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Radiative flavor models where the hierarchies of Standard Model (SM) fermion masses and mixings are
explained via loop corrections are elegant ways to solve the SM flavor puzzle. Here we build such a model
in the context of mini-split supersymmetry (SUSY) where both flavor and SUSY breaking occur at a scale
of 1000 TeV. This model is consistent with the observed Higgs mass, unification, and dark matter as a
weakly interacting massive particle. The high scale allows large flavor mixing among the sfermions, which
provides part of the mechanism for radiative flavor generation. In the deep UV, all flavors are treated
democratically, but at the SUSY-breaking scale, the third, second, and first generation Yukawa couplings
are generated at tree level, one loop, and two loops, respectively. Save for one, all the dimensionless
parameters in the theory are Oð1Þ, with the exception being a modest and technically natural tuning that
explains both the smallness of the bottom Yukawa coupling and the largeness of the Cabibbo angle.
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I. INTRODUCTION

Unlike the gauge sector, the Standard Model (SM) flavor
sector has a complicated menagerie of dimensionless
parameters whose values differ by orders of magnitude.
Furthermore, the patterns of masses and mixings of the
SM fermions do not appear random, even on a logarithmic
scale; there is a hint of structure that emerges upon close
inspection (cf. Fig. 1). For example, the masses of the third
generation fermions are all much larger than the masses
of the second generation fields with the same quantum
numbers, which in turn are all much heavier than the
corresponding first generation fermions. The Standard
Model offers no explanation for any of this structure, with
the Yukawa couplings simply given as dimensionless
inputs.
One possible explanation for the flavor structure stems

from the following observation about, for example, the up,
charm, and top quarks:

mc

mt
≃mu

mc
≃Oð1Þ × 1

16π2
: ð1Þ

This leads to the idea of radiative flavor breaking [3–17],
where only the third generation Yukawa couplings are
generated at tree level, while the second generation
Yukawas are generated as one-loop effects, and the first
generation is a two-loop effect. This is an old idea that has
its origins in trying to explain the electron mass as a loop
effect of the muon mass [18–21]. This framework not only

explains the cascading down of the masses in different
generations, but it can also easily be embedded into a UV
theory where all SM fields are treated democratically so
that different symmetry charges need not be given to the
different fields.
Supersymmetric theories of radiative flavor generation

[22–33] can incorporate many of the usual advantages to
supersymmetry (SUSY), including a natural dark matter
candidate and improved gauge coupling unification. In the
context of radiative flavor generation, SUSY has additional
advantages. The nonrenormalization theorems for the
superpotential [34,35] mean that radiative corrections
cannot generate new operators such as first and second
generation Yukawa couplings. This forces flavor and SUSY
breaking to be tied together, likely giving a common scale
to both phenomena. In addition, SUSY requires the theory
to include an additional set of particles which transform
under flavor, the sfermions. While nonsupersymmetric
theories of radiative flavor generation require introducing
a host of new fields, SUSY models are potentially more
economical because the sfermions can contribute to gen-
erating the flavor hierarchy.
In order to use the sfermions to generate flavor, there

must be large flavor breaking in the sfermion sector.
Unfortunately, if sfermions are at the weak scale, low
energy flavor tests require them to be nearly flavor diagonal
[36], a difficulty encountered by many of the early attempts
to build such a model [22,23,29]. Because the Yukawa
couplings are dimensionless parameters, they are quite
insensitive to the scale at which they are generated. On the
other hand, the flavor observables that constrain the flavor
breaking in the sfermion sector correspond to higher
dimension operators, so they decouple quickly with heavier
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sfermion masses. Therefore, spectra where the sfermions
are much above the weak scale such as split [37–39] and
supersplit [2,40,41] supersymmetry can be used for radi-
ative flavor generation with sfermions potentially as heavy
as the GUT or Planck scale [31].
Motivated by the lack of evidence for SUSY at the LHC

and the discovery of a Higgs with mass near 125 GeV
[42,43], theories with sfermions much above the weak scale
have received renewed interest [44–51]. For reasons that
will be reviewed in Sec. II, the data points to a sfermion
mass scale of msc ∼ 1000 TeV, and we refer to this
framework as mini-split SUSY [49]. In this work, we build
a model where the SM fermion masses are generated
radiatively in a mini-split setup. The spectrum is outlined
in Fig. 2: the scalars of the minimal supersymmetric
standard model (MSSM) as well as all the additional
ingredients needed for the model are at the scale msc,
while gauginos are significantly lighter, around 10 TeV.
The flavor model has a Uð1ÞF symmetry in the UV

which forbids the Yukawa couplings. However, unlike
previous models, all of the SM matter multiplets are neutral
under this symmetry, with only the Higgs fields being
charged. Therefore, the UV theory treats all the SM fields
democratically, and no special charges are needed for the
different generations. SUSY breaking occurs at the scale

msc and seeds spontaneous Uð1ÞF breaking. This allows
tree-level Yukawa couplings to be generated for the third
generation fermions. The relative smallness of the bottom
and tau Yukawa couplings to the top Yukawa comes from
a modest and technically natural tuning, but this is the only
hierarchy not automatically explained by this model.
Radiative corrections from the Uð1ÞF-breaking sector
generate one-loop Yukawa couplings for the second gen-
eration. Finally, the first generation Yukawas are generated
by two-loop diagrams of sfermions which have large flavor
breaking in their SUSY-breaking masses. A schematic
representation of the fermion mass hierarchies is given
in Fig. 3. The Cabibbo-Kobayahsi-Maskawa (CKM) matrix
also has the right structure, with the small parameter
required for a small bottom Yukawa being the reason that
the Cabibbo angle is larger than a loop factor. Finally, this
model preserves the predictions of gauge coupling uni-
fication and dark matter of mini-split SUSY.
The organization of this paper is as follows. In Sec. II, we

review the motivation and spectrum of the mini-split SUSY
framework. In Sec. III we describe our model and give the

FIG. 2 (color online). The spectrum of the model presented on a
log scale. The heaviest known SM particles are at the bottom
around 100 GeV. The gauginos are at the 10 TeV scale with the
gluino typically heaviest and the wino typically lightest and
closer to 3 TeV. The rest of the spectrum is roughly at the PeV
(¼ 1000 TeV) scale, but they are typically spread out over a
couple of decades in mass. As discussed in Sec. IV, the
messengers mix with the squarks and sleptons.
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FIG. 1 (color online). We take the running-mass values at the
top pole mass reported in [1] and divide by v ¼ 174.1 GeV, as
used in [2].
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parametric sizes of elements of the Yukawa matrices and
translate those into the SM fermion masses and mixing
angles. In Sec. IV, we calculate the predictions of the model
in detail including the spectrum of fields at msc as well as
the SM fermion masses and mixings. We also present a
benchmark point in parameter space which faithfully
reproduces SM flavor observables (cf. Figs. 12 and 13).
In Sec. V we describe the constraints on the model and
potential future phenomenology, and we conclude in
Sec. VI.

II. REVIEW OF MINI-SPLIT SUSY

The discovery of a Higgs-like state with a mass near
125 GeV [42,43] and the absence of any direct evidence for
superpartners at the LHC has led to a reconsideration of the
paradigm of weak-scale supersymmetry [44–51]. Raising
the scalar masses far above the weak scale introduces
significant tuning in the Higgs mass relative to weak-scale
SUSY. In exchange for the loss of naturalness, we get a
much simpler explanation of various phenomena, including
SUSY breaking and its communication to the MSSM
fields. In this section we will briefly review the basic setup
envisioned in, e.g., [51], and describe why this leads to
more straightforward models.
We consider a SUSY-breaking scale parametrized by a

gravitino mass m3=2. If the field that breaks SUSY is
denoted as X, then the Kähler potential contains Planck-
suppressed higher dimensional operators of the form

Z
d4θ

1

M2
Pl

X†XΦ†Φ; ð2Þ

where Φ is a MSSM matter superfield. These yield scalar
masses which are parametrically

msc ∼m3=2: ð3Þ

In generic models of SUSY breaking, X is not a total singlet
and carries either gauge or global charge. Therefore, the
gaugino mass operator XWαWα=Mpl is forbidden and the
leading contribution to gaugino masses comes from
anomaly mediation [52,53]. This gives gaugino masses
that are parametrically

m1=2 ∼
g2

16π2
m3=2; ð4Þ

where g is the relevant gauge coupling. Similar arguments
show that the SUSY-breaking scalar trilinear operators
(a terms) are only generated at loop level and are thus
insignificant for computation of the spectrum.
For the Higgs sector, we can write down operators of the

form

Z
d4θ

�
1þ X†X

M2
Pl

�
ðHuHd þ H:c:Þ: ð5Þ

This generates not only the SUSY-breaking Bμ term but
also the supersymmetric μ term through the Giudice-
Masiero mechanism [54]. They are of order

μ2 ∼ Bμ ∼m2
3=2: ð6Þ

This differs from the original split SUSY construction
[37–39] where the μ term and thus the Higgsinos had mass
of order the gaugino masses. In this model, all the
parameters in the Higgs potential are Oðm3=2Þ, and among
them one tuning is required to get the Higgs vacuum
expectation value (VEV) and the mass of the lightest
physical scalar to be of order the weak scale. The remainder
of the Higgs states and the Higgsinos all have mass
Oðm3=2Þ.
The spectrum described above is shown in Fig. 2, but

we have chosen the scalem3=2 ∼ 1000 TeV. Having scalars
at this scale gives a number of interesting results. First,
radiative corrections from the heavy top squarks raise the
Higgs mass above the tree level bound of mZ. The Higgs
mass is logarithmically sensitive to the scalar masses, so
there is a wide range of top squark masses which can give
the observed Higgs mass, but for tan β being Oða fewÞ, the
top squark loop can raise the Higgs mass to its exper-
imentally measured value, and a detailed computation is
shown in Fig. 3 of [51]. This size for tan β follows naturally
from having all soft scalar masses come from the same
source, as in Eq. (2). We thus expect m2

Hu
∼m2

Hd
, which

predicts the moderate tan β needed for the measured Higgs
mass to be consistent with our chosen mass scale for the
top squarks.

FIG. 3. A schematic representation of the model given in this
work. The top and d4 fields have Oð1Þ couplings to the Higgs,
while the coupling of the b is somewhat smaller. The second
generation gets one-loop couplings from the third generation with
ε being a loop factor. The top and d4 seed Yukawa couplings for
the up and down which are parametrically two-loop size.
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A second feature of scalars around 1000 TeV is that
gaugino masses are of order 10 TeV, with their spectrum
well predicted by anomaly mediation plus the threshold
corrections that arise from the messenger and Higgsino
sectors. This scale is mostly unexplored by current collider
searches, but is within reach of the next generation of
energy frontier experiments. The lightest supersymmetric
particle (LSP) in this framework is the lightest gaugino,
and, because R parity is conserved, it is stable. Pure
anomaly mediation predicts a wino LSP, which is a weakly
interacting massive particle (WIMP) and a viable dark
matter candidate with its relic abundance matching the
observed value if its mass is around 3 TeV [55]. This dark
matter candidate is becoming constrained by indirect
detection experiments [56–58], but it is still a possibility.
In Sec. IVA, we will discuss the full gaugino mass spectrum
in the presence of threshold corrections, and we will explore
the possibilities for dark matter in more detail.
A third advantage of this scale is that gauge coupling

unification works as well as in the MSSM. As the scalars
come in complete SU(5) multiplets, msc has little effect on
unification. On the other hand, the gauginos and Higgsinos
are not in complete SU(5) representations, so their masses
can have a strong effect. Split SUSY with a light μ
was previously shown to unify well [38], and raising μ in
accordancewithEq. (6) is still consistentwithunification [51].
The fourth feature of scalars at the PeV scale

(PeV ¼ 1015 eV) is that the SUSY flavor problem is nearly
nonexistent. The soft masses for Q, U, D, L, E in the
MSSM are 3 × 3 matrices in flavor space, but if those
matrices have generic weak-scale entries then the model
will be badly ruled out by low energy flavor constraints. A
similar statement can be made for a terms. In order for
weak-scale SUSY to be viable, the soft mass matrices must
either be nearly proportional to the unit matrix [36], or
approximately aligned with the SM Yukawa matrices [59].
Models such as gauge mediation [60–64] solve this SUSY
flavor problem for weak-scale sfermions, but when the
mass of the scalars is raised, it is ameliorated as well. This
is because the effects of squarks and sleptons decouple
from low energy flavor experiments like 1=mn

sc, where n is
a positive integer that depends on the process. Detailed
studies [65–68] have recently confirmed that PeV-scale
SUSY is safe from nearly all low energy processes, with
kaon mixing and proton decay being notable exceptions
whose treatment requires more attention. We will discuss
the bounds in detail in Sec. V, but we will take that the soft
masses for the matter partners as anarchic in flavor space.
Because of these advantages, we find that mini-split

SUSY is an interesting laboratory. In particular, the allowed
large flavor mixing in the scalar sector provides a mechanism
to build a model which explains the SM flavor structure
through radiative corrections. While the anarchic flavor
structure of the scalars can generate the first generation
masses at loop level from those of the third generation [51],

more structure is necessary to generate the full SM spectrum.
In the following sections, we will present such a model.

III. A MODEL OF FLAVOR

In this section we give a schematic description of the
model and describe the parametric sizes of the SM flavor
parameters. We show the full spectrum in Fig. 2, present a
benchmark in Sec. IV, and the details of the calculations in
the appendixes. We begin by describing the dynamics
needed for the up sector, and we will cover the rest of the
SM fermions in subsequent sections.

