
AIDA-THESIS-2012-002

AIDA
Advanced European Infrastructures for Detectors at Accelerators

Academic Dissertation

Track Reconstruction in the Forward
Region of the Detector ILD at the

Electron-Positron Linear Collider ILC

Glattauer, Robin (HEPHY, OAW)

31 October 2012

The research leading to these results has received funding from the European Commission
under the FP7 Research Infrastructures project AIDA, grant agreement no. 262025.

This work is part of AIDA Work Package 2: Common software tools.

The electronic version of this AIDA Publication is available via the AIDA web site
<http://cern.ch/aida> or on the CERN Document Server at the following URL:

<http://cds.cern.ch/search?p=AIDA-THESIS-2012-002>

AIDA-THESIS-2012-002

http://cern.ch/aida
http://cds.cern.ch/search?p=AIDA-THESIS-2012-002

Diplomarbeit

Track Reconstruction

in the Forward Region

of the Detector ILD

at the Electron-Positron

Linear Collider ILC

Ausgeführt am

Institut für Hochenergiephysik (HEPHY)
der Österreichischen Akademie der Wissenschaften (ÖAW)

unter der Anleitung von

Univ.Doz. Dipl.-Ing. Dr.techn. Rudolf Frühwirth
Dipl.-Ing. Dr. Winfried Mitaroff

durch

Robin Glattauer

Wien, im Oktober 2012

Abstract

The subject of this thesis is the reconstruction of charged particle tracks in the for-
ward region of the International Large Detector (ILD), one of two validated detector
concepts for the future International Linear Collider (ILC).

Recent results from the Large Hadron Collider (LHC) suggest that the last miss-
ing piece of the Standard Model (SM) of particle physics, the Higgs boson, could
have been found. Complementary to the LHC, an electron-positron linear collider
would have the capability to explore with high precision the characteristics of the
Higgs boson (e.g. spin, parity, coupling strengths), to compare them against the
predictions of the SM, and also give unbiased contributions to the search for physics
beyond the SM, such as supersymmetry or extra spatial dimensions.

Experiments at ILD will benefit from this detector’s tracking system, consisting
of a large central time projection chamber (TPC) augmented by several silicon
tracking systems, granting unprecedented track resolution, redundancy and angular
hermeticity. The forward region of ILD, covering the space between beam tube and
TPC, contains the Forward Tracking Detector (FTD): two arms of seven disk-shaped
silicon detectors (two Si pixel and five double-sided Si strip detectors).

In order to fully exploit ILD’s hardware assets, the software for event reconstruc-
tion must aim for both the highest level of precision and efficiency. In this context,
new software for track reconstruction in the forward region was developed by the
author (packages KiTrack and ForwardTracking): it processes the signals of FTD
with the goal to efficiently find and precisely reconstruct the genuine tracks that
have traversed FTD and caused these signals.

The methods used are based on state-of-the-art algorithms: a cellular automa-
ton (CA), a Kalman filter (KF), and a Hopfield neural network (HNN). The new
packages follow a modern object-oriented design philosophy, granting high flexibil-
ity and maintainability. The results show superior performance w.r.t. older legacy
software, yielding higher efficiencies and better handling of the expected background
concerning ghost rate, efficiency and processing time.

The forward tracking packages presented in this thesis have been successfully
implemented into the standard event reconstruction framework of ILD. They are
currently used for benchmark event processing for the Detailed Baseline Design
(DBD), a report outlining the feasibility and features of the International Large
Detector, to be published around the end of this year.

III

Kurzfassung

Thema dieser Diplomarbeit ist die Rekonstruktion der Spuren geladener Teilchen im
Vorwärtsbereich des “International Large Detector” (ILD), einem von zwei bestätig-
ten Detektorkonzepten am zukünftigen “International Linear Collider” (ILC).

Neuere Ergebnisse am “Large Hadron Collider” (LHC) lassen vermuten, dass
der letzte noch fehlende Baustein des Standardmodells (SM) der Teilchenphysik,
das Higgs-Boson, gefunden wurde. Komplementär zu LHC hätte ein Elektron-
Positron Linear-Collider die Fähigkeit, mit hoher Präzision die Eigenschaften des
Higgs-Bosons (z.B. Spin, Parität, Kopplungsstärken) zu erforschen, diese mit den
Vorhersagen des SM zu vergleichen, und auch annahmefrei zur Suche nach Physik
jenseits des SM, wie Supersymmetrie oder zusätzliche Raumdimensionen, beizutra-
gen.

Experimente am ILD werden vom Tracking-System dieses Detektors profitieren,
das aus einer großen Zeitprojektionskammer (“time projection chamber”, TPC) und
mehreren Silizium-Spurdetektoren besteht, und das eine bisher unerreichte Spur-
auflösung, Redundanz und Raumwinkel-Hermetizität gewährt. Der Vorwärtsbereich
von ILD, welcher den Raum zwischen Strahlrohr und TPC abdeckt, enthält den
“Forward Tracking Detector” (FTD): zwei Arme mit je sieben scheibenförmigen
Siliziumdetektoren (zwei Pixel- und fünf doppelseitige Streifen-Detektoren).

