(0.9604, 0.0044) forN = 50

(0.9670, 0.0031) forN = 60 .
(4.12)

We conclude that this model provides a Planck/WMAP-compatible model of inflation, but is
not BICEP2-compatible. This problem of the original version of [72] was also noted in [73–75].

In a revised version of [72], it was shown that the problem outlined above and in [73–75]
could be avoided by a modification of the Kähler potential adding a stabilization term of the
type proposed originally in [76] and used more recently in [12]:

K = −3 ln

(
T + T ∗ − φφ∗

3
− (T + T ∗)n

Λ2

)
(4.13)

where, as an example, the case n = 2 and Λ =
√

2 was chosen. The introduction of this
stabilization term leads to an acceptable potential in the ImT direction, avoids the field
evolution to large ReT in the original version of [72] discussed above and in [73–75], and
would seem to allow for the desired quadratic inflation. However, the introduction of this
term leads to a severe instability in the φ direction, as can be seen in figure 2 where the
scalar potential is shown in the (ImT , Reφ) projection for the fixed values ReT = 1/2 and
Imφ = 0.

6Fixing the value of φ is also an issue for this class of models: see [12] and the discussion below.
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Figure 1. Analysis of the no-scale inflationary model with the inflaton identified with the Kähler
modulus T and the superpotential W =

√
3mφ(T −1/2) (4.10), assuming a suitable large initial value

of ImT . Top panel: time evolution of ρ ≡
√

3/2 ln ReT ; middle panel: evolution of σ ≡
√

6ImT ;
bottom panel: growth of the number of e-folds N during inflation.

This further problem can be cured with the inclusion of a second stabilization term in
the Kähler potential (4.13):

K = −3 ln

(
T + T ∗ − φφ∗

3
− (T + T ∗)n

Λ2
+

(φφ∗)2

Λ2
φ

)
, (4.14)
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Figure 2. The scalar potential of the model (4.10), (4.13) projected onto the (ImT,Reφ) plane with
fixed values ReT = 1/2 and Imφ = 0.

where it is sufficient to take Λφ = 1. The presence of the quartic term in φ in K, forces φ to
0 [61–63] and implements finally the desired quadratic inflation. The scalar potential of the
model (4.10), (4.14) at φ = 0 is given by [72]

V = e−2
√

2/3ρm2Λ4

2σ2 + 3
(

1− 2e
√

2/3ρ
)2

16
(

2e
√

2/3ρ − Λ2
)2

 . (4.15)

Its projection in the (ReT , ImT ) plane is shown in figure 3, and the (ImT , Reφ) projection
for ReT = 1/2 and Imφ = 0 is shown in figure 4. We note that a quadratic potential for σ
results only when ρ is fixed. Fortunately, at large σ, ρ is driven to a σ-independent minimum
at ρ =

√
3/2 ln(Λ2/4).

We display in figure 5 the evolutions of the four field components of the model (4.10),
(4.14) during inflation. The normalization of the inflaton field σ defined in (4.11) differs
from the canonical value by a numerical factor that is dependent on Λ, as seen in its effective
Lagrangian:

L =

(
(2− 2Λ2 + Λ4)

2(Λ2 − 1)2

)
(∂µσ)2 −

(
Λ4m2

2(Λ2 − 1)2

)
σ2 . (4.16)

We note that at φ = 0 the coefficient of the kinetic term for φ is proportional to Λ2/(Λ2− 1)
and thus the normalization of the kinetic term is positive for Λ > 1. Because of the non-
canonical normalization, the initial value of σ in figure 5 must be larger than 15 in order
to obtain ∼ 60 e-folds. We also see in (4.16) that m is related to the inflaton mass by
a Λ-dependent numerical factor. In the top panel of figure 5 we see that the inflaton σ
falls smoothly towards zero and then exhibits characteristic oscillations. It is crucial that ρ
remain relatively fixed during the inflationary evolution so that the σ is driven by a quadratic
potential. The second panel shows the evolution of ρ, which is related in (4.11) to ReT : it
moves to its minimum at large σ and then begins oscillations, but does not modify the
inflationary behaviour in an important way. For the choice Λ =

√
2, the minimum at large

σ coincides with that at σ = 0. The next two panels show the evolutions of Reφ and Imφ:
they exhibit some damped oscillations before relaxing rapidly to zero. Finally, the bottom
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Figure 3. The scalar potential of the model (4.10), (4.14) projected in the (ReT , ImT ) plane.