A. Up sector

Our model is an extension of the MSSM with the
spectrum broadly described in Sec. II. The basic premise
is that the hierarchy of masses between generations is a
hierarchy in the number of loops. Crucial to the setup is a
means to forbid tree-level Higgs Yukawas to all but the
third generation. Satisfying this criteria, we must then
ensure the remaining chiral symmetries are broken in stages
to parametrically separate the first two generations.
Furthermore, the different couplings of the generations
occur solely as a consequence of linear algebra. We make
no ad hoc or symmetry-based distinctions between them.
To prevent Yukawa couplings at tree level, we add a new
Uð1ÞF gauge group under which the Higgs superfields are
charged, but all other MSSM fields are neutral. We discuss
complications associated with a new gauge group such
as anomalies in Appendix A. For the up sector, we also
introduce one additional generation of vectorlike messen-
ger quarks,Q, Q̄ andU, Ū, which haveUð1ÞF charges such
that a primordial Yukawa coupling λUQUHu can be written
down. The set of fields needed for the up sector as well as
their charges are given in Table I.
In order to generate any Yukawa couplings, we need to

spontaneously break Uð1ÞF. This requires the introduction
of “flavon” fields shown in Table II. As described in
Appendix B, we need each of these fields in order to get a
potential that generates the flavon VEVs required for SM
Yukawas. The flavons get soft masses from the same
mechanisms as the MSSM matter. Taking ϕ as an example,
the soft terms are given by

Vsoft
ϕ ¼ 1

2
ðm2

ϕÞijϕ†
iϕj þ

1

2
ðm2

ϕ̄
Þijϕ̄†

i ϕ̄j − ðbϕijϕiϕ̄j þ H:c:Þ:
ð7Þ

TABLE I. Charge assignments of the Higgs and up-sector
messenger fields. Here Rp denotes the usual R parity. Note that
the MSSM fields q and u fields are neutral under Uð1ÞF.
Field Uð1ÞF SUð3Þ × SUð2Þ × Uð1Þ Rp

Hu, Hd ∓2 ð1; 2Þ1=2 þ ð1; 2Þ−1=2 þ
Q, Q̄ �1 ð3; 2Þ1=6 þ ð3̄; 2Þ−1=6 −
U, Ū �1 ð3̄; 1Þ−2=3 þ ð3; 1Þ2=3 −

BAUMGART, STOLARSKI, AND ZORAWSKI PHYSICAL REVIEW D 90, 055001 (2014)

055001-4



Once we include the D terms arising from Uð1ÞF, the
flavon scalar potential is analogous to the Higgs potential in
the MSSM, so there is a large region of parameter space
that can be chosen such that all the ϕ fields acquire VEVs.
Since all the dimensional parameters in the potential are of
the same order, we naturally get hϕii ∼msc. The potential
minimization is described in more detail in Appendix B.
From the field content of Tables I and II, we can write

down a general superpotential

Wup ¼ λUQUHu þ λ̄UQ̄ Ū Hd þ fqijqiQ̄ϕj þ fuijuiŪϕj

þ μQQQ̄þ μUUŪ þ μHuHd þ μϕijϕiϕ̄j; ð8Þ

where we have ignored the interactions of the χ and ξ
flavons for now. The f couplings have flavor indices, but
the λ couplings to the Higgs are just numbers. The μ terms
are all of order msc and are generated via the dynamics of
Eq. (5), so all the states described in Tables I and II will
have mass OðmscÞ.

1. Top Yukawa

With these ingredients, we can generate a top Yukawa
coupling at tree level, with all other Yukawas still zero. This
arises from the messenger exchange diagram in Fig. 4.
When Uð1ÞF is broken by the VEVof ϕ, the f couplings in
Eq. (8) generate a mixing between the MSSM-like fields
and the heavy vectorlike fields. The f couplings have an
index in ϕ doublet space as well as an index in flavor space.
We can choose our ϕ basis such that only ϕ1 gets a VEV
and hϕ2i ¼ 0. If we set ϕ to its VEVand ignore interactions
of the propagating ϕ for now, we see that fq and fu are just
column vectors, so they are both rank 1. We can thus
choose bases for qi and ui such f

q
ij and f

u
ij are only nonzero

in the “3” direction in flavor space. This basis now defines
the top quark. It is the only up-type quark to mix with the
vectorlike quarks. Thus, Fig. 4 only generates a top Yukawa
coupling. This mechanism, which is similar to that of
previous works such as [5–7,15,25], allows a UV theory
where all the SM quarks are treated democratically to
generate only a top Yukawa coupling at tree level.
To calculate the top Yukawa from the interactions given

in Eq. (8), we need to rotate the fields as described above.
We can make the schematic argument of the previous
paragraph more rigorous as follows: without loss of
generality, we can use the Uð3Þq, Uð3Þu symmetries that
exist in the limit of zero fq, fu couplings to remove any

interaction between the first generation quarks and the
flavons. In a generic basis, both ϕ1 and ϕ2 get VEVs and
we use the residual Uð2Þ symmetries to decouple the
second generation q and u fields from them. For example,
from the original q2 and q3, we get

q03 ¼
fq22ϕ2q2 þ ðfq31ϕ1 þ fq32ϕ2Þq3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðfq22ϕ2Þ2 þ ðfq31ϕ1 þ fq32ϕ2Þ2
p ; ð9Þ

and q02 is the orthogonal linear combination. Here and
throughout we will use the name of a field to represent a
VEV when the context is clear. We can now define the
following two matrices R and F

qi ¼ Rijq0j Fq
ij ¼ R†

ikf
q
kj; ð10Þ

where R is the matrix that rotates between the interaction
and mass eigenbases for the quarks, and F is the rotation of
the f couplings into the mass basis. We make an analogous
rotation for the u fields and their couplings. By construc-
tion, only q03 couples to the flavon VEVs. Since this defines
the third generation, we drop the 0 notation for this
postrotation state hereafter.
Having performed the appropriate rotations on the

quarks and f couplings, we are at last in position to
calculate the contribution to the top Yukawa from Fig. 4,
getting

yt ¼
λUF

q
3iF

u
3jϕiϕj

μQμU
: ð11Þ

We see that for dimensionless factors of Oð1Þ and all
dimensionful factors of the same order, ∼msc, we get an
Oð1Þ top Yukawa. Of course, if there are no hierarchies in
the parameters in Eq. (11), then calculating yt requires us to
go beyond the double-VEV insertion approximation of
Fig. 4. Rather, after Uð1ÞF symmetry breaking, we need to
fully diagonalize the q3 −Q and u3 −U mass eigenstates.
We save the details of this discussion for Sec. IV C, but we

TABLE II. The set of flavon fields needed to break Uð1ÞF,
along with their charge assignments.

Field Uð1ÞF SUð3Þ × SUð2Þ ×Uð1Þ Rp

ϕ1;2, ϕ̄1;2 �1 ð1; 1Þ0 þ
χ1;2, χ̄1;2 ∓3 ð1; 1Þ0 þ
ξ, ξ̄ ∓2 ð1; 1Þ0 þ

FIG. 4. Feynman diagram for generating the top Yukawa
coupling.
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stress that a full treatment of the top Yukawa maintains its
Oð1Þ parametric size.

2. Charm Yukawa

The Uð1ÞF-breaking dynamics which generate a tree-
level top Yukawa coupling also generate a charm Yukawa
at one loop. This occurs through the two processes shown
in Fig. 5. These two diagrams contain the same super-
potential fq and fu couplings from Eq. (8), but we must
perform a SUSY rotation to get from the flavon-messenger
diagram to the flavino-smessenger diagram. While the hϕi
can be rotated so it only points in one direction, there are
still two propagating fields, so we can define the second
generation of quarks as the linear combination that does not
couple to hϕi but does couple to the propagating ϕ. This
defines the first generation as the quark which does not
couple to ϕ at all.
Because of the Uð1ÞF gauge symmetry, there is a D term

of the form

VD ¼ g2F
2
ðϕ†

iϕi − ϕ̄†
i ϕ̄i þ � � �Þ2: ð12Þ

This generates a flavon four-point coupling, allowing us to
draw the diagram on the right side of Fig. 5. This diagram
must connect a ϕ that does not get a VEV to one that does
in order to generate a charm mass. This can only happen
if there is misalignment between the basis where the VEV
points in a single direction and the basis where the mass
matrix is diagonal. While this generically occurs for our
flavon potential, the size of the flavon-messenger diagram
is suppressed by this misalignment.
Thus, we need to construct the supersymmetrized

version of this diagram, a flavino-smessenger diagram,
to get a charm Yukawa of the right size. Clearly this is only
possible if the flavino ~ϕ has a Majorana mass. As we can
see from Table II, the following superpotential operators
are allowed:

W ¼ λijϕiϕjξþ λ̄ijϕ̄iϕ̄jξ̄þ λ0ijϕiχjξ̄þ λ̄0ijϕ̄iχ̄jξ: ð13Þ

These generate the desired flavino mass if ξ gets a VEV.
This is the mechanism shown on the left side of Fig. 5,
which turns out to be the dominant contribution to the
charm mass and justifies the inclusion of the ξ flavon in the
theory. As we will show in Appendix B, the ξ and ξ̄ flavons
serve several other important functions, which explains the
flavon content of Table II.
The diagrams in Fig. 5 also generate Yukawa couplings

of the form q3u2 and q2u3 which are parametrically one
loop. They also give small corrections to the top Yukawa
coupling. We will give a detailed description of the compu-
tation of the one-loop Yukawa couplings in Appendix C 1,
with the dominant contribution to charm given in Eq. (C1).

3. Up Yukawa

Finally, we can generate an up quark Yukawa coupling
and fill out the rest of the Yukawa matrix through the
diagram in Fig. 6. It was pointed out in [51] that these
diagrams have the correct parametric size to generate the
up quark mass, and we utilize this here. This diagram is one
loop, but it has a chirality flip coming from the gluino mass
rather than a primordial Yukawa coupling used in the
processes of Figs. 4 and 5. Therefore, this diagram will be
suppressed by m~g=msc, which from Eq. (4) is a loop factor.
Therefore, the up Yukawa coupling generated by the
diagram in Fig. 6 is parametrically of two-loop size.
The coupling to the Higgs still comes from the top

Yukawa coupling, but here we use the fact that the squark
soft masses are anarchic in flavor space as the source of
flavor breaking. In the mass insertion approximation [23],
one can imagine ~q3 and ~u3 coupling to the Higgs, and then
each being converted to a different flavor by an Oð1Þ mass
insertion. Figure 6 is drawn in this way, but for truly
anarchic mixing, a better picture is that the squarks that
couple to the Higgs have couplings between the gluino and
all three flavors of quarks. Here we see that it is crucial that

FIG. 5. Feynman diagrams for generating the charm Yukawa coupling. We use the convention that fields which get VEVs such as ϕ
and Hu have tildes over their fermions, while fields which do not get VEVs such as Q and u have tildes over their scalar components.
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the mass of the squarks be much above the weak scale,
because if not, the mass insertion would be constrained to
be small, and the loop diagram in Fig. 6 would be too small
to generate the up mass. The expression for the up Yukawa
and related mixing diagrams is given in Eq. (C19), where
flavon VEV insertions are summed to all orders to
diagonalize the squark-smessenger masses.
Thus we see that with the fields introduced in Tables I

and II, we can get an up-type Yukawa matrix which is
parametrically of the form

yu ∼

0
BB@

ε2 ε2 ε2

ε2 ε ε

ε2 ε 1

1
CCA; ð14Þ

where ε is a loop factor. This matrix gives quark masses
ðmt;mc;muÞ ∼ vð1; ϵ; ϵ2Þ, which is the right power count-
ing to match the measured quark masses. The structure of
the model is shown diagrammatically in Fig. 3. In Secs. IV
C, IV D, and Appendix C we will give more explicit
computations of the quark Yukawa couplings and show
how the SM can be numerically reproduced.

B. Down and lepton sectors

Because unification is a feature of SUSYeven in the split
regime, we build a model that is manifestly consistent with
SU(5) unification.1 Therefore, we must add a vectorlike E
messenger field which has the same SM quantum numbers
as the MSSM right-handed electron, and the same Uð1ÞF
charge as Q and U to complete the 10 representation. In
order to generate down- and lepton-type Yukawa couplings,
we must also add a vectorlike 5̄ representation. Thus we
have a full vectorlike generation of messengers charged
under Uð1ÞF. The additional particle content needed to
generate the down and lepton Yukawa couplings is given in

Table III, while the full particle content of our model is
given in Table VI in the Appendix.
The up-type field content can be described in SU(5)

language as 10i10j5H where i and j are SM flavor indices.
Similarly, both the down- and lepton-type Yukawas can be
described as 10i5̄j5̄H. Therefore, in the rest of this section
we describe the generation of down-type Yukawa cou-
plings, but the leptons can be derived by trivial replace-
ments within SUð5Þ representations.
As described in Sec. II, the mini-split SUSY scenario

works for tan β of moderate size, so the bottom and τ
Yukawa couplings are parametrically smaller than that of
the top quark. Therefore, if we were to use the same
dynamics as we used for the up-type quarks, we would
expect, for example, md=mu ∼mb=mt. Because it is of
critical importance that the down quark be comparable in
mass or heavier than the up quark, we enhance the structure
of the model to fix this relation. We add an additional
vectorlike down-type quark pair: d4 and its conjugate
partner d̄, which are neutral under Uð1ÞF. Unlike the D,
d4 can mix with the SM di because they have the same
(trivial) Uð1ÞF charge, and we have an additional “barred”
version of the flavon coupling, as d̄ couples to χ̄.
With this field content, we can write the following

superpotential:

Wdown ¼ λDQDHd þ λ̄DQ̄ D̄Hu þ fdijdiD̄χj þ f̄id̄Dχ̄i

þ μDDD̄þ μdi did̄þ μχijχiχ̄j; ð15Þ

where again all the dimensionless couplings are Oð1Þ and
all the dimensionful terms are OðmscÞ. We can now choose
a basis in flavor space such that μd only points in one
direction, and this direction picks out the fourth generation
of d. This shows that the fourth generation d4 and d̄ will
be heavy while the remaining three generations will be
massless before electroweak symmetry breaking.
After choosing μd to point only in the “4" direction, there

is still a residual Uð3Þd flavor symmetry in the absence of
the fd coupling. This symmetry exists even if fd has an
Oð1Þ entry in the 4 direction in d flavor space. Thus, it is
technically natural for all the fd couplings to the SM-like d
triplet to be small. This is the scenario we take in this
model, namely

FIG. 6. Feynman diagram for generating the up Yukawa
coupling.

TABLE III. Fields needed to generate the down and lepton
Yukawa couplings in addition to those in Tables I and II, as well
as their charges.