Um die Hardware-Vorteile von ILD voll nutzen zu können, muss die Software
zur Rekonstruktion der Kollisionsereignisse sowohl auf Präzision als auch auf Ef-
fizienz ausgerichtet sein. In diesem Zusammenhang wurde vom Autor neue Soft-
ware zur Spurrekonstruktion im Vorwärtsbereich entwickelt (Pakete KiTrack und
ForwardTracking): diese verarbeitet die Signale des FTD mit dem Ziel, die wahren
Spuren, welche den FTD durchquert und diese Signale verursacht haben, effizient
zu finden und präzise zu rekonstruieren.

Die benutzten Methoden basieren auf Algorithmen am neuesten Stand der Tech-
nik: einem zellulären Automaten, einem Kalman-Filter, und einem neuralen Hopfield-
Netz. Die neuen Softwarepakete folgen einer modernen objektorientierten Philoso-
phie, welche hohe Flexibilität und Wartbarkeit garantiert. Die Ergebnisse zeigen
eine überlegene Leistung im Vergleich zu bisher verwendeter Software: gesteigerte
Effizienzen, und eine besserer Bewältigung der erwarteten Untergrundsignale was
Artefakte, Effizienz und Rechenzeit betrifft.

Die in dieser Diplomarbeit vorgestellten Softwarepakete zum Vorwärts-Tracking
wurden erfolgreich ins reguläre ILD-Framework zur Rekonstruktion von Kollisions-
ereignissen implementiert. Sie werden gegenwärtig in den Benchmark-Berechnungen
für den “Detailed Baseline Design” (DBD) eingesetzt – einem Report, der die Mach-
barkeit und Grundeigenschaften des “International Large Detector” darlegt, und der
um das Jahresende 2012 publiziert werden soll.

IV

Contents

1. Introduction 1
1.1. Overview . 1
1.2. The Standard Model of particle physics 1

1.2.1. Physics beyond the Standard Model 2
1.3. Experiments in high energy particle physics 3
1.4. Particle accelerators . 4

1.4.1. The physics case for electron-positron colliders 5
1.4.1.1. Polarization . 5

1.4.2. Lepton colliders . 6
1.4.2.1. Synchrotron radiation 6
1.4.2.2. Linear colliders . 7

1.4.3. The International Linear Collider (ILC) 8
1.4.4. The Compact Linear Collider (CLIC) 9

1.5. Particle detectors . 9
1.5.1. The Silicon Detector (SiD) at ILC 11
1.5.2. The International Large Detector (ILD) at ILC 11

1.5.2.1. The tracking system of ILD 11
1.5.2.2. The Forward Tracking Detector (FTD) of ILD 12
1.5.2.3. Pixel and strip detectors 13

1.5.3. The ILD software framework 15
1.5.3.1. The chain of simulation and analysis 15
1.5.3.2. The simulation package Mokka and GEANT4 16
1.5.3.3. The detector geometry description toolkit Gear . . . 16
1.5.3.4. The reconstruction framework Marlin 17
1.5.3.5. The persistency framework LCIO 17

2. Algorithms of event reconstruction 19
2.1. Areas in event reconstruction . 19

2.1.1. Track reconstruction . 19
2.1.1.1. Track finding . 21
2.1.1.2. Track fitting . 23
2.1.1.3. Ambiguity resolving 24

2.1.2. Particle identification (PID) 25
2.1.3. Vertex reconstruction . 26

2.2. The challenge of track reconstruction 27

V

Contents

2.3. The tools . 28

2.3.1. The cellular automaton . 28

2.3.1.1. The cellular automaton used in ForwardTracking . . 30

Criteria . 31

Usefulness of criteria 34

The merits of the cellular automaton for track finding . 36

2.3.2. The Kalman filter . 37

2.3.2.1. Prediction . 40

2.3.2.2. Filtering . 41

2.3.2.3. Smoothing . 43

2.3.2.4. The merits of the linear Kalman filter 44

2.3.3. The Hopfield neural network 44

3. Related work 49
3.1. The previous track reconstruction for the FTD: SiliconTracking . . . 49

3.2. Track reconstruction in CMS . 51

3.3. Track reconstruction in HERA-B . 52

3.3.1. The local approach RANGER 52

3.3.2. The global approach TEMA 53

3.3.3. The semi-global approach CATS 54

3.3.4. Comparison of the 3 approaches in HERA-B 54

3.4. Belle II track reconstruction . 55

4. Implementation 57
4.1. Requirements . 58

4.2. KiTrack . 59

4.3. KiTrackMarlin . 61

4.4. ForwardTracking . 62

4.5. Integration in the framework Marlin 64

5. Results 67
5.1. Important benchmark parameters of track reconstruction 67

5.2. Tuning of parameters . 69

5.2.1. Tuning the cellular automaton 69

5.2.2. Tuning the Kalman filter cuts 71

5.2.3. Tuning the Hopfield neural network 73

5.3. Comparison with SiliconTracking MarlinTrk 78

5.3.0.1. Behavior under the addition of background 82

6. Conclusion 87

7. Outlook 89

VI

Contents

A. The cellular automaton for track finding 91
A.1. The environment: Track reconstruction in the Forward Tracking De-

tector of the ILD . 91
A.2. What is a cellular automaton . 93
A.3. The cellular automaton for pattern recognition 93

A.3.1. Demonstration with a toy detector 93
A.3.1.1. Remaining track reconstruction 104