Figure 4. As in figure 2, but for the scalar potential of the model (4.10), (4.14).

Other values of Λ yield different values of ns and r, as seen in figure 6. For both N = 50
and 60, values of Λ ∼

√
2 yield the most-favoured values of ns and r, with values outside

the range 1.2 < Λ < 1.7 being disfavoured by both ns and r. Recall that Λ > 1 is required
by the sign of the kinetic term of φ. We conclude that the model (4.10), (4.14) provides a
satisfactory BICEP2-compatible model of inflation.
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Figure 5. Analysis of the no-scale quadratic inflationary model given by the Kähler potential (4.14)
and the superpotential (4.10). Top panel: time evolution of the inflaton σ, which is identified with
ImT ; second panel: evolution of ρ, which is identified with ReT ; third panel: evolution of Reφ;
fourth panel: evolution of Imφ; bottom panel: growth of the number of e-folds N during inflation.

As a BICEP2-compatible alternative, we consider the following superpotential:

W =
√

3mφT ln (2T ) . (4.18)
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Figure 6. Dependences of the observables ns (upper panel) and r (lower panel) for N = 50 and
60, as functions of the stabilizing parameter Λ in the model with superpotential (4.10) and Kähler
potential (4.14).

Since we seek to identify the inflaton with a component of the modulus field T , we must
postulate some suitable ‘hard’ dynamics to fix φ. We consider for this purpose a modification
of the Kähler potential that is higher order in φ and similar to that proposed in [12, 13, 76]:

K = −3 ln

(
T + T ∗ − |φ|

2

3
+
|φ|4

Λ2

)
. (4.19)

In this model the canonically-normalized inflaton field χ is given by

χ ≡
√

3

2
ln(2T ) , (4.20)

and it is easy to verify that the parameter m in (4.18) can be identified as the mass of the
inflaton. Indeed, at the global minimum of the effective scalar potential, the mass of the φ
field is also m.

We display the effective scalar potential of the model (4.18), (4.19), (4.20) in various
projections in figure 7, 8 and 9. Figure 7 shows the effective potential for the real and
imaginary components of χ. We see that both are stabilized around χ = 0 and, as already
mentioned, the effective potential for χ has a BICEP2-compatible quadratic form. Figure 8
shows that the modification (4.19) of the Kähler potential indeed fixes both components of φ.
The range of |φ| is restricted by a singularity that appears as a near-vertical wall in figure 8.
Finally, figure 9 shows the effective potential for the real parts of χ and φ. We conclude that
this model provides a BICEP2-compatible model of inflation.
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Figure 7. The effective potential for the real and imaginary components of χ (4.20) in the model
given by the superpotential (4.18), assuming φ is fixed by (4.19).

Figure 8. The effective potential for the real and imaginary parts of φ in the same model (4.18),
(4.19), (4.20) as in figure 7.

4.2.2 A model with the Kähler modulus fixed dynamically

As an alternative, we now investigate a model with the Kähler modulus T fixed dynam-
ically and the inflaton identified with the other no-scale field, using a different choice of
superpotential that yields an effective quadratic potential.

In such a no-scale scenario with T fixed, the canonically-normalized inflaton field χ is
defined by [11]

χ ≡
√

3 tanh−1

(
φ√
3

)
, (4.21)
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Figure 9. The effective potential for the real parts of χ and φ in the same model (4.18), (4.19), (4.20)
as in figure 7.

and the effective potential is

V =
|Wφ|2[

1− tanh
(
χ√
3

)
tanh

(
χ∗
√

3

)]2 (4.22)

= sech2

(
χ− χ∗√

3

)
cosh4

(
χ√
3

)
cosh4

(
χ∗√

3

)
|Wχ|2 . (4.23)

Let us assume that inflation occurs along the real direction, χ∗ = χ. In the case of a
quadratic potential, N > 50 if χ & 11. However, we see from (4.22) and (4.23) that, for a
generic superpotential, the scalar potential grows exponentially fast at large χ:

V ' 1

16
e4χ/

√
3|Wφ|2 '

1

256
e8χ/

√
3|Wχ|2. (4.24)

The presence of the exponential is directly related to the presence of poles at φ = ±
√

3, since
for |χ| → ∞, |φ| →

√
3. Therefore, if we are to have large-field inflation, one or both of

the poles must be removed: Wφ ∝ (1 ± φ/
√

3). However, if this is the case, large χ implies
|φ| →

√
3, and for a polynomial superpotential W = aφn + · · · , V → const., corresponding

to an asymptotically scale-invariant potential along the inflationary trajectory, more akin to
the Starobinsky scenario than to the quadratic case.