Field Uð1ÞF SUð3Þ × SUð2Þ × Uð1Þ Rp

E, Ē �1 ð1; 1Þ1 þ ð1; 1Þ−1 −
D, D̄ ∓3 ð3̄; 1Þ1=3 þ ð3; 1Þ−1=3 −
L, L̄ ∓3 ð1; 2Þ−1=2 þ ð1; 2Þ1=2 −
l4, l̄ 0 ð1; 2Þ−1=2 þ ð1; 2Þ1=2 −
d4, d̄ 0 ð3̄; 1Þ1=3 þ ð3; 1Þ−1=3 −

1We do not attempt to solve the doublet-triplet splitting
problem for the Higgs that is ubiquitous in all SUSY GUT
constructions.
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fd ∼

0
BBB@

yb yb
yb yb
yb yb
1 1

1
CCCA; ð16Þ

in a generic basis where only μd has been rotated into the
fourth component. We have dropped Oð1Þ coefficients in
each entry. Here yb is parametrically the size of the bottom
(or τ) Yukawa coupling, and the choice of the coupling of
the form of fd represents a technically natural tuning of
order 10%. This is the only parametric hierarchy in the
flavor sector not explained by our model.
We now see that there is a process analogous to that of

Fig. 4 for the bottom and d4 quarks shown in Fig. 7. As in
the top case, we can pick a basis where the χ VEV is only in
one direction, and then we can use the Uð3Þd symmetry to
make the fd coupling to the χ VEV parametrically fdhχi∼ð0; 0; yb; 1Þ. Since we have a fourth generation, the down
Yukawa matrix at the scale of Uð1ÞF breaking is now 3 × 4
and it is given by the outer product of fdhχi with the
corresponding coupling from the q doublet fqhϕi ∼ ð0; 0; 1Þ
computed in the previous section.
One-loop second generation masses proceed in nearly

the same fashion as in the up sector through the diagrams in
Fig. 5 with up-type quarks replaced by down type, and χ
replacing ϕ where necessary. The flavino-smessenger
diagram requires the use of the χϕξ̄ coupling given in
Eq. (13). This shows that the Uð1ÞF charge assignments
given in Table II are optimal for this model because they
allow the generation of both up- and down-type flavino
diagrams. The one-loop strange mass diagrams require d2
to couple to χ, so they are parametrically of size ybε, where
ε is again the loop factor. This is because the parametriza-
tion of Eq. (16) is natural only if all SM-like couplings to χ
are OðybÞ; thus the one-loop diagram has a small coupling.
The parametrics of this model then predict that ms=mb∼
mc=mt, a relation that is good to within a factor of a few
in nature.
Finally, we can fill out the rest of the Yukawa matrix with

the process analogous to that shown in Fig. 6. Besides the

obvious substitution of u with d, the main difference is that
the coupling to the Higgs now comes from the fourth
generation down squark instead of the sbottom. That
Yukawa coupling is Oð1Þ instead of OðybÞ. Because d4
has the same quantum numbers as the SM di, we expect
that SUSY-breaking soft terms mix ~d4 strongly with all the
SM down-type squarks. Therefore the fourth generation
Yukawa coupling can be transmitted to all the other down-
type squarks parametrically at two-loop order. Thus, we see
that adding this fourth generation changes the incorrect
relation of md=mb ∼mu=mt, to the much more accurate
onemd=mt ∼mu=mt because the fourth generation Yukawa
and that of the top Yukawa are the same parametric size.
Putting all the results together, the Yukawa matrix in the

down sector is parametrically of the form

yd ∼

0
BB@

ε2 ε2 ε2 ε2

ε2 ybε ybε ε

ε2 ybε yb 1

1
CCA: ð17Þ

Here, yb is the approximate bottom Yukawa coupling,
which is somewhat larger than ε≃ g2=16π2, the loop
factor. While they are not so different in size, we keep
track of the parametrics separately so the different physical
mechanisms can be more easily understood. This Yukawa
matrix is 3 × 4 because it describes the coupling of 3 q’s to
4 d’s. This matrix holds at the scale msc where Uð1ÞF is
broken. At lower scales, the d4 can be integrated out
because it has a large supersymmetric mass, and the fourth
column of the matrix can simply be truncated at lead-
ing order.
After this truncation, we have a 3 × 3matrix which gives

the quark masses as ðmb;ms;mdÞ ∼ vðyb; ybε; ε2Þ, and we
have ε < yb < 1. This shows that the down sector has a
parametrically different hierarchy than the up sector.
Instead of equal steps going down in generation, this
model explains why the ratio of the strange to bottom
mass is smaller than down to strange. The full cascading
structure of the quark masses in this model is shown
in Fig. 3.
As explained above, the structure of the leptons is nearly

identical with q replaced by e and d replaced by l. The
most important change is that the diagram analogous to
Fig. 6 for the leptons has a bino exchange instead of a
gluino. Thus we get that me=md ∼ g41=g

4
3 ≃ 0.03, where

two of the factors of the gauge coupling come from the
coupling to the gaugino, and two more come from the
gaugino mass in Eq. (4). Here we have run the gauge
couplings up to msc ≃ 1000 TeV where this diagram is
generated. The parametric estimate for the relative size of
the electron and down is somewhat small, but it is not too
far off. We now see that our model successfully predicts the
masses of the SM fermions at the parametric level, and all
that remains is the mixing angles between the quarks.

FIG. 7. Feynman diagram for generating the bottom and d4
Yukawa couplings.
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C. CKM matrix

At scales well below msc, we have the following para-
metric Yukawa matrices taken from Eqs. (14) and (17):

yu ∼

0
BB@

ε2 ε2 ε2

ε2 ε ε

ε2 ε 1

1
CCA; yd ∼

0
BB@

ε2 ε2 ε2

ε2 ybε ybε

ε2 ybε yb

1
CCA: ð18Þ

In order to compute the CKM matrix, we use the standard
procedure of finding the matrices which diagonalize yu and
yd. In particular, we have

V†
uyu†yuVu ¼ 1=v2diagðm2

u; m2
c; m2

t Þ; ð19Þ

where Vu acts on the “q” indices of yu. There is an
analogous formula for yd. From Eq. (18) we can compute

Vu ∼

0
BB@

1 ε ε2

ε 1 ε

ε2 ε 1

1
CCA; Vd ∼

0
BB@

1 ε=yb ε2=yb
ε=yb 1 ε

ε2=yb ε 1

1
CCA;

ð20Þ

where we have taken ε ≪ yb ≪ 1. In reality, we will soon
see that ε=yb ≃ sin θc ≃ 0.2 where θc is the Cabibbo angle
and not that much smaller than 1.
To compute the CKM matrix, we simply take

VCKM ¼ V†
uVd ≃ Vd; ð21Þ

where the second relation comes from the fact that Vu
more closely approximates the unit matrix than does Vd.
This parametric relation predicts, for example, jVusjjVcbj≃
jVtdj, which holds very well in nature.
The above discussion is only applicable to the absolute

value of the elements of the rotation matrices, but in
general, we expect every element of yu and yd to have
independent phases. Taking ðyuÞ33 from Eq. (11) as an
example, we see that all the λ, F and μ couplings will have
phases, so the total coupling will also have a phase. Similar
arguments can be made about the other elements of the
Yukawa matrices, with different couplings entering the
computations so they will have independent phases.
Therefore, in the absence of cancellation, the physical
phase of the CKM matrix will also be Oð1Þ. In Sec. IV D
we will describe a point in the parameter space of this
model which reproduces the Standard Model more accu-
rately, but, just from the parametric estimates of this
section, we see that we have succeeded in explaining
nearly all the hierarchies of the SM flavor sector.

IV. COMPUTING THE SPECTRUM

In this section we give the details of the computation of
the masses of the various states in the theory, including the
gauginos, the light Higgs, and of course the SM fermions.
We also describe a benchmark point in parameter space
so that we can give definite numbers for every effect for at
least one point in parameter space. The details of the
benchmark including the reproduction of the SM flavor
parameters is described in Sec. IV D.

A. Gaugino spectrum, unification, and dark matter

In our framework, the gauginos are the only states that
are relatively light and could be probed in the near future,
so it is important to have a precise understanding of the
mass hierarchy for phenomenological reasons. As stated in
Sec. II, the gaugino masses are on the anomaly-mediated
trajectory above the messenger scale μM ∼msc. Because
SUSY is broken at the messenger scale, integrating out the
messengers will induce threshold corrections that will deflect
them from their anomaly-mediated values. The Higgs states
will also shift the gaugino masses, but they must be treated
with care because one of the states remains light.
Our flavor model requires one set of 10þ 1̄0, containing

Q and U and their conjugates, and two sets of 5þ 5̄, one
containing D and the other d4. The soft masses and b terms
for the messengers are generated by the Giudice-Masiero
(GM) mechanism [54], as in Eq. (5). The b term generated
by the GM operator is opposite in sign to that obtained from
a superpotential mass term which explains why the mes-
sengers do not decouple. As described in [69], the threshold
correction due to each messenger pair depends on the
supersymmetric messenger mass μM, the holomorphic
SUSY-breaking mass bM, and the soft mass m2

M. We define
the following dimensionless ratios for a given messenger
pair M:

rM ¼ jbMj=jμMj2 c2M ¼ m2
M=jμMj2: ð22Þ

We can compute the threshold correction for a given
messenger pair with Dynkin index CM defined as 1=2
for a fundamental of SUðNÞ and Y2 for hypercharge. The
threshold correction is then given by

Δm~i ¼ −2eiθMCM
αi
2π

ftðy1; y2Þ
jbMj
jμMj

;

ftðy1; y2Þ ¼
y1 log y1 − y2 log y2 − y1y2 logðy1=y2Þ

ðy1 − 1Þðy2 − 1Þðy2 − y1Þ
; ð23Þ

with yi ¼ M2
i =jμMj2, where M2

1;2 are the eigenvalues of
the scalar messenger mass-squared matrix with M1 > M2

and are given by

y1 ¼ 1þ c2M þ rM; y2 ¼ 1þ c2M − rM: ð24Þ
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The phase is defined as θM ¼ argðbM=μMÞ and vanishes if
the contact terms in Eq. (5) are absent, which is the pure
GM limit, since in that case both bM and μM arise from the
same operator. In general, the phase will be nonzero, and
we work in a convention where μM is real.
For the Higgs doublets, we are taking2 μH ∼msc, so they

act as an additional messenger pair that contributes its own
threshold correction. Because one linear combination of the
doublets is tuned to be light, the form of the threshold
correction is different:

Δm~i ¼ −
αi
4π

jμHjeiθH sin 2β
m2

A

jμHj2 −m2
A
log

jμHj2
m2

A
;

m2
A ¼ 2rH

sin 2β
jμHj2; ð25Þ

where rH ¼ bH=jμHj2 and mA is the physical pseudoscalar
mass which is approximately degenerate with the rest of the
heavy Higgs bosons. Note that with our conventions, there
is an overall sign here relative to expressions found else-
where in the literature [70]. Here we work in the convention
where bH is real, so θH ¼ argðμHÞ. Since tan β ¼ Oð1Þ and
μH ∼mA ¼ OðmscÞ, the Higgsino threshold corrections
are comparable in size to those of the messengers.
Furthermore, as emphasized in [70], the phase freedom
allows for a rich spectrum of gaugino masses, since
interference between the various contributions can lead
to wino, bino, or gluino LSP.
We now describe the parameters of the gaugino sector for

our benchmark point. The spectrum contains a 3.0 TeV
wino LSP for suitable dark matter phenomenology, which
we will discuss below. For consistency with the SM flavor
analysis, we integrate out all heavy states at 1000 TeV. The
threshold corrections can then be calculated as described
above, using the Dynkin indices in Appendix D. We then
run down all the masses to the TeV scale and include any
appropriate pole mass corrections. Since we have not
considered the lepton sector in any detail, we simply
assume the parameters are the same as those for the quarks
in the same GUT multiplet. For simplicity, we have taken
all of the phases in the messenger sector to be π (except
for d4, l4), and take θH ¼ 0, which means the Higgsino
threshold correction is opposite in sign to the contribution
from anomaly mediation. Generalizing toOð1Þ phases does
not change the picture significantly. To obtain our bench-
mark spectrum with a wino LSP and a decently sized gluino
mass (needed for first generation Yukawas), we take
m3=2 ¼ 1100 TeV. Table IV contains all the messenger
and Higgs-sector input parameters relevant for calculating
the gaugino spectrum in the way described above.

The discussion above was predicated on the assumption
of no mixing between quark and messenger fields.
However, as described in Sec. IV C 1, once the flavons
get VEVs there is mixing between squarks and smessen-
gers as well as mixing between third generation quarks and
messengers. In computing the gaugino spectrum, we take
this mixing into account, and the detailed formula is given
in Appendix D. In fact, proper accounting of mixing
decreases the messenger threshold corrections by a factor
of a few, since these are dominated by Q and we have large
q3-Q mixing. We find that the messenger corrections are
about an order of magnitude smaller than the soft masses
arising from anomaly mediation. The gaugino pole masses
are m ~W ¼ 3.0 TeV, m ~B ¼ 13.3 TeV, and m~g ¼ 20.9 TeV.
Taking these gaugino masses, we can examine gauge

coupling unification. The mini-split framework differs from
regular split SUSYonly in that μH is large, i.e. at the same
scale as the sfermions. In an analysis [51] carried out with a
similar gaugino spectrum and μH ¼ msc ¼ 1000 TeV, it
was shown that raising μH results in good unification with
no messengers, with a predicted α3ðmZÞ ¼ 0.111 as com-
pared to the experimental value of α3ðmZÞ ¼ 0.118�
0.003 [71]. This is consistent with unification because
there are in general unknown threshold corrections at the
GUT scale of Oð1=4πÞ.3 Therefore, we see that with our
field content, the model is consistent with unification. The
cases of N ¼ 1 and N ¼ 4 messengers were also studied,
with sfermions, messengers, Higgsinos and heavy Higgs
bosons all introduced into the two-loop running at a
common scale of msc. Unification still works well and
occurs at a slightly larger scale, with a larger coupling at
unification and a slightly smaller predicted α3ðmZÞ, as N is
increased. Our extra matter charged under the SM, i.e. the
messenger sector and fourth down-type generation, corre-
sponds to N ¼ 5. The gauge couplings do not blow up
because the messengers are heavy. In fact, because of the
high messenger scale, perturbative control is retained even
for N ¼ 6. For our benchmark with N ¼ 5, the unification
scale is 1.1 × 1016 GeV, α−1 ¼ 9.3 at unification, and g3 −
g2 ¼ 0.05 at the GUT scale corresponding to a pre-
dicted α3ðmZÞ ¼ 0.109.
Finally, we can summarize the dark matter scenario,

which is qualitatively very similar to that described in
[51]. Because the μ term for the Higgs is so much larger
than the gaugino masses, the wino and bino do not mix with
one another or with the Higgsino and are very nearly pure
states. If the wino is the LSP, then it has a weak-scale
annihilation cross section and will behave as a usual WIMP.
It will have the right relic abundance if it has a mass around
3 TeV [55]. In this case, there would be WIMP annihilations

2Note that our notation differs here slightly from Sec. II to
make it clear that μH and bH are the parameters in the Higgs
potential, but, in this context, the Higgs multiplet is another
messenger.

3In [72] it was argued that this spectrum is inconsistent with
unification, but that work requires that the gauge couplings unite
much more precisely than the parametric size of the threshold
corrections.
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in regions of high dark matter density such as the Galactic
center, and these could be looked for as indirect dark matter
detection signals. Results from various telescopes [56–58]
have placed stringent constraints on thermal wino dark
matter which are in tension with this scenario for the
standard dark matter halo profiles. On the other hand, for
profiles that are less steep or cored near the galactic center,
this scenario is still viable.
One could imagine many other dark matter scenarios

consistent with the mini-split framework and the model
presented here. For example, if the wino is lighter than
3 TeV, then it will only make up some of the dark matter,
but the rest could be made up of another particle such as an
axion. Alternatively, if the LSP is produced nonthermally
[73–75], then its mass could be heavier than 3 TeV. Our
model could also produce a bino LSP with different choices
of the parameters in Table IV. While a thermal bino would
overclose the Universe, it could be nonthermal, or its
abundance could be reduced by the coannihilation mecha-
nism [76]. From this analysis we see that while the flavor
dynamics do not directly affect the dark matter story, the
two sectors fit well together in the framework of mini-split
supersymmetry.