A.3.2. All the small things . 105
A.3.2.1. Sectors . 105
A.3.2.2. Tracks not from the IP 106
A.3.2.3. When to check the Criteria 107

A.4. Demonstration for the FTD . 107

B. Acknowledgements 113

Bibliography 115

Glossary 121

VII

List of Figures

1.1. A schematic layout of the International Linear Collider 8
1.2. Schematic view of ILD . 11
1.3. Inner tracking part of ILD . 11
1.4. Cut view of the inner tracking part of ILD 12
1.5. 1 and 2 hits on a “false” double-sided silicon sensor 14
1.6. 2 hits on a ”false” double-sided sensor with a small stereo angle, ghost

hits are pushed off the sensor . 14

2.1. The TPC is surrounded by other detectors on the in- and outside:
tracking is needed to link the signals in those detectors. 20

2.2. Event in the TPC without background 27
2.3. Event in the FTD without background 27
2.4. Number of hits of tracks in the FTD (with 3 hits or more) 28
2.5. Number of the first layer of the FTD hit by a true track 28
2.6. Iterations in the ”game of life” . 29
2.7. Connected 1-hit-segments . 31
2.8. Two connected segments of different lengths 32
2.9. The 2DAngle criterion . 35
2.10. The 3DAngle criterion . 35
2.11. χ2 distributions with different degrees of freedom (k), Authors: Geek3,

http://upload.wikimedia.org/wikipedia/commons/3/35/Chi-square_

pdf.svg . 43
2.12. Neurons connected to each other with different weights on the con-

nections . 45
2.13. Activation function . 47

4.1. The subset classes . 59
4.2. The class Automaton . 60
4.3. A criterion . 60
4.4. The class SegmentBuilder . 61
4.5. Activity diagram of reconstruction in the Marlin framework 65

5.1. Histogram of a cellular automaton criterion 69
5.2. Criterion only for 2 hits on layer 5 and 6 71
5.3. χ2-probability distribution of true tracks in 10000 WW events 71
5.4. χ2-probability distribution of true tracks with pT > 1GeV in 10000

WW events . 72

VIII

http://upload.wikimedia.org/wikipedia/commons/3/35/Chi-square_pdf.svg
http://upload.wikimedia.org/wikipedia/commons/3/35/Chi-square_pdf.svg

List of Figures

5.5. Tuning of the χ2-probability cut . 73
5.6. Efficiency of subset algorithms, χ2-probability is used as QI 75
5.7. Efficiency of subset algorithms, a special QI is used based on the

χ2-probability . 75
5.8. Ghost rate of subset algorithms, χ2-probability is used as QI 76
5.9. Ghost rate of subset algorithms, a special QI is used based on the

χ2-probability . 76
5.10. Efficiency of subset algorithms, a special QI is used based on the

χ2-probability and ω = 0.9 . 77
5.11. Efficiency vs. pT . 79
5.12. Efficiency vs. distance to vertex . 79
5.13. Efficiency vs. number of hits in true track 80
5.14. Efficiency vs. θ . 80
5.15. Ghost Rate vs. pT . 81
5.16. Efficiency vs. background . 82
5.17. Ghost rate vs. background . 83
5.18. Time vs. background . 83
5.19. Efficiency of ForwardTracking vs. pT for different backgrounds . . . 84
5.20. Efficiency of SiliconTracking vs. pT for different backgrounds . . . 84
5.21. Ghost rate of ForwardTracking vs. pT for different backgrounds . . . 85
5.22. Ghost rate of SiliconTracking vs. pT for different backgrounds . . . 85

A.1. The Forward Tracking Detector in the ILD (a schematic 270◦ cut) . 92
A.2. 2-dimensional toy detector . 94
A.3. True tracks from an event . 94
A.4. The true tracks + hits . 94
A.5. The true hits . 94
A.6. True and background hits . 95
A.7. All hits, indistinguishable . 95
A.8. Segments of different lengths . 95
A.9. Hits are connected if close enough . 96
A.10.The criterion: angle between two 2-hit-segments 97
A.11.First iteration . 98
A.12.Layers of the 2-hit-segments . 98
A.13.Second iteration . 99
A.14.Third iteration . 99
A.15.Fourth iteration . 100
A.16.The allowed states . 101
A.17.Erased bad segments . 101
A.18.The remaining 2-hit-segments . 101
A.19.The 3-hit-segments . 102
A.20.First iteration . 102
A.21.Second iteration . 102
A.22.Third iteration . 103

IX

List of Figures

A.23.Erased segments with bad states . 103
A.24.Track candidates resulting from the cellular automaton 103
A.25.Results of a quality cut on the track candidates 104
A.26.After the quality cut has been applied 104
A.27.Incompatible tracks . 105
A.28.After ambiguity resolving . 105
A.29.The final track collection . 105
A.30.Connecting only hits from certain areas 106
A.31.Build 2-hit-segments . 108
A.32.After the cellular automaton has performed 108
A.33.After erasing bad segments . 109
A.34.Track candidates . 109
A.35.The hits . 110
A.36.Built 2-hit-segments . 110
A.37.The cellular automaton performed with the 2-hit-segments 110
A.38.After removing segments with bad states 111
A.39.The cellular automaton performed with 3-hit-segments 111
A.40.After erasing bad states . 111
A.41.The final track candidates . 112

X

1. Introduction

1.1. Overview

The subject of this thesis is the reconstruction of charged particle tracks in the
forward region1 of the International Large Detector ILD [28], one of two validated
detectors at a future electron-positron linear collider, the ILC [16].