It is possible to construct a quadratic potential if one relaxes the assumption for W by
allowing a non-polynomial form. Indeed, the choice

W (φ) =
m

18

[
9− 3φ2 − 2

√
3φ(−9 + φ2) tanh−1

(
φ√
3

)
+ 18 ln

(
1− φ2

3

)]
(4.25)

yields the effective potential m2(Reχ)2, and it is clearly possible to construct alternative
models that yield smaller values of r. We note that the choice (4.25) has a Z2 symmetry:
φ→ −φ, consistent with the identification of the scalar component of φ as a sneutrino.
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We also note that the imaginary direction of φ cannot support inflation for a gen-

eral superpotential, due to the presence of singularities at Im χ = ±
√

3
4 π. With the sin-

gularities removed, a superpotential that is polynomial in φ would result in a potential

V
(
tan

(
Imχ/

√
3
))

, with a range limited to Im |χ| ≤
√

3
2 π.

4.3 A modified no-scale model

As an alternative, one may consider the modified no-scale Kähler potential7

K = −3 ln (T + T ∗) + |φ|2 . (4.26)

The scalar field φ is now canonical, and in this case the scalar potential is of the form

V = e|φ|
2 [|φ|2|W |2 + |Wφ|2 + (φWφ + h.c.)

]
, (4.27)

assuming that the superpotential is a function of φ only and where we have again below set
c = 1 (see below for a mechanism which accomplishes this). It is then easy to see that the
choice

W = e
−φ2
2

(
m̃− m

2
φ2
)

(4.28)

again yields the effective potential m2x2/2, Reφ = x/
√

2. In eq. (4.28), the presence of
the constant m̃ accounts for supersymmetry breaking with the gravitino mass given by m̃.
Therefore, we expect m̃� m. The superpotential (4.28) also has the Z2 symmetry: φ→ −φ,
and is far simpler than the previous case (4.25), so we select it for more detailed study.

The model (4.26), (4.28) has two complex fields and hence four degrees of freedom. In
order to show that this is a satisfactory model of inflation, one should demonstrate that the
other degrees of freedom do not ‘misbehave’ while the real part of φ is driving inflation. We
note first that the potential (4.27) given by (4.26), (4.28) is proportional to e−(φ−φ∗)2/2. Thus
the potential rises exponentially along the Im φ direction, so that direction is automatically
stabilized. In contrast, the potential given by (4.26), (4.28) is flat in the directions corre-
sponding to the real and imaginary parts of T , which must be stabilized in order to obtain
suitable inflation. This can be achieved by modifying the Kähler potential to become [12, 76]

K = −3 log

(
T + T ∗ +

(T + T ∗ − 1)4 + d(T − T ∗)4

Λ2

)
+ |φ|2 , (4.29)

in which the quartic terms in the argument of the logarithm fix the vevs: 〈2ReT 〉 = 1 and
〈ImT 〉 = 0, providing the necessary stabilization. The masses of the real and imaginary
parts of T are both given by 12m̃/Λ and thus are hierarchically larger than the gravitino
mass. This type of hierarchy was recently shown to be compatible with preserving the baryon
asymmetry while not over-producing the dark matter density through moduli and gravitino
decays [77].

The shapes of the effective scalar potential in various projections are shown in fig-
ure 10, 11 and 12. We see explicitly in figure 10 the form of the effective potential for the real
and imaginary components of φ, assuming that m = 10−5, m̃ = 10−13 for Λ = 10−2 the fixed
value 2ReT = 1 and ImT = 0. By construction, the real part of φ has the desired quadratic
potential, and we see that the effective potential for the imaginary part has a minimum at

7Such a form could appear if φ lies in a different modular sector, with the other modulus fixed by dynamics
that we do discuss here.
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Figure 10. The effective potential for the real and imaginary components of φ in the model (4.28),
(4.29), for fixed T = 1/2.

Figure 11. The effective potential for the real parts of φ and T in the model (4.28), (4.29), assuming
that m̃ = 10−13 and Λ = 10−2, in the case that the imaginary parts of φ and T are set to zero.