B. Higgs mass and quartic

Since SUSY is broken well above the scale of electro-
weak symmetry breaking, SUð2Þ is preserved to a very
good approximation, and thus, as in previous split SUSY
models, the tuning in the Higgs sector produces one light
doublet, which includes the SM-like Higgs, and one heavy
doublet, with degenerate scalars of mass mA. The leading
contributions to the mass of the light Higgs are the usual
ones in split SUSY models. At tree level, there is a
contribution from the D term of the SM SUð2Þ ×Uð1Þ
gauge group, and there are loop contributions arising from
the large splitting between the top quarks and top squarks.
These are analyzed in detail for a 125 GeV Higgs in [2,51].
If the scalars all have a common mass msc, then the Higgs
mass essentially depends only on msc and tan β (aside from
a very slight dependence on the wino and gluino masses). A
125.7 GeV Higgs mass [77,78] implies λ ¼ 0.26 at the
weak scale. Running this up to a scale of msc ¼ 1000 TeV

and taking only the gauginos to be below msc gives
λ ¼ 0.058. Both the tree-level and one-loop contributions
to the quartic depend on tan β, and a quartic of the right size
can be obtained in the MSSM with msc ¼ 1000 TeV
if tan β ¼ 2.2.
In this model, there are additional subdominant contri-

butions to the Higgs quartic, so the relationship between the
Higgs mass and tan β will be modified. The first of these
arises from “nondecouplingD terms” [79,80] from the new
Uð1ÞF. The D term is of the form

VD ¼ g2F
2
ðϕ†

iϕi − ϕ̄†
i ϕ̄i − 3χ†i χi þ 3χ̄†i χ̄i − 4ξ†ξ

þ 4ξ̄†ξ̄ − 2H†
uHu þ 2H†

dHd þ � � �Þ2; ð26Þ

where the ellipses include terms with the messenger fields
which do not get VEVs. Expanding this out generates a
Higgs quartic. We can also integrate out the flavons and use
the fact that they get VEVs to generate additional Higgs
quartics. These contributions are shown in Fig. 8. Thus, we
generate the coupling

λ0F
2
ðH†

uHu −H†
dHdÞ2 →

λF
2
ðH†HÞ2 ð27Þ

λF ¼ 4g2Fcos
22β

�
1 −

1

2
g2F

X
ϕ;χ;ξ

ðqvÞiðm2Þ−1ij ðqvÞj
�
; ð28Þ

where the sum is over real and imaginary components of
all flavon species. Here, (qv) is a vector of the flavon VEVs
multiplied by their Uð1ÞF charges, where the charge is the
same for both real and imaginary components. The matrix
ðm2Þ−1 is the inverse of the flavon mass-squared matrix in
the vacuum, and we take all the flavon VEVs to be well
above the electroweak scale. In the limit where Uð1ÞF is
Higgsed supersymmetrically, λF must go to zero, which
will occur as a perfect cancellation between the two terms
in Eq. (28). In a general region of parameter space where
the soft masses and the supersymmetric mass are compa-
rable, there is still a partial cancellation between the two
terms in Eq. (28), with λF about an order of magnitude
smaller than 4g2F. For the benchmark described in this
section, λF, which comes from the Uð1ÞF D term, is 0.013,
compared to the tree-level MSSM value of 0.037.
The new vectorlike states in this model have large

couplings to the Higgs, so they will contribute to the

TABLE IV. Benchmark parameters for the messenger and
Higgs sectors. cH is fixed by the requirement of a light Higgs
state. The c column for D contains two values because here we
take different soft masses for D and D̄; similarly for d4.

Messenger μM cM rM θM

Q 1000 1.17 1.1 π
U, E 1000 1.58 1.15 π
D, L 750 3.0, 3.46 2.0 π
d4, l4 728 3.36, 3.81 0.5 0
H 2400 Fixed 7.8 0

FIG. 8. Feynman diagrams of the Higgs quartic generated by
the Uð1ÞF D term.
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Higgs quartic through loops. As these loops must vanish in
the supersymmetric limit, they are sensitive to the splitting
between scalar and fermion masses. Therefore, the effects
of the top squarks are parametrically larger than those of the
new vectorlike states. We here compute the full one-loop
contribution to the Higgs quartic in the unbroken electro-
weak theory. Because the top quarks and top squarks mix
with messengers, it is difficult to disentangle the different
effects, and we compute all the one-loop threshold correc-
tions in the mass basis. The diagrams are scalar bubble,
triangle, and box diagrams, as well as fermion box diagrams
and external line corrections from Higgs wavefunction
renormalization. Since our Higgsino mass is OðmscÞ, we
also consider the MSSM contributions from mixed gaugino-
Higgsino boxes and contributions to the Higgs field-strength
renormalization. In the benchmark, the up-type new gen-
eration contributes 0.014 while the new down-type fields
contribute 9 × 10−4 to the Higgs quartic. In a realistic model,
there would also be contributions from the lepton sector,
which we estimate to be 1=Nc of the down contribution.
Once we sum up all the tree-level and one-loop contribu-
tions, we obtain the right Higgs quartic and mass with
tan β ¼ 1.8. Therefore, we see that while the effects from the
model are indeed subdominant, they need to be taken into
account to properly compute the spectrum.

C. Mass eigenstates and wavefunction renormalization

Before computing the SM flavor parameters in detail,
it is necessary to address effects that can induce Oð1Þ
changes to the basic arguments of Sec. III. They are the full
diagonalization of the (s)quark-(s)messenger fields after
Uð1ÞF breaking and the one-loop wavefunction renormal-
ization. We stress that the parametric hierarchies given by
loop counting are left intact by these considerations, but
they can have important numerical effects. We consider
them in turn.

1. Diagonalization

Once the flavons get VEVs, the UV distinction between
quark and messenger superfields breaks down. In the
fermion sector, only the third generation mixes at tree

level. For q3 and u3, we need only consider the 2 × 2
mixing with the Q, U messengers. We denote the mass
eigenstates as q03 andQ

0 with the lower case q0 representing
SM states, while the capital Q0 is a state with massffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2Q þ jFq

3iϕij2
q

; μQ is the supersymmetric mass for the

messengers defined in Eq. (8), and F is a rotation of the
superpotential coupling defined in Eq. (10). We here take
the convention where μQ is real. The mixing is then
parametrized as

�
q3
Q

�
¼

�
cq s�q
−sq cq

��
q03
Q0

�
; ð29Þ

with

cq ¼
μQffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2Q þ jFq
3iϕij2

q ; sq ¼
Fq
3iϕiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2Q þ jFq
3iϕij2

q ; ð30Þ

and analogous expressions for u and d. For notational
compactness, in this section we often use the same notation
for both the scalar field and its VEV. In the case that Fq

3iϕi

is real, cq, sq just become cosine and sine of a rotation
angle. After rotating to mass eigenstate basis, Eq. (11) for
the top Yukawa is modified to

yt ¼ λUsqsu; ð31Þ

where we recover our earlier formula in the limit μ ≫ Fϕ.
Since d3, d4, and d̄ couple to flavon VEVs, the

diagonalization in the down sector is more complicated.
The fermion mass matrix takes the form

ð d̄ D̄ Þ
�

0 μd f̄iχ̄i
Fd
3iχi Fd

4iχi μD

�0B@
d3
d4
D

1
CA: ð32Þ

To find the SM down quark eigenstate d03, we solve for
the null space of the matrix above, yielding

d03 ¼
ðμdμD − Fd

4iχif̄jχ̄jÞ�d3 þ ðFd
3iχif̄jχ̄jÞ�d4 − ðμdFd

3iχiÞ�Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jμdμD − Fd

4iχif̄jχ̄jj2 þ jFd
3iχif̄jχ̄jj2 þ jμdFd

3iχij2
q ; ð33Þ

where f̄ is defined in Eq. (15), and Fd is analogous to Fq, derived from fd in Eq. (15). Our expression for the bottom
Yukawa is thus replaced by

yb ¼ λDsq
μdFd

3iχiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jμdμD − Fd

4iχif̄jχ̄jj2 þ jFd
3iχif̄jχ̄jj2 þ jμdFd

3iχij2
q : ð34Þ

Once we perform this rotation, d03 decouples, and we are left with a 2 × 2 Dirac mass matrix that we diagonalize in the usual
way. We summarize the product of rotations as
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dimass ¼ Γ†ij
d djgauge;

d̄imass ¼ Γ†ij
d̄
d̄jgauge; ð35Þ

where d≡ ðd3; d4; DÞ contains both quark and messenger
fields and d̄≡ ðd̄; D̄Þ.
For scalars, due to the anarchic mixing among the

squarks from their soft masses, diagonalization is more
involved, resulting in 5 × 5 matrices for ~q, ~u and 7 × 7
for ~d. Just as with the fermions, the third generation mixes
directly with the messengers via the ϕ or χ VEVs.
Additionally, the second generation also has a tree-level
coupling to the messengers through the ϕ̄ or χ̄ VEVs.4

For example, in the q sector, we have

L ⊃ ~̄Q ~qiF
q
ijμ

ϕ�
jk hϕ̄�

ki þ H:c: ð36Þ

We do not attempt an analytic diagonalization of the scalar
sector, but we perform rotations numerically for the
analysis of our benchmark that recovers the Standard
Model. For future reference, our convention for rotation
matrices is the following (e.g. for the q sector):

~qimass ¼ Γ†ij
~q ~qjgauge; ð37Þ

where ~q≡ ð ~q1; ~q2; ~q3; ~Q;−ϵ ~̄Q�Þ contains both squark and
smessenger fields. There is an analogous expression for the

down sector that involves ~d≡ ð ~d1; ~d2; ~d3; ~d4; ~D; ~̄d
�
; ~̄D

�Þ.
The flavon sector contains its own nontrivial rotations

afterUð1ÞF breaking. The flavino matrix is 11 × 11 and the
flavon matrix 20 × 20, since CP is generically broken and
the real and imaginary scalar components mix. For the
former, the Uð1ÞF gaugino, ~Z0, mixes strongly with the
flavinos, and thus after symmetry breaking we simply
count it among their number. Let ~Φgauge ≡ ðϕ; χ; ξ; ϕ̄;
χ̄; ξ̄; ~Z0Þ be the fermion components of the superfields
appearing in Eqs. (8), (13), and (15) plus the gaugino,
with Φgauge the corresponding scalars, arranged with the ten
real-component fields followed by the ten imaginary ones.
Then, in analogy with Eq. (37), we write

Φi
mass ¼ Γ†ij

Φ Φj
gauge;

~Φi
mass ¼ Γ†ij

~Φ
~Φj
gauge: ð38Þ

The one additional subtlety in the flavon sector is that one
must identify the zero-mass eigenstate that corresponds to
the longitudinal mode of the heavy Uð1ÞF boson. We work
in a unitary gauge where this state never appears in
calculations with flavons in mass eigenstate basis.
In addition to the one-loop contributions to the Yukawa

couplings discussed in Sec. III, there are additional con-
tributions from loops of Higgsinos and electroweak gau-
ginos shown in Fig. 9. Unlike the gaugino contribution to
the first generation mass from Fig. 6, there is no gaugino
mass insertion in this diagram and thus no parametric
suppression. Therefore, one would expect that these dia-
grams are important, but they turn out to be small. One
needs the full treatment of rotation matrices above to
understand why they are suppressed. Taking the full
fermion and scalar rotations, we get the following con-
tribution to the up-type Yukawa matrix:

yu3i ¼ λUsur
q
i Γ

ij�
~q Γ4j

~q CFk
αk
π
GðμH;minok ; m ~qjÞ; ð39Þ

where G is a dimensionless loop function given in
Eq. (C16), the j index sums over q-type scalar mass
eigenstates, and k sums over the gauginos that couple to
q and the Higgs, SUð2ÞL and Uð1ÞY . The factor rqi ≡
ð1; 1; cqÞ accounts for rotations in the fermion sector. A
more explicit expression for yu3i is given in Eq. (C21). To
get the analogous yui3 contribution, we would replace
q ↔ u, and only the bino would contribute.
The additional suppression for these terms comes from

the initial product of rotation matrices. By the convention
set below Eq. (37), the “fourth” gauge index corresponds to
the ~Q smessenger, while the i index goes from 1–3 over the
MSSM fields. Thus, in the limit that the ~q scalars are all
mass degenerate, Eq. (39) vanishes exactly. That is not the
generic situation, but since G has only logarithmic depend-
ence on mass, there is still a large residual cancellation.5 In
practice, these “gaugino-Higgsino” loops are suppressed
compared to any other one-loop contribution, and are even
typically smaller than the parametrically two-loop contri-
butions that generate first generation masses. In the “13”
and “31” entries though, they can have important sublead-
ing effects, and so we include them in our computations.

4This provides an interesting example of the importance of
supersymmetry to our model. Without the holomorphicity and
nonrenormalization properties of supersymmetric theories, we
would expect to generate tree-level Yukawas for the second
generation from the VEV, hϕ̄�i, and we would need special
potentials in the flavon sector that only broke Uð1ÞF symmetry
with unbarred fields. Supersymmetry allows us to take more
generic flavon potentials, while forbidding the barred-flavon
VEV Yukawa coupling to SM fermions.

5Interestingly, the diagram formally diverges and requires
regularization. In dimensional regularization, the 1=ϵ pole re-
places the finite loop function G in the divergent term. However,
this removes any dependence on the mass eigenstates, and the
rotation factor multiplies to zero. Thus, the contribution is
actually finite and has no dependence on the renormalization
scale. There is, however, a renormalization scale dependent
contribution to yu33 coming from the d03 portion of Q. In this
case, the rotation matrix prefactor does not cancel upon summing
over mass eigenstates. However, for our numerical analysis, we
do not include one-loop corrections to yt, and therefore drop this
contribution as well as the finite one to yu33 from Eq. (39).
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2. Wavefunction renormalization

It is well known that in radiative flavor models we can
get wavefunction renormalization at one loop from the
same dynamics that generates masses. In our case, the SM
quark superfields are renormalized by flavon-messenger,
flavino-smessenger, and gaugino contributions as shown in
Fig. 10.6 The Higgs also receives wavefunction renormal-
ization from the fields which it has large couplings to, the
messenger and third generation quark superfields. In our
computations here we will neglect flavon and flavino loops
in the down sector because they are suppressed by y2b in the
second and third generations. Effects involving d4 and D
can be larger, but sincemb ≪ msc, to a good approximation
we neglect kinetic mixing between the vectorlike and the
SM d quarks. We find that with the benchmark parameters
presented in Sec. IV D, including the heavy fermions in
wavefunction renormalization only changed our SM quark
predictions at the 1% level, and is thus below our working
precision. Furthermore, calculating the one-loop shift in the
mass of the d4 and D-like quarks themselves is beyond
our scope.
The one-loop wavefunction renormalization diagrams

contribute to the usual Zi factors for all the SM fields.
Taking the up type as an example, the Yukawa coupling
qyuuh, is modified to

yu → ðZqÞ1=2yuðZuÞ1=2ðZhÞ1=2; ð40Þ
where Zi ¼ 1 − Σi with Σi being the possibly divergent
loop contributions whose one-loop expressions are given in

Appendix C 2. For fermions, we will use the conventions
and notation of [81]. We evaluate the divergent contribu-
tions at a common scale μ ¼ 1 PeV because that is where
the heavy fields are integrated out. Errors induced from the
fact that not all the heavy fields are exactly at 1 PeV are
logarithmic in the change in mass and formally of higher
loop order. In Eq. (40), we have bolded the terms which
are matrices in flavor space. The Z factors for the quarks
will in general have off-diagonal components, particularly
the gluino contribution because of the large squark mixing.
Thus we see that wavefunction renormalization is a
potentially important effect that not only rescales individual
elements of the Yukawa matrices, but also rotates among
them. The approximate size of the effects is an increase in
the Yukawa couplings of 5%–15%.