The main goal achieved by this work is software developed for track reconstruction
in the forward direction; in addition, contributions were made also to other parts
of the reconstruction chain, including digitizing simulated hits, analysis (true track
finder), and arbitration of different track collections into a unique subset.

Chapter 1, after a short review of the present theory, gives an overview of the
experimental environment at high energy colliders, together with the main aspects
of the ILD detector at ILC, with which this thesis is primarily concerned.

In Chapter 2, algorithms for pattern recognition are discussed, and in Chapter 3
recent approaches to track reconstruction are presented. Chapter 4 describes the
implementation of the algorithms for track reconstruction in the ILD detector, and
the software packages developed for this task. Chapter 5 gives the results of various
benchmark tests for the tracking software, including a comparison with the older
algorithms used for forward track reconstruction in the ILD.

Conclusions are drawn in Chapter 6, and an outlook is given in Chapter 7.

1.2. The Standard Model of particle physics

Our present knowledge of the microcosm is well described by two non-Abelian local
gauge theories called the “Standard Model” (SM). It includes the so far discovered
fundamental particles and their mediating forces: electromagnetic, weak and strong
force. The fourth force – gravitation – is not included in the Standard Model, but
efforts are made to find a theory ultimately combining all forces.

The Standard Model has been very successfully verified, and has been probed to
distances as small as 10−18 m, with an accuracy of about 1h or 1% in the electroweak
and strong sectors, respectively. Only a few basics are given below; for details refer
to a textbook, e.g. [54].

The Electroweak Theory extends Quantum Electrodynamics (QED) by unifying
electromagnetic and weak interactions, based on the gauge symmetry SU(2)L×U(1)

1 defined by the angle w.r.t. the beams; the backward region is always implicitly regarded as
well.

1

1. Introduction

of weak isospin and hypercharge. This symmetry is spontaneously broken by the
“Higgs mechanism”, introducing a heavy scalar particle, the Higgs boson (H0) and
giving the weak vector bosons (W± and Z0) their masses while leaving the photon
(γ) massless. The fundamental fermions gain their masses by hand-tuned Yukawa
couplings to the Higgs field.

Additionally to the electromagnetic and weak forces, quarks and gluons are sub-
ject to the strong force, which is described by Quantum Chromodynamics (QCD).
QCD is based on the gauge symmetry SU(3) of colour, a generalized threefold charge
which is source of the strong interaction, mediated by eight massless vector bosons
(gluons, g). Its running coupling constant – in contrast to the electroweak ones –
is decreasing with higher interaction energy. The consequences are “colour confine-
ment” (naked colour is bound within hadronic sizes); and “asymptotic freedom”,
allowing perturbative calculations at high energies. The nuclear strong force that
binds the protons and neutrons in atomic nuclei is a residual effect of the strong
interaction.

The fundamental fermions exist in three generations of lepton and quark doublets:

generation: 1st 2nd 3rd charge colour

leptons:

(
νe
e−

) (
νµ
µ−

) (
ντ
τ−

)
0
−1

none
none

quarks:

(
u
d

) (
c
s

) (
t
b

)
+2/3

−1/3

R, G, B
R, G, B

The corresponding antiparticles are implicitly understood to exist as well.
Neutrinos (ν) interact only weakly, charged leptons (e−, µ−, τ−) also electromag-

netically. Quarks have a colour degree of freedom (R, G or B), thus interacting also
strongly; confinement forbids quarks to act as free particles – observable are only
colour-neutral bound states of e.g. 3 quarks (baryons) or quark-antiquark (mesons).

The observed mass eigenstates do not coincide with the doublet’s flavour eigen-
states, but are transformed by a unitary 3 × 3 mixing matrix (described by 4 non-
trivial parameters: 3 rotation angles and 1 complex phase), separately in the quark
and lepton sectors2. This allows for weak decays across generations, neutrino oscil-
lations, and violation of CP conservation.

1.2.1. Physics beyond the Standard Model

Notwithstanding its great success, the SM (including non-zero neutrino masses) is far
from being a satisfactory final theory. It has 26 free parameters (coupling constants;
vector boson, Higgs boson and fermion masses; mixing angles and phases) which can
only be determined experimentally. The nature of the neutrinos (Dirac or Majorana

2called the Cabibbo-Kobayashi-Maskawa (CKM) and Pontecorvo-Mako-Nakagawa-Sakata
(PMNS) mixing matrix, respectively.

2

1.3. Experiments in high energy particle physics

fermions?) and the origin of their tiny masses w.r.t. the other fermion masses cannot
be explained. The observed Higgs boson mass requires fine-tuning of huge quantum
corrections canceling each other (electroweak “hierarchy problem”).

Theories beyond the SM address the problems above; they also suggest ways how
to unify electroweak and strong interactions (”Grand Unification”).