Imφ = 0. Secondly, figure 11 shows, correspondingly, that the real parts of T and φ are
indeed stabilized in the neighborhood of 2ReT = 1 and Reφ = 0. The curvature of the
potential for the degree of freedom corresponding to ReT is difficult to see in this figure,
as its mass is O(m̃/Λ) in Planck units, which is hierarchically smaller than the mass of the
inflaton Reφ, m in this example. Thirdly, figure 12 shows, correspondingly, that both the
real and imaginary parts of T are indeed stabilized in the neighborhood of 2ReT = 1 and
ImT = 0 when φ = 0.

It is necessary also to verify also that the real and imaginary components of both T
and φ evolve correctly during the inflationary epoch. Accordingly, in figure 13 we display the
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Figure 12. The scalar potential for the real and imaginary components of T at φ = 0 in the
neighborhood of ReT = 1/2 and ImT = 0 in the model (4.28), (4.29).

evolutions of all four components during the inflationary epoch, assuming d = 1 in (4.29),
starting from the initial conditions

φ0 =
1√
2

(18 + i); T0 =
1√
2

(0.7085 + 0.0012i) (4.30)

and assuming m̃ = 10−13, m = 10−5 and Λ = 10−2. The top, second, third and fourth
panels in figure 13 display the evolutions of Reφ, Imφ,ReT and ImT , respectively. We see
that the inflaton Reφ evolves as expected towards zero, ending with some mild oscillations,
and that there some harmless initial oscillations in Imφ, while the other field components
remain very close to their values at the minimum of the effective potential throughout the
inflationary epoch. The bottom panel of figure 13 displays the evolution of the cosmological
scale factor during the inflationary epoch, demonstrating that a suitable number of e-folds
N can be obtained. The values of the scalar tilt and the tensor-to-scalar ratio are

(ns, r) =

{
(0.9596, 0.1620) forN = 50

(0.9657, 0.1429) forN = 60 .
(4.31)

We conclude that the model (4.29), (4.28) provides a satisfactory BICEP2-compatible model
of inflation.

5 Summary and conclusions

We have shown that the BICEP2 data on r and the available data on ns are consistent (1.1)
with a simple power-law, monomial, single-field model of inflation, and that V = m2φ2/2 is
the power-law that best fits the available data (2.13). The required value of m ' 2×1013 GeV
and the small value of the quartic coupling required for the quadratic potential is to be
a good approximation when φ '

√
200MPl during inflation are technically natural in a

supersymmetric model [27–29]. Moreover, it is attractive to identify the inflaton with a
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Figure 13. Analysis of the no-scale quadratic inflationary model given by the Kähler potential (4.29)
and the superpotential (4.28). Top panel: time evolution of the real part of the inflaton φ; second
panel: evolution of the imaginary part of φ; third panel: evolution of the real part of T ; fourth
panel: evolution of the imaginary part of T ; bottom panel: growth of the number of e-folds N during
inflation.
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singlet (right-handed) sneutrino, since this value of m lies within the range favoured in Type-
I seesaw models of neutrino masses. It is natural to embed quadratic (sneutrino) inflation
within a supergravity framework, and we have given examples how this may be done in the
context of both minimal and no-scale supergravity.

Nevertheless, we would like to reiterate that the BICEP2 measurement of r is in tension
with the Planck upper limit on r, and emphasize that our choice here to discard the latter
and explore the implications of the former is somewhat arbitrary. In our ignorance, we
have no opinion how the tension between the two experiments will be resolved. If it is
resolved in favour of Planck, Starobinsky-like models would return to favour, which can easily
be accommodated in the no-scale supergravity framework, in particular, with a relatively
simple superpotential such as (4.8). Alternatively, if the resolution favours BICEP2, as
we have shown in this paper, the simplest possible m2φ2/2 potential would be favoured,
which offers a very attractive connection to particle physics if the inflaton is identified as a
sneutrino. As we have shown, such a model could also be accommodated within a no-scale
supergravity framework, though at the expense of a more complicated superpotential such
as (4.25) or (4.28). Models with values of r intermediate between the ranges favoured by
Planck and BICEP2 can also be constructed within the no-scale framework. A final caveat
is that all our analysis is within the slow-roll inflationary paradigm, whereas the resolution
of the tension between Planck and BICEP2 might require going beyond this framework, e.g.,
to accommodate large running of the scalar spectral index, a stimulating possibility that lies
beyond the scope of this work.
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