D. Standard Model flavor parameters

As laid out in Sec. III, our model has the right parametric
behavior to explain the generational hierarchy of the
Standard Model fermion Yukawas and the parameters of
the CKM matrix. Using the equations of Sec. IV C and

FIG. 9. One-loop electroweak contribution to off-diagonal Yukawa couplings. These are potentially important for the 13 and 31 entries
of the Yukawa matrix.

FIG. 10. Diagrams that induce flavor-violating wavefunction renormalization for the fermions. The left two diagrams only contribute
to the second and third generations, while the one on the right is present for all fermions.

TABLE V. Classes of contributions we include for up- and down-
type Yukawa matrix entries. Complete loop-level formulas are
given in Appendix C, along with those for wavefunction renorm-
alization, which we apply to all entries. The tree-level expressions
are found in Eqs. (31) and (34) for yt, yb. For every entry listed, we
include the same class of diagrams for its transpose.

y11, y12, y13 Gluino, gaugino-Higgsino
y22, y23 Flavino, flavon, gluino,
y33 Tree level

6We also include the renormalization of u03, q
0
3 due to Higgs

superfields.
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Appendix C, we find a set of parameters that reproduce the
SM quark masses, CKM angles, and phase to within 5%
of their values listed in [1] for the former and [82] for
the latter. We list the contributions computed in Table V.
Despite the close agreement we have obtained with the SM
in the quark sector, it is important to stress that there are
sources of uncertainty in our calculation discussed below at
the level ofOð15%Þ. The proximity of our current results to
the SM values is meant as a demonstration of the control
one has in recovering the SM. Thus, the inclusion of
subleading corrections to the results we have obtained will
likely provide no fundamental obstacle to precise recovery.
We now discuss the construction of our benchmark and its

properties. The spectrum of new particles for these particular
parameters is shown in Fig. 11. We generate the parameters
of our flavon sector randomly. Scanning over Oð1Þ values
for dimensionless parameters,Oð100–1000Þ TeV values for
dimensionful ones, and taking phases in general to be Oð1Þ,
we find a vacuum that is stable and breaks Uð1ÞF symmetry
with VEVs that can generate all SMmasses. We then use the
values of λU, λ̄U, λD, λ̄D from Eqs. (8) and (15) (important
for third generation), as well as the fq;u;d couplings (second
generation) and the squark soft masses (first generation) plus
Higgs and messenger μ, Bμ terms as handles to recover the
SM. If μ is too large, that could potentially lead to deeper
vacua that are color breaking [83–85], but we check that this
is not a problem for our benchmark.

To have a viable thermal WIMP dark matter particle, we
fix the wino mass at 3 TeVand obtain the gaugino spectrum
(m ~B ¼ 13.3 TeV, m ~W ¼ 3 TeV, m~g ¼ 20.9 TeV) as
detailed in Sec. IVA.7 The gluino mass offers an additional
means to controlmu;d. In the down sector we subject f

2;3
d to

the technically natural tuning at Oð0.1Þ. Dimensionful
values were again Oð100–1000Þ TeV. The only nontrivial
constraint comes from kaon physics, further detailed in
Sec. VA, and it favors having Q and D states ≳1000 TeV.
For comparison with the SM, we show the values we

obtain for our Yukawas at the scale mt in Fig. 12 compared
to those depicted earlier for the SM (Fig. 1). In Fig. 13
we compare the CKM of our benchmark to that of the SM.8

For the ten SM quark parameters shown here, the mean
discrepancy with the SM is 4%, though as mentioned
above, our results have an uncertainty of Oð10%–20%Þ.
The leading effects that we are currently neglecting include
the following: (1) Some dimensionless couplings are ≈1.3,

300

1000
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10000

30000

TeV
Q U D Flavinos Flavons Higher Spin

G

Z

FIG. 11 (color online). Spectrum of non-SM particles for parameters that closely reproduce the SM quark sector. Solid lines are bosons
and dashed lines are fermions. Shading under Q, U, D indicates the portion of the mass eigenstate given by MSSM gauge eigenstates
(dark) or messenger=d4=d̄ gauge eigenstates (light). We include only the mass mixing in this quantification. The flavino states also
include theUð1ÞF gaugino which strongly mixes with them. The correspondingUð1ÞF gauge boson is shown under “higher spin,” along
with the gravitino. As discussed in the text and shown in Fig. 2, the gauginos are much lighter than all the fields here.

7The Uð1ÞF gaugino mixes strongly with the flavinos and has
mass OðPeVÞ. We did not compute its full soft mass from
anomaly mediation, but the flavino spectrum is highly insensitive
to its detailed value if within a few orders of magnitude of the
other gauginos.

8We have neglected the small running of the CKM parameters,
which affects θ13 and θ23 most, at the level of a few percent [82].
We take that reference’s SM values at 10 TeV computed in MS to
compare to those in our model evaluated at 1000 TeV.
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leading to Oð15%Þ corrections at next-to-leading order.
(2) Including wavefunction renormalization induces scale
dependence. We evaluate at a common scale of 1000 TeV
before integrating out all non-SM fields besides the

gauginos. However, many of our messenger fields are
above 1 PeV (with the heaviest at 7.2 PeV), and thus there
are Oð1Þ logs we are not currently resumming. Changing
the renormalization scale from 1000 to 10,000 TeV
decreases our Yukawa values by Oð10%Þ. (3) For yu;d33 ,
we only include the tree-level values given in Eq. (31) for yt
and Eq. (34) for yb. The one-loop corrections to these
entries could shift them at the level of a few percent. (4) To
compute quark masses and the CKM, we just take the 3 × 3
matrices in the up and down sectors. However, there are
additional Yukawas with the messenger fermions, Q, U, D
and d4. There will also be kinetic mixing from one-loop
wavefunction renormalization. Taking the values for our
benchmark in the down sector, where we expect the effects
to be strongest due to d4, we found shifts in quark masses at
the level of 1%–2% for yb and yd, with ys changing
negligibly. Thus, we neglect this contribution as well.
(5) For our gaugino loops that contribute strongly to first
generation masses (cf. Fig. 6), we have treated the threshold
correction due to messengers as a mass insertion, even
though these same messengers appear elsewhere dynami-
cally in the loop. Including the full momentum dependence
of the one-loop correction to the gaugino propagator shifted
our masses by ≲1%, which is beyond our precision and we
thus ignore this effect.
Given the agreement in the quark sector, it would be an

interesting exercise to reproduce charged leptons as well,
something we did not attempt here. We would wish to
maintain consistency with unification, so our λL;E and fl;e

couplings would need to be determined for the values we
assigned to the quark sector. The slepton soft masses and
bino mass would offer independent means to control the
lepton masses. In Sec. VI, we sketch a possible model
extension that would generate neutrino masses and mixing
angles. Before moving on we note that many of these
sources of uncertainty affect the third generation most
strongly. Since those Yukawas are dominated by the tree-
level contribution, we expect them to be the simplest to
adjust once these additional effects are taken into account.

V. EXPERIMENTAL CONSTRAINTS AND
SIGNATURES

Detailed studies of the low-energy constraints on mini-
split SUSY have been performed in [65–68]. The dominant
processes are meson mixing, electric and chromoelectric
dipole moments (CEDM), and lepton flavor violation. In
addition to the MSSM fields previously studied, the
messengers and flavons contribute to these observables.
The latter leads to large deviations from the predictions of
minimal mini-split SUSY for processes that only involve
the second and third generations of the 10 fields, q, u and e.
The strongest bound comes from CP violation in K − K̄

mixing, which requires that the squarks that have large
couplings to the gluino and s and d quarks be heavier than a
few hundred TeV. It is the only constraint we needed to
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FIG. 12 (color online). SM values from [1] (dark) and values
obtained in our benchmark (light) at the scale mt. Errors bars for
the latter assume uniform shifts in Yukawas by þ15%, −25% at
1000 TeV, which accounts for a uniform uncertainty of �15% in
addition to a 10% decrease coming from choosing a renormal-
ization scale that is lower than the mass of some of the states (see
text). After applying these uncertainties in the UV, we run the
Yukawas to mt.
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FIG. 13. SM values from [82] (dark) and values obtained in our
benchmark (light). Error bars are smaller than the dot size.
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compute in detail to test the viability of the benchmark
in Sec. IV D. Since it involves the first generation, it is
essentially a probe of the mini-split MSSM, though
we account for the presence of messengers. While the
limits from other observables are weaker, we discuss the
contributions from flavon dynamics where they contribute
strongly and present some detailed formulas in
Appendix E. It will take many generations of future
experiments to probe this sector. However, improved
determination on the lattice of kaon parameters could
provide evidence for one of the key ingredients of our
model, the presence of anarchic squark mixing at several
hundred TeV.

A. Meson mixing

For the case of meson mixing, the MSSM effect is
mediated by box diagrams with gluinos and squarks in the
loops, but we neglect contributions with gluino mass
insertions. Bounds are independent of the gluino mass as
long as it is much lighter than the squarks. For our
benchmark model, we check that the MSSM contribution
does not run afoul of kaon constraints. We use the full mass
eigenstate calculation of the squark-gluino box presented
in [86] to account for the Oð1Þ mixing among different
squark gauge eigenstates and with the messenger sector.
After matching to the relevant dimension-6 operators at
1000 TeV, we run ourWilson coefficients at next-to-leading
order to 2 GeV using the procedure outlined in [87], from
which we also take numerical values for the bag param-
eters. For the benchmark in Sec. IV D, we get

ϵNPK ¼ 9.4 × 10−5;

ΔmNP
K ¼ 2 × 10−15 GeV: ð41Þ

Our contribution to ΔmK is safe by 3 orders of magnitude.
The limit on ϵNPK is 1 × 10−3 [68,87], so while our bench-
mark is safe, there are reasonable regions of parameter
space in the model which are excluded by this observable.
Thus, an improvement in ϵSMK by an order of magnitude

could be the best low energy way of probing the mini-split
scenario.
In our model, there is a similar box diagram with flavino

and messenger scalars in the loops. The only meson which
is precisely measured and does not involve any first
generation quarks is the Bs. Therefore, the operator

O1 ¼ ðs̄γμPLbÞðs̄γμPLbÞ; ð42Þ

which contributes to Bs mixing will be modified by an
Oð1Þ amount relative to the MSSM, while the operators
with other chiralities will be suppressed by powers of yb.
We calculate the smessenger-flavino as well as the

messenger-flavon diagrams that generate Bs mixing.
Obtaining the Wilson coefficient for O1, we relate it to
quantities in the Bmeson system following the approach of
[88], using more recent numerical values from the lattice
study in [89]. The detailed box diagram calculations are
given in Appendix E. We get a contribution to the mass
splitting ΔMs ¼ Oð10−20Þ GeV, compared to the SM
value, ΔMs ¼ 1.2 × 10−11 GeV and a shift in the total
CP violating phase of Oð10−11Þ. Thus, experimental
evidence is beyond the next generation of experiments.

B. (Chromo)electric dipole moments

In the MSSM, (C)EDMs for all up-type quarks come
from a one-loop diagram of the type shown on the left side
of Fig. 14. This diagram has a gluino mass insertion, so it is
proportional to m~g=m ~q ∼Oð10−2Þ. These diagrams are
comparable for u, c, and t if the squarks are anarchic in
flavor space, but the strongest experimental bound comes
from the up EDM. On the other hand, this model has one-
loop diagrams with flavons and messengers going around
the loop as shown on the right side of Fig. 14, as well as the
supersymmetrized version with flavinos and smessengers.
All the internal fields in this diagram have mass Oðm ~qÞ, so
its effects are enhanced relative to the MSSM. Because the
flavons only couple to the second and third generation,

FIG. 14. Left: An example diagram of the MSSM gluino contribution to quark (C)EDMs. Right: An example of the flavon
contribution to quark (C)EDMs.
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these types of diagrams only induce (C)EDMs for top
and charm.
The strongest bounds on these processes come from

chromo-EDMs inducing contributions to the neutron
EDM. For the top quark, the bound was computed to be
j ~dtj≲ 1=ð100 TeVÞ [90]. This computation uses the fact
that there is a separation of scales between the top and
ΛQCD and runs operators down from the top mass to the
QCD scale. We can approximate the bounds on the charm
mass by ignoring the running effects besides the scale of αs.
Because integrating out a quark generates a finite contribution
[91,92] to theWeinberg operator [93], integrating out a lighter
quark will lead to a larger contribution to the neutron EDM.
Furthermore, the gluon loop that generates this operator is
larger becauseαs is evaluatedatmcwhere it ismuch larger.We
approximateαsðmcÞ≃ αsðmτÞ≃ 0.35 [94].Becauseof these
effects, theboundson ~dc aremuchstronger thanontop,andwe
find j ~dcj≲ ð6 × 105 TeVÞ−1, in rough agreement with the
bound of j ~dcj≲ ð2 × 105 TeVÞ−1 from the more detailed
study in [95]. These limits should be taken as accurate to
within an order of magnitude because of the uncertainties on
the hadronic matrix elements that go into the conversion of
the Weinberg operator into the neutron EDM.
Taking the CEDM of the charm quark as an example, the

low energy operator is of the form

−i
~dc
2
gsc̄σμνγ5tacGa

μν: ð43Þ

At the scale of electroweak symmetry breaking, this
operator matches onto an operator involving the left-
handed quark doublet, the right-handed singlet, and the
Higgs. This can be seen from the fact that the tensor
operator above flips the helicity of the quark, so it must
involve a Higgs insertion. In the UV at the scale of SUSY
breaking, this operator is generated by diagrams of the type
shown in Fig. 14. As discussed above, the diagram on the
right is the dominant contribution for the charm and top
quarks, and we can estimate its size to be parametrically
Oðv=16π2m2

messÞ≃ ð1010 TeVÞ−1 for mmess ¼ 3000 TeV.
We improve on the one-loop estimate by computing

(1) the generalization of the right diagram in Fig. 14 to
flavon and fermion mass-eigenstate basis, (2) an additional
flavon-messenger diagram with no mass insertions (besides
the SM Higgs VEV) proportional to λ̄U, and (3) the
corresponding flavino-smessenger contribution. We project
onto the Dirac structure of a chromoelectric dipole and
obtain a numerical value by setting the Higgs to its VEV,
even though we are formally matching at 1000 TeV.9 Using
the sign and normalization conventions of [68], we get
j ~dtj ¼ ð4 × 1012 TeVÞ−1 and j ~dcj ¼ ð1.2 × 1012 TeVÞ−1, a

bit below our estimate above since couplings and mixing
angles are accounted for, and far removed from near future
sensitivity. We give the expressions for the flavon-sector
loop contributions in Appendix E.
Analogues to the operator in Eq. (43) for the down and

lepton sector will be suppressed by OðybÞ ∼OðyτÞ. This is
due to the small coupling of the 5̄ to χ, as explained in
Sec. III B. Therefore, the strange and bottom (C)EDMs
are enhanced relative to the MSSM diagrams by
ybm ~q=m~g ∼ 10. For the strange quark, we take the formula

from [96] to estimate an experimental bound of ~ds≲
ð3 × 106 TeVÞ−1, while the natural size in this model is
~ds ≃ yb ~dc ≃ ð1011 TeVÞ−1. The CEDM for the b quark can
be computed in the same way. Thus, we see that the model
is safe from (C)EDM measurement until several order of
magnitude improvement is achieved.