Supersymmetry (SUSY) is the common name for theories predicting for each
SM fermion (boson) the existence of a partner boson (fermion), in order to solve
the hierarchy problem in a natural way. None of the superpartners have been found
so far, supposedly because they are too heavy. Thus SUSY is a broken symmetry,
the breaking mechanism being explained by competing models. The “Minimal Su-
persymmetric Standard Model” (MSSM) predicts the existence of 5 Higgs bosons.
The lightest SUSY particle, if stable as most models predict, is a candidate for
cosmological dark matter.

1.3. Experiments in high energy particle physics

In modern physics research, high energy particle physics hits at one of the most
elaborate frontiers. It is not the amount of energy itself that is of importance:
e.g. at the most powerful collider to date, the LHC [11], an individual collision is
comparable to the motion energy of a mosquito [37]. Applied to the size of subatomic
particles, however, this energy is indeed very high, and the energy densities required
can only be accomplished by large particle accelerators and colliders.

The collision energies at LHC, ILC or CLIC are of the TeV scale and open up a
window to explore the physics of the standard model (including the discovery of its
last pieces missing), and also to survey the realms beyond it. Those experiments
may answer the questions for the origin of mass (the Higgs mechanism, or some
other electroweak symmetry breaking ?), the existence of cosmological dark matter,
the matter-antimatter asymmetry in the universe, or the puzzle of extra space-time
dimensions. In essence, they explore the very fundaments of nature.

Thus, in order to study particles such as the Higgs boson (at ≈ 125 GeV)3, the top
quark (173.2±0.9 GeV [18]), or other high energy phenomena, one first must create
collisions providing enough center-of-mass energy for the underlying reactions.

This is accomplished in colliders, where charged particle beams get accelerated
to high energies and collide with each other in a small interaction spot. In order
to gain knowledge about the elementary processes one needs to reconstruct what
happened in these events. Therefore a particle collider usually has one or more large
and complex detectors, built around the interaction spot.

The data acquired from the individual sub-detectors are further processed by a
chain of event reconstruction algorithms. This includes track reconstruction, which
this thesis is about. Once an event is reconstructed, the processed data are saved

3An exact verification that the particle recently discovered at LHC [13, 1] is indeed the Higgs
boson will need a lot of further investigations, e.g. by measuring its spin and coupling strengths.

3

1. Introduction

and will be used for physics analyses: e.g. to find new particles, to determine the
properties of known ones, or to verify or falsify the predictions of theoretical models.

1.4. Particle accelerators

Particle accelerators and colliders are the largest, but also the most useful tools for
high energy physics. There are sources of more energetic particles in cosmic rays,
but only accelerators give the possibility to study high energy events in a clean
environment and at high luminosities.

Besides the center-of-mass energy, the most important characteristics of a collider
is its luminosity L, i.e. the proportional factor between the average collision rate
dN̄/dt and the total cross section σ [48, p.49],

dN̄
dt

= L · σ, N̄ = σ ·
∫
L dt

with dimension [cm−2 s−1]. Integrating over time and multiplying with a particular
production cross section gives the number of events expected for a reaction. The
higher the luminosity, the more events can be gathered; this is especially important
for low cross sections, like the production of the Higgs boson.

There are different types of particle accelerators which can be distinguished by
how they work and what they accelerate. The particles used for the beams must be
stable4: protons, electrons and their antiparticles are the most commonly used ones.
Examples are p p̄ (Tevatron in USA), p p (LHC at CERN), e−e+ (LEP at CERN,
KEKB in Japan, ILC and CLIC), e−p (HERA at DESY), and e−e−, e−γ, γ γ (ILC
options).5 Concerning the architecture of colliders, the two main types nowadays
are synchrotrons acting as storage rings, and linear colliders for one-shot collisions.

Synchrotrons (like LEP or LHC) are closed ring structures where particles get bent
into a circle by magnetic fields variated with time. By synchronizing (thus the name)
the strength of the field with the particles’ momentum they stay in orbit at a fixed
radius, and get accelerated by electric fields every time they pass through a section
with radio frequency (RF) cavities. Note that e−e+ storage rings suffer prominently
from synchrotron radiation, which must permanently be compensated for by the RF
cavities, thus effectively limiting the maximal beam energies attainable.

The most prominent example for synchrotrons at the time being is the Large
Hadron Collider (LHC). It will be mentioned throughout this thesis, because of the
large overlap of the researched physics with the ILC.

In a linear collider (like ILC or CLIC) the particles are accelerated along a straight
path, so there is no problem with synchrotron radiation. As there is only one passing
of particles through an RF section, the accelerating field gradients in the RF cavities
must be very high: ILC (with superconducting cavities) aims at 31.5 MV/m and
more [16], and CLIC (with an innovative “driver beam” technology) up to 100 MV/m

4Although there exist first ideas for a µ−µ+ ring collider.
5 The photons are created by Compton backscattering of laser radiation off an e−.

4

1.4. Particle accelerators

[36]. In order to achieve high enough one-shot luminosities, the beams must be very
intense, and must be focused onto a very small interaction spot.

The concept of RF cavities is based on the behavior of charged particles passing
through alternating electric fields. If the variation in the electric field is timed right,
the particles are accelerated. Earlier this was achieved by shooting the particles
through charged plates, which switched the sign of electric potential periodically,
granting that the particles were always repelled by the plate they just passed and
attracted to the next, resulting in acceleration. The speed of particles in high energy
physics is extremely high, at relativistic energies it comes very close to the speed of
light, and the frequencies are in the range of radio waves. For this reason nowadays
RF cavities are used. They act as microwave resonators: the metal case of a fixed
size results in standing waves with low energy loss. These standing waves are the
high frequency equivalents to the plates with switching electric potential.