C. Lepton flavor violation

Lepton flavor violation (LFV) is also a strong constraint
on models with anarchic flavor structure, with μ → eγ
currently imposing the most stringent constraint in the
MSSM. The diagrams for LFV have the same structure as
those for EDMs shown in Fig. 14, so loops of flavons and
messengers are enhanced by Oðyτm ~q=m ~BÞ ∼ 10 relative to
the MSSM diagrams, but only for processes involving only
second and third generation leptons. In this case, that means
τ → μγ and other rare τ decays are enhanced. In calculating
the contribution of our model to charm and top quark (C)
EDMs in Sec. V B, we also obtained comparable values for
the flavor changing dipole operators. We can use our values
in the up-quark sector to estimate the contribution to the
analogous lepton operator, which is given schematically as

emτ

16π2m2
sc
τ̄σμνμFμν: ð44Þ

We expect this to be of similar order as the charm EDM.
Naively, the numerator of the coefficient should be v since
the Higgs insertion in Fig. 14 is on an internal line which has
a large Yukawa coupling. On the other hand, there is a factor
of yτ coming from the coupling of the left-handed lepton to
the flavon, so we can combine that with v to get mτ. Taking
into account αEM, we estimate BRðτ → μγÞ ∼ 10−19. The
current limit isOð10−8Þ with the possibility of a 1 to 2 order
of magnitude improvement at a future τ factory. Thus, this
will unfortunately not provide a means to detect the flavor
violation in our model in the near future. The contributions
to ΔF ¼ 1 processes in the quark sector are also signifi-
cantly below the current experimental limits.

D. Proton decay

The problem of proton decay is of a somewhat different
nature than the other constraints. None of the terms in the
renormalizable Lagrangian induce proton decay, but there

9Since the calculated values of ~dc;t are so far below current
bounds, the effects of running to the fermion mass scale will not
change our conclusions by much beyond an order of magnitude.
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are higher dimensional operators allowed by all the
symmetries of the theory, such as the dimension-5 super-
potential operator qqql, that do. It has long been known
that this is a problem in weak-scale SUSY [97–100].
Raising the scalar masses weakens the bounds, but recent
analysis [65,101,102] has shown that this is still a problem,
with the cutoff for dimension-5 operators needing to be
higher than the Planck scale to make the proton live long
enough.
One could imagine building a model in the spirit of this

one such that Uð1ÞF forbids the higher dimensional proton
decay operators. These kinds of charge assignments tend to
be anomalous,10 so we go in a different direction here by
noting that because proton decay is mediated by higher
dimensional operators, it is clearly sensitive to the UV
structure of the theory. Proton decay operators are generi-
cally generated by the physics of Grand Unification, but
they need not be, as in the case of higher dimensional GUTs
[103]. As proton decay is a generic problem for all SUSY
models and in particular for SUSY GUTs, we simply
assume that one of the solutions in the literature, such as
[103], is active in the UV but has no impact on scales below
the unification scale.

VI. CONCLUSIONS

Supersymmetry has been a subject of intense study
because of its many interesting theoretical and phenom-
enological features. As an extension of the Standard Model,
it can solve the hierarchy problem, provide a natural WIMP
dark matter candidate, and improve gauge coupling uni-
fication. The unfortunate lack of evidence for SUSY at the
LHC as well as the (fortunate) discovery of a Higgs with
mass around 125 GeV has led to a reconsideration of weak-
scale SUSY, with mini-split SUSY emerging as a frame-
work with many intriguing features. In particular, with
scalars around 1000 TeV and gauginos one loop factor
lighter, the correct Higgs mass is obtained with dark matter
and unification stories being comparably successful. SUSY
would then only partially solve the hierarchy problem,
leaving us with a meso-tuned picture of the Universe.
In this paper, we have explored how an additional feature

of mini-split SUSY, the automatic solution of the SUSY
flavor problem, can be used to address the SM flavor
puzzle. In the Standard Model, there is no explanation for
the peculiar structure of the masses and mixings of the
quarks and leptons. Each generation is substantially lighter
than the previous one, and the ratio of third to second

generation masses appears remarkably similar to the ratio
of second to first generation masses. Thus, one possible
explanation of the SM flavor sector is that fermion masses
are generated via a hierarchy of loops, with the third
generation Yukawa coupling generated at tree level, the
second at one loop, and the first at two loops: a radiative
explanation of flavor.
In the framework of mini-split, the scalars carry flavor

quantum numbers and, unlike in weak-scale SUSY, there
can be significant mixing between the different flavors of
squarks. This mixing can be used in loops to generate the
Yukawa couplings. Because new Yukawa couplings cannot
be generated by loops in supersymmetric theories, the
physics of flavor must be tied to the physics of SUSY
breaking. Here we have built a model which radiates flavor
around 1000 TeV, the scale which the Higgs mass points to.
The full particle content of the model is given in Table VI.
In the UV, this model forbids all Yukawa couplings to the

SM matter with a new Uð1Þ symmetry under which the
Higgs is charged, but all matter is neutral. SUSY breaking
triggers the breaking of Uð1ÞF, and a Yukawa coupling is
communicated via a rank 1 messenger sector. This allows
only the third generation to get a Yukawa coupling at tree
level. The messengers can then generate additional Yukawas
at one loop, but because of the size of the messenger sector,
these loop contributions only affect the second and third
generation. Finally, there is the loop contribution from the
sfermions, which is parametrically of two-loop order and
involves all generations. This two-loop contribution is only
big enough because there is large flavor mixing in the
sfermion sector.
In addition to building a model and giving parametric

estimates of the size of all the flavor parameters, we have
also computed a detailed spectrum for the quark sector
taking into account all leading effects including mixing and
wavefunction renormalization. We have shown that one
can get agreement with all the SM flavor parameters to

TABLE VI. The full particle content of our model in addition to
that of the MSSM. We also give the charges under Uð1ÞF, the SM
gauge group, and R parity. Note that the MSSM fields q, u, d, l, e
are neutral under Uð1ÞF and negative under Rp.

Field Uð1ÞF SUð3Þ × SUð2Þ ×Uð1Þ Rp

Hu, Hd ∓2 ð1; 2Þ1=2 þ ð1; 2Þ−1=2 þ
Q, Q̄ �1 ð3; 2Þ1=6 þ ð3̄; 2Þ−1=6 −
U, Ū �1 ð3̄; 1Þ−2=3 þ ð3; 1Þ2=3 −
E, Ē �1 ð1; 1Þ1 þ ð1; 1Þ−1 −
D, D̄ ∓3 ð3̄; 1Þ1=3 þ ð3; 1Þ−1=3 −
L, L̄ ∓3 ð1; 2Þ−1=2 þ ð1; 2Þ1=2 −
l4, l̄ 0 ð1; 2Þ−1=2 þ ð1; 2Þ1=2 −
d4, d̄ 0 ð3̄; 1Þ1=3 þ ð3; 1Þ−1=3 −
ϕ1;2, ϕ̄1;2 �1 ð1; 1Þ0 þ
χ1;2, χ̄1;2 ∓3 ð1; 1Þ0 þ
ξ, ξ̄ ∓2 ð1; 1Þ0 þ

10The Uð1ÞF could be a spontaneously broken global sym-
metry with anomalous charges as in [15]. The anomaly will
generate a mass for the Goldstone, but additional explicit
breaking will likely be needed to raise it higher. Given the IR
issues induced by adding this light state and the need to control
corrections to the radiative story from having a merely approxi-
mate symmetry, we forego this possibility, though there may be a
viable implementation.
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within 5% at a generic point in parameter space described
in Sec. IV. We have also computed current constraints
and found most of them to be trivially satisfied; however,
the constraints from the kaon system do exclude some of
the parameter space. The phenomenology of this model is
quite similar to mini-split SUSY, but in principle there are
deviations in flavor observables involving the second and
third generation, such as Bs mixing.
In order to build a complete flavor model, neutrinos must

also be included. One can think of neutrino masses as
coming from the usual SM dimension-5 operator. Once the
Uð1ÞF is included, this operator can be generated by either
of the following dimension-7 superpotential operators

1

M3�
ðlHuÞðlHuÞχ̄ϕ;

1

M3�
ðlHuÞðlHuÞξ2; ð45Þ

where we have suppressed flavor indices. In this case, the
neutrino masses will be given bymν ∼ v2hχ̄ihϕi=M3� for the
first operator, and the generalization is clear for the second.
Here v≃ 174 GeV is the electroweak scale. In the bench-
mark given in Sec. IV D, the VEVs of the flavons are of
order 100–1000 TeV, so M� can be as low as 100 PeV to
reproduce the experimentally measured neutrino masses.
This scale is somewhat above the scale of the model, but
not dramatically. These operators can be UV completed
with vectorlike right-handed neutrinos with different F
charges, but we leave this analysis including the compu-
tation of the neutrino mixing to future work.
Stepping back, we see that while the lack of evidence for

SUSY at the LHC is beginning to close the door on weak-
scale SUSY, a window is perhaps opening into the mini-
split paradigm. Through this window, we have envisioned a
solution to the SM flavor puzzle, explaining the many
hierarchies we have seen through the physics of radiative
corrections. Only the ratio of the bottom to top quark
masses is left unexplained, but this ratio is correlated with
the size of the Cabibbo angle, giving unexpected agreement
in both sectors. All other small numbers in the SM flavor
sector are the result of loop corrections and a consequence
of linear algebra. The theory does not need to distinguish
different generations, yet it generates all the flavor hier-
archies we observe in nature.

ACKNOWLEDGMENTS

We would like to thank Wolfgang Altmannshofer, Nima
Arkani-Hamed, Fabrizio Caola, Liang Dai, Jacques Distler,
David E. Kaplan, Tracy Slatyer, Andreas Weiler, and Jure
Zupan for helpful discussions. We are especially thankful
to Gian Giudice for helpful discussion on the results of [2].
We are also grateful to Leah Stolarski for helping design the
figures. M. B. was supported by Grant No. DE-FG-03-
91ER40682. M. B. and D. S. are appreciative of the support
and hospitality provided by The Galileo Galilei Institute for

Theoretical Physics and The Kavli Institute for Theoretical
Physics where some of this work was completed.

APPENDIX A: FIELD CONTENT AND Uð1ÞF
GAUGE SYMMETRY

In this appendix we review the full field content and
address some of the complications associated with intro-
ducing a new gauge group. The field content is given in
Tables I, II, and III, and we give the full field content here in
Table VI for completeness. We begin by noting that all the
fields in the theory transforming under Uð1ÞF are vector-
like, so anomaly cancellation is satisfied trivially. This also
allows us to write a supersymmetric mass term for all the
fields that are not part of the MSSM. By the logic of
Eqs. (5) and (6), this mass term isOðmscÞ, so all the scalars
and fermions given in Table VI are at the PeV scale. The
one exception, of course, is the light Higgs, which is tuned
to have a mass around 126 GeV.
Because the new gauge group is a Uð1Þ, a Fayet-

Iliopoulos [104] (FI) term is allowed by the gauge
symmetry. Fortunately, a high scale FI term is inconsistent
with supergravity [105] and will not be generated. We also
assume that any intermediate dynamics between the Planck
and PeV scales also does not generate a FI term. Another
possibility arising from the Abelian nature of the new group
is kinetic mixing between hypercharge and Uð1ÞF [106].
If hypercharge is embedded in a GUT, then this operator
will be absent at the scale of GUT breaking, but it will be
generated by loops of fields charged under both Uð1Þ’s
such as those in Table VI. Because this is a loop effect, we
will treat it as a perturbation.
Once Uð1ÞF is broken, the gauge fields can be diagon-

alized by shifting the hypercharge field with component of
the F gauge field. This has several effects, but all of them
turn out be phenomenologically harmless in the context of
mini-split SUSY. First, the hypercharged fields acquire
some F charge. Because Uð1ÞF is broken at such a high
scale, this has no effect in present experiments. The D term
for Uð1ÞF will also be shifted

D0
F ¼ DF þ ϵDY; ðA1Þ

where ϵ is the coefficient of the kinetic mixing operator.
The potential goes as ðD0

FÞ2, which when expanded out
contains two different effects. The first is a shift in the
coefficient of the Uð1ÞY D term byOðϵ2Þ. The second is an
effective FI term for hypercharge coming from the cross
term. Both of these modify the scalar potential for the
hypercharged scalars, but they have no qualitative effect
because all these scalars have large masses from SUSY
breaking. Therefore, the effects of kinetic mixing on the D
term can be thought of as small corrections to the masses
and quartics for these scalars.
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APPENDIX B: FLAVON SECTOR DETAILS

In this appendix, we explain the field content and charges
of the flavon sector and give a brief description of the
potential minimization. In the UV, all SM Yukawa cou-
plings are forbidden by Uð1ÞF, so in order to generate any
Yukawas, we need flavons to get VEVs and spontaneously
break Uð1ÞF. Thus we introduce a set of flavons ϕ, ϕ̄ with
charges �1. This determines the charges of Hu, Q and U.
In order to preserve anomaly cancellation and allow a μ
term for the Higgses,Hd must have an opposite F charge to
Hu. Because this is a supersymmetric theory and Yukawa
couplings are superpotential operators, the down-Yukawa
coupling must be to Hd, so we need a separate set of
flavons, χ, χ̄, to generate down-type Yukawa couplings.
The analysis above shows that for the model to be viable,

we need both ϕ and χ to get VEVs. Because of the structure
of the potential, this turns out to be impossible without
introducing additional flavons. Consider the potential for
one set of ϕ, ϕ̄, χ, χ̄, i.e. ignoring the fact that the flavons
are doublets in the full model. The potential is given by

V ¼ m2
ϕjϕj2 þm2

ϕ̄
jϕ̄j2 þm2

χ jχj2 þm2
χ̄ jχ̄j2 − ðbϕϕϕ̄þ c:c:Þ

− ðbχχχ̄ þ c:c:Þ þ g2F
2
ðjϕj2 − jϕ̄j2 − 3jχj2 þ 3jχ̄j2Þ2:

ðB1Þ

The m2
i are real, and we can do field redefinitions so that

the b’s are positive and the VEVs are real and positive. In
the supersymmetric limit, m2 ¼ jμj2 > 0 and b ¼ 0, so
spontaneous Uð1ÞF breaking is impossible. Once SUSY-
breaking effects are included, the soft masses can be
negative and a b term can be generated, so SUSY breaking
can trigger Uð1ÞF breaking.
We minimize the potential and get the following

conditions:

2m2
ϕϕ − bϕϕ̄þ 2ϕD ¼ 0 2m2

χχ − bϕχ̄ − 6χD ¼ 0

2m2
ϕ̄
ϕ̄ − bϕϕ − 2ϕ̄D ¼ 0 2m2

χ̄ χ̄ − bϕχ þ 6χ̄D ¼ 0;

ðB2Þ

whereD ¼ g2Fðϕ2 − ϕ̄2 − 3χ2 þ 3χ̄2Þ is theD term. Taking
linear combinations of the left and right equations such that
D cancels out gives us quadratic equations involving only
the ϕ’s or the χ’s:

ϕ̄2 −
2

bϕ
ðm2

ϕ þm2
ϕ̄
Þϕϕ̄þ ϕ2 ¼ 0

χ̄2 −
2

bχ
ðm2

χ þm2
χ̄Þχχ̄ þ χ2 ¼ 0; ðB3Þ

which can be solved for the barred fields in terms of the
unbarred ones, ϕ̄ ¼ rϕϕ, χ̄ ¼ rχχ, where rϕ and rχ depend

only on the parameters of the potential and not on the fields.
Plugging this back into the minimization conditions, we
have

ð2m2
ϕ − bϕrϕ þ 2DÞϕ ¼ 0 ð2m2

χ − bχrχ − 6DÞχ ¼ 0

ð2m2
ϕ̄
rϕ − bϕ − 2rϕDÞϕ ¼ 0 ð2m2

χ̄rχ − bχ þ 6rχDÞχ ¼ 0:

ðB4Þ

Since we need nonzero VEVs for both the ϕ’s and χ’s, the
expressions in parentheses must all simultaneously be zero.
We can get a new constraint by taking a linear combi-

nation of the first and third equations that eliminates D,

ð6m2
ϕ − 3bϕrϕ þ 2m2

χ − bχrχÞϕχ ¼ 0: ðB5Þ

Since the expression in parentheses is a function only of
parameters and generically does not vanish, we are required
to take either ϕ ¼ 0 or χ ¼ 0. Hence we conclude that with
only the D term quartic, either the ϕ’s or the χ’s will get
VEVs, but not both. In the case of the full field content
where ϕ and χ are doublets, there is less analytic control,
but the conclusion still holds and either ϕ or χ will be stable
at the origin.
In order to generate more VEVs, we need another

potential term that will provide a quartic, so we must
introduce another flavon pair, ξ, ξ̄. Choosing the Uð1ÞF
charge of ξ to be −2, we can write down the superpotential
operators given in Eq. (13), which give the following scalar
potential:

VF ¼ λ2ξðϕ2χ̄2 þ ξ2χ̄2 þ ξ2ϕ2 þ unbarred ↔ barredÞ
þ 2μλξðξ̄ϕχ̄ þ ξχ̄ ϕ̄þξϕχ þ unbarred ↔ barredÞ;

ðB6Þ

where for notational simplicity, we have taken a common
supersymmetric mass μ for all the flavons (and continue to
assume that all parameters are real). The potential is now
quite complicated, but there are generic regions in param-
eter space where all flat directions are stabilized because of
the extra quartic and the origin for all fields is destabilized.
Numerical study confirms that generically, if one field gets
a VEV, then all of them will.
In the above discussion, we chose the charge of ξ to be

−2. This turns out to be the unique choice for a viable
model. In order to understand this, we examine the most
general Uð1Þ that arises from our democratic treatment of
SM fields and that is allowed by the flavon couplings
required to obtain tree-level Yukawa couplings. We can
parametrize the charges of the SM fields under this U(1) as
XSM
10 ¼ a, XSM

5̄
¼ b, and XHu

¼ −XHd
¼ c. The messenger-

Higgs couplings then imply messenger charges of
Xmess
10 ¼ −c=2 and Xmess

5̄
¼ 3c=2. These then fix the flavon

charges to be Xϕ ¼ −c=2 − a, and Xχ ¼ 3c=2 − b, so there
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are three independent Uð1Þ symmetries which allow the
Yukawa couplings and mass terms of the theory. OurUð1ÞF
flavor symmetry corresponds to the case a ¼ b ¼ 0. A
second independent Uð1Þ can be parametrized by
a ¼ c ¼ 0, under which Xχ ¼ −b based on the above.
Since generically the flavons all get VEVs, this globalUð1Þ
would be spontaneously broken and would yield a highly
problematic massless Goldstone. Rounding out the basis
ofUð1Þ’s is one under which the flavons are uncharged and
is therefore unbroken. Demanding that the flavons are
uncharged leads to the conditions b ¼ −3a and c ¼ −2a;
this charge assignment is related by a hypercharge rotation
to B − L, and remains unbroken.
In order to get a viable spectrum with no Goldstone

bosons, we need to explicitly break the second Uð1Þ while
leaving B − L and Uð1ÞF unbroken. By adding an addi-
tional vectorlike flavon pair, we gain an additional uncon-
strained charge. Therefore, in order to break the second
Uð1Þ, we must assignUð1ÞF charges to the new flavon such
that two different types of interactions can be written down
for the new flavon so that no charge assignment under the
second Uð1Þ will be consistent. This uniquely determines
the Uð1ÞF charge to be ∓2 because that is the only charge
that allows us to write both ϕϕξ and ϕ̄ χ̄ ξ. These are the
interactions found in Eq. (13), which are needed for the
dominant loop contribution to the second generation
masses. In particular, the interaction with two ϕ’s is needed
for the charm mass, and the one with ϕ and χ is needed for
the strange and muon mass. Therefore, we see that the
charge assignment we have chosen for the flavons is not
only necessary to get a viable spectrum of flavons, it is also
crucial for generating the correct Standard Model Yukawa
couplings.

APPENDIX C: CONSTRUCTING THE
YUKAWA MATRICES

1. Radiative Yukawa generation

In this appendix we give the formulas for the loop effects
used to generate the SM Yukawa matrices. The 33 elements
are generated at tree level and are given by yt in Eq. (31)
and yb in Eq. (34), and we do not consider loop-level shifts
to yu;d33 because they are below our numerical precision. We
now proceed to fill out the remainder of the Yukawa
matrices with radiative contributions that we list in order of
decreasing size.

a. Flavino/flavon

The dominant contribution to yij for ði; jÞ ¼ 2, 3 comes
from the flavino loop, which effectively sets the size of the
second generation masses and is illustrated on the left-hand
side of Fig. 5. In the up sector

yuij ¼
1

16π2
rui r

q
jm ~ϕk

~Fu
ik
~Fq
jkΓ5l�

~q Γ5m�
~u HQU

lm F ðm ~ϕk
; m ~ql ; m ~umÞ;

ðC1Þ

F ðm1; m2; m3Þ ¼
m2

1ðm2
2 log

m2
1

m2
2

−m2
3 log

m2
1

m2
3

Þ þm2
2m

2
3 log

m2
2

m2
3

ðm2
1 −m2

2Þðm2
1 −m2

3Þðm2
2 −m2

3Þ
:

ðC2Þ

Here r accounts for the fact that the original quark fields
appearing at the vertices to which the external lines connect
might not be mass eigenstates; for example

rq ¼ ð1; 1; cq;−sqÞ; ðC3Þ

where the first two components are trivial because the first
two generations do not mix with messengers and the last
two are the q03 projections of the gauge eigenstates q3 and
Q, respectively, and similarly for u. In Eq. (C1), i, j simply
take values 2 or 3, and thus here we only need the first three
components of rq;u, but we present the complete vector
which will be used below. ~Fij is the coupling of the ith
quark flavor to the jth flavino mass eigenstate; for example

~Fq
ij ¼ Fq

ikΓ
kj
~Φ
; k ¼ 1; 2; ðC4Þ

and we use a similar definition for ~̄fk in the down sector.
The factor HQU

ij is the coupling of the ith ~q and jth ~u mass
eigenstates to the light Higgs, which arises from summing
over all six triple scalar couplings involving Q, U smes-
sengers and Higgses:

HQU
ij ¼ −μHðλU cos β Γ4i

~q Γ
4j
~u − λ̄�U sin β Γ5i

~q Γ
5j
~u Þ

þ μQðλU sin β Γ5i
~q Γ

4j
~u − λ̄�U cos β Γ4i

~q Γ
5j
~u Þ

þ μUðλU sin β Γ4i
~q Γ

5j
~u − λ̄�U cos β Γ5i

~q Γ
4j
~u Þ: ðC5Þ

Because the fermion diagonalization is more involved,
the down sector actually has two types of flavino diagrams.
The first is the analogue of the up-sector diagram:

ydij ¼
1

16π2
Sinrdnr

q
jm ~ϕk

~Fd
nk
~Fq
jkΓ5l�

~q Γ7m�
~d

HQD
lm

× F ðm ~ϕk
; m ~ql ; m ~dm

Þ; ðC6Þ

where l ¼ 1−5 and m ¼ 1−7,
HQD

ij ¼ μHðλD sin β Γ5i
~q Γ

5j
~d
þ λ̄�D cos β Γ5i

~q Γ
7j
~d
Þ

− μQðλD cos β Γ5i
~q Γ

7j
~d
þ λ̄�D sin β Γ5i

~q Γ
7j
~d
Þ

− μDðλD cos β Γ5i
~q Γ

7j
~d
þ λ̄�D sin β Γ5i

~q Γ
7j
~d
Þ; ðC7Þ

rd ¼ ð1; 1;Γ11
d ;Γ21

d ;Γ31
d Þ: ðC8Þ
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The matrix Sij sums the relevant vertex over all possible
gauge eigenstate fermion fields j overlapping with mass
eigenstate field i:

Sij ¼

8>><
>>:

δij; i ≠ 3

0; i ¼ 3; j < 3

1; i ¼ 3; j ≥ 3

: ðC9Þ

One could extend the definitions of rd and Sij to include the
higher generation mass eigenstates ðd04; D0Þ, but we do not
consider the effects of mixing from these states, as we
found them to be 1% effects. Furthermore, the renormal-
ization of the heavy fermion masses themselves is beyond
our scope. In Eq. (C6), we take n ¼ 1–4. Since we also
have the coupling d̄Dχ̄ in the down sector, there is also an
additional contribution for i ¼ 3, since we can take the d03
component of D:

yd3j ¼
1

16π2
rd5r

q
jm ~ϕk

~Fq
jk
~̄fkΓ5l�

~q Γ6m�
~d

HQD
lm F ðm ~ϕk

; m ~ql ; m ~dm
Þ:

ðC10Þ

Next we consider the contributions from flavon loops; an
example appears on the right-hand side of Fig. 5. There are
two classes of flavon diagrams: one involves a mass
insertion on each messenger line and the other does not.
We begin with the mass-insertion type, and again start with
the simpler up sector:

yuij ¼
λUMQ0MU0

32π2
cucqrui r

q
j ðF̂ðuÞRe

ik þ iF̂ðuÞIm
ik Þ

× ðF̂ðqÞRe
jk þ iF̂ðqÞIm

jk ÞF ðmϕk
;MQ0 ;MU0 Þ; ðC11Þ

where MQ0 , MU0 are the messenger mass eigenvalues, i.e.

MQ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2Q þ jFq

3iϕij2
q

and similarly for U0, and F̂Re
ij , F̂

Im
ij

is the coupling of the ith quark flavor to the jth flavon mass
eigenstate, obtained by summing over the real and imagi-
nary parts of the appropriate gauge eigenstate flavon
doublet, respectively; for example

F̂ðqÞRe
ij ¼ Fq

ikΓ
kj
Φ ; k ¼ 1; 2

F̂ðqÞIm
ij ¼ Fq

ikΓ
kj
Φ ; k ¼ 11; 12 ðC12Þ

and similarly for u, d, and ˆ̄fj in the down sector. The down
sector again has two types of diagrams that correspond to
this, with the first exactly analogous:

ydij ¼ −
λDMQ0Ml

D0

32π2
Simrdmr

q
jΓ

3;lþ1
d Γ2;l

d̄
cqðF̂ðdÞRe

mk þ iF̂ðdÞIm
mk Þ

× ðF̂ðqÞRe
jk þ iF̂ðqÞIm

jk ÞF ðmϕk
;MQ0 ;Ml

D0 Þ; ðC13Þ

where the sum over l ¼ 1, 2 accounts for both heavy d-type
fermions, andm ¼ 1–4. The second type again involves the
additional f̄ coupling:

yd3i ¼ −
λDMQ0Mk

D0

32π2
rd5r

q
i Γ

3;kþ1
d Γ1;k

d̄
cqðF̂ðqÞRe

ij þ iF̂ðqÞIm
ij Þ

× ð ˆ̄fRej þ i ˆ̄f
Im
j ÞF ðmϕj

; MQ0 ;Mk
D0 Þ: ðC14Þ

The second class of flavon diagrams does not have mass
insertions, so these involve the λ̄U and λ̄D couplings.
Although the loop integral is formally divergent, for entries
other than yu;d33 we need only consider the resulting finite
log terms that are a function of the flavon masses. This is
because the F-coupling piece vanishes when summed
over all flavon mass eigenstates for ði; jÞ ≠ ð3; 3Þ, a
consequence of the fact that the first two generations do
not couple to the Higgs at tree level. For the up sector

yuij ¼ −
λ̄�U
16π2

rui r
q
j cos βðF̂ðuÞRe

ik þ iF̂ðuÞIm
ik ÞðF̂ðqÞRe

jk þ iF̂ðqÞIm
jk Þ

× GðMQ0 ;MU0 ; mϕk
Þ; ðC15Þ

Gðμ;M;mÞ¼
m4ðM2−μ2Þ logðm2

μ2
Þ−M4ðm2−μ2Þ logðM2

μ2
Þ

2ðm2−μ2Þðm2−M2ÞðM2−μ2Þ :

ðC16Þ
The analogous down-sector formula is

ydij ¼ −
λ̄�D
16π2

Simrdmr
q
j sin β Γ

2;l
d̄
Γ2;l�

d̄
ðF̂ðdÞRe

mk þ iF̂ðdÞIm
mk Þ

× ðF̂ðqÞRe
jk þ iF̂ðqÞIm

jk ÞGðMQ0 ;Ml
D0 ; mϕk

Þ ðC17Þ

where m ¼ 1–4, and the diagram generated from the f̄
coupling is

yd3i ¼ −
λ̄�D
16π2

rd5r
q
i sin β Γ

1;k
d̄
Γ2;k�

d̄
ðF̂ðqÞRe

ij þ iF̂ðqÞIm
ij Þ

× ðf̂Rej þ if̂Imj ÞGðMQ0 ;Mk
D0 ; mϕj

Þ: ðC18Þ

b. Gluino

The gluino loop, appearing in Fig. 6, is the dominant
contribution to the entries in the first row and column of the
Yukawa matrices, and controls the size of the first gen-
eration mass. For the up sector,

yuij ¼ −
α3
2π

SimrumSjnr
q
nΓmk

~u Γnl
~q H

QU
kl F ðm~g; m ~uk ; m ~qlÞ; ðC19Þ

where m, n ¼ 1–4. For the down sector,
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ydij ¼ −
α3
2π

SimrdmSjnr
q
nΓmk

~d
Γnl
~q H

QD
kl F ðm~g; m ~dk

; m ~qlÞ; ðC20Þ

where m ¼ 1–5 and n ¼ 1–4. There are also analogous
diagrams with a bino.
Approximating the threshold correction from messen-

gers to the gaugino masses as a mass insertion is not strictly
accurate at a PeV because other fields in this diagram are at
that scale. A more precise way to calculate would be be to
blow up the mass insertion and include the two-loop effects
of the messengers. This can be improved further still by

resumming the effects of the thresholds that generate the
gluino mass, and then including the full momentum
dependence in the gluino propagator. We find that these
effects only modify the contribution to the Yukawa cou-
pling by Oð1%Þ, so for computing our benchmark we use
the simpler analytic formulas above.

c. Gaugino-Higgsino

These diagrams, shown in Fig. 9, have already been
discussed in Sec. IV C 1. Here, we just present the complete
formulas:

yui3 ¼
αY
π
QY

uQY
Hu
λUsqSikrukΓ

4j
~u Γ

kj�
~u GðμH;m ~B;m ~ujÞ; k ¼ 1−4

ydi3 ¼ −
αY
π
QY

dQ
Y
Hd
λDsqSikrdkΓ

5j
~d
Γkj�
~d
GðμH;m ~B;m ~dj

Þ; k ¼ 1−5

yu3i ¼ λUsuSikr
q
kΓ

4j
~q Γ

kj�
~q

�
αY
π
QY

qQY
Hu
GðμH;m ~B;m ~qjÞ −

α2
π
CFGðμH;m ~W;m ~qjÞ

�
;

yd3i ¼ λDΓ21
d Sikr

q
kΓ

4j
~q Γ

kj�
~q

�
−
αY
π
QY

qQY
Hd
GðμH;m ~B;m ~qjÞþ

α2
π
CFGðμH;m ~W;m ~qjÞ

�
; ðC21Þ

where k ¼ 1−4 in the last two equations above, QY is the
field hypercharge, and CF is the quadratic Casimir for the
group, which is equal to 3=4 and 4=3 for SUð2ÞL and
SUð3ÞC, respectively.