1.4.1. The physics case for electron-positron colliders

At first sight, LHC as a hadron collider covers a broad mass range: up to 14 TeV
(at present 8 TeV) center-of-mass energy means a discovery potential way above
1 TeV. However, the beam energy of each proton is distributed statistically over
its 3 valence quarks, the gluon fields, and virtual quarks-antiquarks participating
in the collisions. For the fundamental reactions, on average only about 1/6 of the
nominal center-of-mass energy is available, and the actual energy participating is
unknown. Moreover, the quarks and gluons also create a large background of soft
QCD processes. This requires a powerful and sophisticated triggering of the data
acquisition, based on simulation, with the risk of missing something important but
not anticipated.

These drawbacks are not present in a lepton collider [60]. In every e−e+ collision,
the full center-of-mass energy of the two beam particles commits to the fundamental
reaction, and the sum of the energies of all created particles is known to be equal
to that.6 There is no additional background from soft QCD processes, and the
environment is very clean.

1.4.1.1. Polarization

Electron-positron colliders offer the additional possibility to polarize their beams
[44, 46, 45] (i.e. provide e− and/or e+ with a large fraction of only positive or neg-
ative helicity). At ILC, the e− beam can be polarized up to 90%; the simultaneous
polarization of the e+ beam as well would further enhance the benefits and is there-
fore an option seriously discussed [45]. The importance of polarization stems from
the fact that the helicities of the beam particles affect the cross section of different
reactions.

Consider, e.g., the annihilation e−e+ → γ /Z0 [46, p.2]. In the limit of vanishing
electron mass, angular momentum conservation (γ and Z0 are vector bosons) dic-

6 except in the presence of e− or e+ beamstrahlung, carrying away part of the energy.

5

1. Introduction

tates that this process can only happen if e− and e+ have equal spins, i.e. opposite
helicities (because of their momenta being opposite).

This can be used in many ways. We give three examples: in Higgs production,
polarizing the beams can suppress some background processes by a factor of about
two.

Polarized beams also allow to reconstruct the polarization of the particles created,
and therefore enable measuring their CP violating and CP conserving couplings
with high precision.

Also for theories beyond the Standard Model, for example SUSY, constraining the
reactions can limit backgrounds, making polarization a valuable tool. For example
in the production of scalar muons (hypothetical SUSY particles) W±-bosons are a
background to the desired events, but can be suppressed to a high level with 90%
electron polarization.

1.4.2. Lepton colliders

The advantages listed in 1.4.1 are strong arguments for a TeV scale lepton collider,
running in parallel with the LHC, in order to perform complementary precision stud-
ies of the standard model and beyond. Such a collider, with electron and positron
beams, would be built as a linear collider, in order to avoid the excessive energy loss
caused by synchrotron radiation in a storage ring.

1.4.2.1. Synchrotron radiation

A particle of mass m and elementary charge, circulating at energy E in an orbit
of radius R, will constantly lose energy via electromagnetic radiation because of its
centripetal acceleration. For one revolution, this amounts to [48, p.363]

−∆E =
4πα~c

3R
β3γ4, γ ≡ 1√

1− β2
=

E

mc2
(1.1)

with Sommerfeld’s constant α ≈ 1/137, ~c ≈ 0.2 × 10−15 GeVm, and β ≡ v/c ≈ 1 at
relativistic energies. It gets impossible to further accelerate particles if the energy
gained in the RF cavities is equal to that lost by synchrotron radiation. The energy
loss per time is given, with the circulation frequency νcirc, by

d∆E

dt
= ∆E · νcirc ∝

1

R2

(
E

m

)4

, νcirc =
βc

2πR
(1.2)

The total power required for keeping the beams orbiting at constant energy is
given by multiplying d∆E/dt with the number of particles stored in both beams,
divided by the operating efficiency of the RF cavities (which can be increased by
optimizing their geometric layout and by the use of superconducting material).

6

1.4. Particle accelerators

The principal design parameters of a circular collider are its radius7 R, the mass
m of the beam particles, and the maximum energy E to be attained. For energies
in the TeV range, let’s discuss radius and beam particle mass:

The largest circular collider so far was LEP [47], with electron and positron beams
up to 104.5 GeV orbiting in a ring of 26.7 km circumference (housed in the very same
tunnel where now LHC is); its power consumption was roughly up to 30 MW. A
similar collider for 500 GeV beams would need a circumference of more than 600 km
[12]. Since the radius is a principal cost driver in the construction, this makes a
circular electron-positron collider unfeasible for energies significantly higher than at
LEP.

Synchrotron radiation decreases by the fourth power of the mass. If one wants
to keep the advantage of colliding point-like leptons, an alternative would be to
replace e−e+ by µ−µ+. Since muons are ≈ 207 times heavier [10], the synchrotron
radiation would be more than 9 orders of magnitude less at same radius and energy.
First ideas exist for such a muon collider [14], but a lot of R&D will be needed in
order to overcome the main obstacle, the muon’s instability: its mean lifetime of
2.2 µs, albeit dilated by the Lorentz factor γ in the lab frame, poses still a very big
challenge.

LHC has the same circumference as LEP, but is colliding protons (1836 times
heavier than electrons). Its synchrotron radiation is negligible, even at beam energies
of 7 TeV. However, it has the disadvantages of a hadron collider mentioned in 1.4.1.

1.4.2.2. Linear colliders

At present, the only feasible choice for colliding leptons at the TeV scale is a linear
electron-positron collider, composed of two opposite accelerators for e− and e+, thus
completely avoiding energy loss by synchrotron radiation.

The price to pay is missing one advantage of synchrotron storage rings: there, the
orbiting particles pass the RF cavities with every revolution and gain their energy
step by step. In a linear accelerator the particles are shot only once from the start to
the interaction point, thus all the energy has to be gained along one straight path.
In order to attain a center-of-mass energy

√
s in the TeV range, a linear collider

with current technology would necessarily be several 10 km long.

Two projects exist for a TeV scale linear electron-positron collider. The Interna-
tional Linear Collider (ILC) [16] is based on mature technology of superconducting
RF cavities to achieve

√
s up to 1 TeV. The Compact Linear Collider (CLIC) [36],

on the other hand, is based on an innovative but less advanced technology with RF
cavities powered by a ”driver beam”, to achieve

√
s up to 3 TeV.

Both projects are backed by the international community, with cooperation in
fields granting synergy. Which one might eventually be realized depends on relevant
results from LHC, hinting on physics beyond the standard model either below or
above 1 TeV, thus favoring ILC or CLIC, respectively. However, most of the detector

7in reality the orbit is not a perfect circle, so an effective R = circumference/2π is taken.

7

1. Introduction

concepts and reconstruction software is useful for both.

1.4.3. The International Linear Collider (ILC)

ILC [16] is a linear electron-positron collider with superconducting RF cavities, oper-
ating at 1.3 GHz and attaining field gradients of 31.5 MV/m8; higher field gradients
well above 40 MV/m are expected to be achievable for the second stage.

The first stage aims at a center-of-mass energy adjustable for precision scans in
the range

√
s = 0.2 . . . 0.5 TeV, allowing for a Z0, Higgs and tt̄ factory. The second

stage will upgrade to
√
s = 1 TeV; the total length of ILC is 31 km.

The accelerated particles are grouped into so-called bunches, particles grouped
together moving parallel through the RF cavities. The bunches themselves are
grouped as well to so-called bunch trains wherein the single bunches are separated
by a few hundred nanoseconds. A whole bunchtrain has the length of 1 ms, so it
contains thousands of bunches. Bunch trains are emitted in a frequency of 5 Hz.

Design luminosity is L = 2 · 1034 cm−2 s−1. Electron polarization ≥ 80 % and
optional positron polarization are further assets.

Another option is using ILC for e−e−, e−γ and γγ collisions (with γ created by
Compton backscattering of laser radiation off an e−).

Figure 1.1.: A schematic layout of the International Linear Collider

Two detector concepts have been validated to operate at ILC: the International
Large Detector (ILD) with a TPC + Si tracker; and the Silicon Detector (SiD) with
an all-Si tracker. Both concepts make use of particle flow calorimetry.

In order to save costs, only one beam interaction zone will be available. Since only
one detector at a time can reside there and take data, a push-pull system must be
used: the detectors are attached to a rail system and can be moved in and out for
being replaced with each other. Afterwards a careful re-alignment of the detector
new in place has to be done; thus the push-pull system is not without a cost.

8the same as used for the free electron X-ray laser XFEL at DESY.

8

1.5. Particle detectors

1.4.4. The Compact Linear Collider (CLIC)

CLIC [36] is an alternative linear electron-positron collider with normal RF cavities,
operating at 12 GHz and attaining very high field gradients of 100 MV/m; this is
achieved by power transfer from a parallel high-current ”driver beam”.

Center-of-mass energies are
√
s = 1, 2 and 3 TeV, to be achieved in 3 stages;

thanks to the high field gradients, the total length is only 48.3 km.
The design luminosity at 3 TeV is L = 6 · 1034 cm−2 s−1.
CLIC has many common points with ILC, but different parameters, among them

the beam bunch structure. The higher energy causes much more beam-induced
background of e−e+ pairs.

There will also be a push-pull system for two detectors. The two CLIC detector
concepts are variants of those for ILC, called CLIC ILD and CLIC SiD [36, Volume
3]. Cooperation exists with the ILC detector hardware and software groups.

1.5. Particle detectors

At the heart of every high energy physics experiment are the particle detectors,
which measure the trajectories, the energies and other characteristics of the particles
emerging from a collision event. It usually consists, from inside outwards, of

� Tracking system:

Detectors that are able to measure the trajectories of charged particles by their
impacts on position-sensitive layers, consisting of some solid (mostly silicon)
or gaseous material which gets ionized by the passage of a charged particle.
Several layers have to be used in order for a pattern recognition to be able
to match the corresponding impact points and find the common tracks that
caused them.

A special part of a tracker is the Vertex Detector, consisting of high-
resolution layers close around the beam tube, for a precise position measure-
ment.