2. Wavefunction renormalization

Our procedure is outlined in Sec. IV C 2, where the
generic diagram appears and the contribution from the
flavon sector is discussed. There are also loops involving
gluino/squarks, Higgsino/squarks, and Higgs/quarks. We
include all of these in the renormalization of the q and u
fields, but retain only the gluino contribution for d, since
the other loops are yb suppressed, or involve kinetic
mixing, which we found to be an Oð1%Þ effect on our
SM model prediction, and thus neglect. In addition, since
only the third generation couples to the Higgs at tree level,
the diagrams involving the Higgs multiplet only contrib-
ute to the 33 entries. Unlike the contributions to yu;d33 , we
do include wavefunction renormalization of the third
generation, as the Källén-Lehmann representation theo-
rem along with the positivity of quantum mechanics
determines that all such contributions will increase the
third generation masses [107]. Taken together, we find
shifts upwards of 10%, and thus we cannot neglect them.
We use the notation introduced in the previous section and
take a renormalization scale Q ¼ 1000 TeV, the common
scale at which the heavy states are integrated out.

a. Gluino

Σq
ij ¼

α3
2π

CFSilr
q�
l Sjmr

q
mΓlk

~q Γ
mk�
~q Wðm~g; m ~qk ; QÞ;

l; m ¼ 1−4; ðC22Þ

WðM;m;QÞ ¼
M4 logðM2

Q2Þ
2ðM2 −m2Þ2 þ

m2ðm2 − 2M2Þ logðm2

Q2Þ
2ðM2 −m2Þ2

þ m2 − 3M2

4ðM2 −m2Þ : ðC23Þ

Analogous formulas hold for u and d; in the case of d, we
take l, m ¼ 1–5. There is also a wino contribution to q.11

b. Flavino

Σq
ij ¼

1

16π2
rq

�
i rqj ~F

q�
ik
~Fq
jkΓ5l�

~q Γ5l
~q Wðm ~ϕk

; m ~ql ; QÞ; ðC24Þ

and similarly for u.

11We neglect the contribution from the Uð1ÞF gauge super-
multiplet, which only changes the 33 entry from the overlap of the
third generation massless eigenstate with the messenger gauge
eigenstate. This is expected to be a Oð1%Þ-level effect.
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c. Flavon

Σq
ij ¼

1

32π2
rq

�
i rqj ðF̂ðqÞRe

ik þ iF̂ðqÞIm
ik Þ�ðF̂ðqÞRe

jk þ iF̂ðqÞIm
jk Þ

×WðMQ0 ; mϕk
; QÞ; ðC25Þ

and analogously for u.

d. Higgsino

Σq
33 ¼

jsqj2
16π2

ðjλUj2Γ4i�
~u Γ4i

~u WðμH;m ~ui ; QÞ
þ jλDj2Γ5i�

~d
Γ5i
~d
WðμH;m ~di

; QÞÞ; ðC26Þ

where the first term arises from putting ~Hu in the loop
and the second has ~Hd. The contribution to Σu

33 consists of
only the ~Hu piece and is obtained by taking ~u → ~q.

e. Higgs

Since our renormalization scale is far above the scale of
electroweak symmetry breaking, SUð2Þ is approximately
unbroken. Therefore, the tuning in the Higgs sector
produces one light doublet that includes the SM Higgs,
and one heavy doublet with degenerate scalars of mass mA.
In other words, the two Higgs doublets are in the extreme
decoupling limit of the MSSM. The light doublet is
given by H1 ¼ − cos βðiσ2ÞH�

d þ sin βHu, and the heavy
doublet by H2 ¼ sin βðiσ2ÞH�

d þ cos βHu. The effects here
describe loops with at least one heavy field (light Higgs
or SM fermion masses are approximated to be 0 in the
calculation), with purely light field effects taken into
account in the renormalization group evolution of the
Yukawas from the high scale down to the weak scale.
The effects of a heavy Higgs and fermion loop are

given by

Σq
33 ¼

jsqj2
16π2

½jλUj2cos2βðjsuj2Wð0; mA;QÞ þ c2uWðMU0 ; mA;QÞÞ
þjλDj2sin2βðΓ31

d Γ31�
d Wð0; mA;QÞ þ Γ3i

d Γ3i�
d WðMi

D0 ; mA;QÞÞ�

Σu
33 ¼

jλUj2
16π2

jsuj2cos2β½jsqj2Wð0; mA;QÞ þ c2qWðMQ0 ; mA;QÞ�; ðC27Þ

while the effects of a light Higgs and a heavy messenger are given by

Σq
33 ¼

jsqj2
16π2

½jλUj2sin2β c2uWðMU0 ; 0; QÞ þ jλDj2cos2β Γ3i
d Γ3i�

d WðMi
D0 ; 0; QÞ�

Σu
33 ¼

jλUj2
16π2

jsuj2c2qsin2βWðMQ0 ; 0; QÞ: ðC28Þ

APPENDIX D: MESSENGER THRESHOLD
CORRECTIONS TO GAUGINO MASSES

Here we generalize the discussion of Sec. IVA to fully
account for mixing. We organize the bookkeeping by
introducing tensors VM and WM̄, which characterize the
possible vertices. These are relatively simple for Q and U,
since Q̄ and Ū are already mass eigenstates and there is
only one nonzero eigenvalue:

VQ ¼ ðΓ3i�
~q s�q;Γ4i�

~q cqÞ
WQ̄ ¼ Γ5i

~q ; ðD1Þ

and analogously for U. Here V is a matrix, with the row
denoting whether q3 or Q is at the vertex, and we need to
project out the component corresponding to the heavy

fermionic mass eigenstate. Although we label them by D,
the tensors for the down-type messengers actually combine
what were previously separate contributions from the d4, d̄
and D, D̄ pairs:

VD ¼ ððΓ3i�
~d
Γ12
d ;Γ3i�

~d
Γ13
d Þ; ðΓ4i�

~d
Γ22
d ;Γ4i�

~d
Γ23
d Þ;

ðΓ6i�
~d
Γ32
d ;Γ6i�

~d
Γ33
d ÞÞ

WD̄ ¼ ððΓ5i
~d
Γ11
d̄
;Γ5i

~d
Γ12
d̄
Þ; ðΓ7i

~d
Γ21
d̄
;Γ7i

~d
Γ22
d̄
ÞÞ; ðD2Þ

where in VD
ijk and WD̄

ijk, i specifies which field is at the
vertex, j labels the fermionic eigenstate, and k labels the
scalar eigenstate.
The threshold corrections to the gaugino masses can thus

be expressed as
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ΔmQ
~i
¼

X2
j¼1

αi
π
CQ
i V

Q
jkW

Q̄
k MQ0J ðMQ0 ; m ~qkÞ;

J ðM;mÞ ¼ m2

M2 −m2
log

m2

M2
; ðD3Þ

with MQ0 the physical mass of the heavy messenger. There
is an analogous expression for U, while

ΔmD
~i
¼

X3
i¼1

X2
l¼1

αi
π
CD
i V

D
ijkW

D̄
ljkM

j
D0J ðMj

D0 ; m ~dk
Þ: ðD4Þ

The Dynkin indices weighted by degrees of freedom CM
i

are given by

CQ ¼ ð1=6; 3=2; 1Þ
CU ¼ ð4=3; 0; 1=2Þ
CD ¼ ð1=3; 0; 1=2Þ ðD5Þ

for ðUð1ÞY; SUð2ÞL; SUð3ÞCÞ. Our extra matter was intro-
duced in complete representations of SUð5Þ, so we still
need to account for E, l4, and L. Since our flavor model
does not discuss the leptonic sector in any detail, here we
simply assume that the parameters for E are the same as
those for U, and identify l4 with d4, as well as L with D.
Although they live in the same GUT multiplets, the C
factors are of course different:

CE ¼ ð1; 0; 0Þ
CL ¼ ð1=2; 1=2; 0Þ: ðD6Þ

APPENDIX E: FORMULAS FOR SELECT
FLAVOR OBSERVABLES

1. Bs mixing: Wilson coefficient of O1

In addition to the usual box diagram MSSM contribu-
tions to meson mixing involving squarks and gluinos, our
model gives a contribution coming from analogous box
diagrams with flavons/messengers and flavinos/smessen-
gers. Since the first generation fermions do not couple to
the flavon sector, this additional contribution only exists
for mesons that do not contain first generation quarks. The
most precisely measured of these is Bs. We therefore
calculate the box diagram for Bs mixing and extract the
coefficient of the effective operator O1, given in Eq. (42),
which we then use to calculate the contribution to the mass
splitting and CP-violating phase in the Bs system.

a. Flavino

C1 ¼
c2q

128π2
~Fq�
2i
~Fq
3i
~Fq�
2j
~Fq
3jΓ5k

~q Γ5k�
~q Γ5l

~q Γ
5l�
~q B1

× ðm ~ϕi
; m ~ϕj

; m ~qk ; m ~qlÞ; ðE1Þ

B1ðM1;M2; m1; m2Þ ¼
1

ðm2
1 −m2

2Þðm2
1 −M2

1Þðm2
1 −M2

2Þðm2
2 −M2

1Þðm2
2 −M2

2ÞðM2
1 −M2

2Þ

×

�
m4

1m
4
2ðM2

1 −M2
2Þ log

m2
1

m2
2

þm4
1M

4
1ðM2

2 −m2
2Þ log

m2
1

M2
1

þm4
1M

4
2ðm2

2 −M2
1Þ log

m2
1

M2
2

þm4
2M

4
1ðm2

1 −M2
2Þ log

m2
2

M2
1

þm4
2M

4
2ðM2

1 −m2
1Þ log

m2
2

M2
2

þM4
1M

4
2ðm2

1 −m2
2Þ log

M2
1

M2
2

�
: ðE2Þ

b. Flavon

C1 ¼
c2q

512π2
ðF̂ðqÞRe

2i þ iF̂ðqÞIm
2i Þ�ðF̂ðqÞRe

3i þ iF̂ðqÞIm
3i ÞðF̂ðqÞRe

2j þ iF̂ðqÞIm
2j Þ�ðF̂ðqÞRe

3j þ iF̂ðqÞIm
3j ÞB2ðmϕi

; mϕj
;MQ0 Þ; ðE3Þ

B2ðm1; m2;MÞ ¼ m4
1 log

m2
1

M2

ðM2 −m2
1Þ2ðm2

1 −m2
2Þ
−

m4
2 log

m2
2

M2

ðM2 −m2
2Þ2ðm2

1 −m2
2Þ

þ M2

ðM2 −m2
1ÞðM2 −m2

2Þ
; ðE4Þ

where the total Wilson coefficient for O1 is the sum of Eqs. (E1) and (E3).

2. CEDM

a. Flavino

Our model gives additional contributions to chromo-EDMs for second and third generation quarks. The diagrams involve
flavinos and flavons (cf. Fig. 14) and are constructed from the ones shown in Fig. 5 by attaching a gluon line to a member of
the messenger multiplet. The flavino loops are typically the dominant contribution, and they give
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~din ¼
v sin βm ~ϕj

16π2
rqi r

u
nImf ~Fq

ij
~Fu
njΓ5k�

~q Γ5l�
~u HQU

kl gðDðm ~ϕj
; m ~qk ; m ~ulÞ þDðm ~ϕj

; m ~ul ; m ~qkÞÞ; ðE5Þ

where v ¼ 174 GeV is the Higgs VEV; the first term corresponds to gluon emission from the ~q and the second from ~u, and

DðM; μ; mÞ ¼ 1

2M4

Z
1

0

dww
Z

1−w

0

dx
Z

1−x−w

0

dy

�
wþ ðxþ yÞ μ

2

M2
þ ð1 − w − x − yÞ m

2

M2

�−2
: ðE6Þ

b. Flavon

We also get loops with flavons and smessengers. Just as for the loops generating Yukawa couplings, there are
contributions with and without mass insertions on the messenger lines. For the dipole calculation though, the latter are
manifestly finite. Those without mass insertions are typically larger, giving

~dij ¼ −
v cos β
32π2

rqi r
u
j Imfλ̄�UðF̂ðqÞRe

ik þ iF̂ðqÞIm
ik ÞðF̂ðuÞRe

jk þ iF̂ðuÞIm
jk Þg

× ðDno-MI
ϕ ðMQ0 ;MU0 ; mϕk

Þ þDno-MI
ϕ ðMU0 ;MQ0 ; mϕk

ÞÞ; ðE7Þ

where

Dno-MI
ϕ ðM; μ; mÞ ¼ 1

2m2

Z
1

0

dw
Z

1−w

0

dy
Z

1−y−w

0

dz

�
3ðyþ zÞ − 1

½ð1 − w − y − zÞ þ ðwþ zÞM2=m2 þ yμ2=m2�

−
wM2

m2½ð1 − w − y − zÞ þ ðwþ zÞM2=m2 þ yμ2=m2�2
�
: ðE8Þ

Lastly, we come to the flavon loop with mass insertions:

~dij ¼
v sin βMQ0MU0

32π2
cucqr

q
i r

u
j ImfλUðF̂ðqÞRe

ik þ iF̂ðqÞIm
ik ÞðF̂ðuÞRe

jk þ iF̂ðuÞIm
jk Þg

× ðDMI
ϕ ðMQ0 ;MU0 ; mϕk

Þ þDMI
ϕ ðMU0 ;MQ0 ; mϕk

ÞÞ; ðE9Þ

with

DMI
ϕ ðM; μ; mÞ ¼ 1

2m4

Z
1

0

dw
Z

1−w

0

dy
Z

1−y−w

0

dz
ðwþ yþ zÞ

½ð1 − w − y − zÞ þ ðwþ zÞM2=m2 þ yμ2=m2�2 : ðE10Þ
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