The tracks found are reconstructed by statistically estimating their parameters
(position, direction, momentum, charge), based on an appropriate track model
(helix in case of a homogeneous magnetic field) and taking care of material
effects (e.g. multiple Coulomb scattering off nuclei). Some detectors like time
projection chambers (TPC) also allow a good measurement of the energy loss
dE/dx, which gives additional input to the identification of the type of the
particles.

The reconstructed tracks may further be combined to common vertices, and
subjected to kinematic fitting (applying energy-momentum constraints).

The momentum resolution of a tracker is very much dependent on its lay-
out. For the transversal component w.r.t. a magnetic field, it is usually

9

1. Introduction

parametrized as ∆pT/pT =
√

(a · pT)2 + b2. Analytic formulas exist for calcu-
lating simple cases [27, 50], but in general one has to rely on a Monte Carlo
simulation. A fast simulation tool like LiCtoy [51] is useful for an early opti-
mization.

� Calorimeters:

Detectors which measure the overall energy of particles by stopping them
completely, i.e. forcing them to release all their energy. It consists of cells of
crude or fine granularity, allowing some position measurement. Also neutral
particles, which are invisible to the tracking system, get observed. Two types
of calorimeters are usually used in high energy physics: electromagnetic and
hadronic.

In an electromagnetic calorimeter (ECAL), electrons, positrons and photons
are stopped. In the dense material develops a shower of particles: e.g. electrons
undergo bremsstrahlung and lose energy by emitting photons; these photons
can create electron-positron pairs, and so on. The particles of the shower can
then be detected, e.g. with a scintillation detector.

A hadronic calorimeter (HCAL) is usually placed behind the electromagnetic
one. It works with the same concept as the electromagnetic calorimeter, but
the particles will mainly interact via the strong interaction.

The energy resolution of a calorimeter is parametrized as ∆E/E = x/
√
E. It

is worse for hadronic calorimeters than for electromagnetic ones, and both
are worse than the resolution of a well-designed tracker for momenta up to
several 10 GeV. A modern approach for increasing the energy resolution is
particle flow analysis (PFA) [57], which requires very fine-grained calorimeters
in order to efficiently match with all charged tracks; for those only the tracker
measurements are used, i.e. the calorimeters measure only the unmatched
neutral tracks.

� Solenoid magnet:

To produce a quasi homogeneous magnetic field parallel to the beam tube. In
such a field charged particles move on a helix trajectory which allows an easy
track model for the reconstruction. It is also important for a TPC.

� Muon detection system:

Muons of high energies are able to traverse through all the before mentioned
detectors. Adding a muon detection system on the outside of the detector
allows to measure their trajectories, helps with their identification, and some-
times also catches the tails of particle showers created in the calorimeters.

Two detectors following this typical layout are the Silicon Detector (SiD) and the
International Large Detector (ILD), that will both operate at the ILC.

10

1.5. Particle detectors

1.5.1. The Silicon Detector (SiD) at ILC

The main difference of SiD [6] w.r.t. ILD (see 1.5.2) is its tracking system which is
based only on silicon detectors, and its strong solenoid field of 5 T.

1.5.2. The International Large Detector (ILD) at ILC

The ILD detector [28] has, in contrast to SiD (see 1.5.1), a heterogeneous tracking
system, consisting of a large time projection chamber (TPC) together with a silicon
tracker. Its solenoid field is 3.5 T, upgradeable to 4 T when running at

√
s = 1 TeV.

Figure 1.2.: Schematic view of ILD Figure 1.3.: Inner tracking part of ILD

The ILD detector aims at transverse momentum and jet energy resolutions (see
1.5) of a < 2 · 10−5/GeV, b < 10−3 (about 1 order of magnitude better than for
LHC detectors), and x < 30%

√
GeV [28]. This can be be achieved by an excellent

tracking system (see below), and a calorimetry system based on PFA.

1.5.2.1. The tracking system of ILD

Tracking in ILD is accomplished by a combination of a central large time projection
chamber (TPC) and several silicon detectors, the inner ones as seen in Figure 1.3.

The main track reconstruction is accomplished by the TPC, which consists of
about 200 pad-rows, giving its main asset: a lot of space point hits per track. The
TPC covers the whole barrel region, and therefore can measure most tracks with
polar angles in the range 11.5◦ < θ < 168.5◦ (at least 10 pad-rows hits). How-
ever, because of its relatively slow readout, the TPC is not able to deliver absolute
longitudinal (z) values for the measured space points; therefore it is necessary to
extrapolate and match the tracks reconstructed in the TPC to hits of fast detectors
inside and outside the TPC.

For this task the Silicon Inner Tracker (SIT) and the Silicon External Tracker
(SET) are used. Both are “false” double-sided silicon strip detectors consisting of

11

1. Introduction

2 layers and 1 layer, respectively. Thus each track traversing SIT, TPC and SET
gives 3 additional space points which the reconstructed TPC track can be matched
with.

Further inside, close around the beam tube, is the Vertex Detector (VTX). It
is a silicon pixel detector for high precision measurements close to the interaction
point. This contributes to the high impact parameter resolution necessary for the
reconstruction of the decay vertices of short-lived particles, like b hadrons and the
τ lepton.

The VTX–SIT–TPC–SET cover the barrel region as defined above. However,
tracks with a polar angle θ closer to the beam axis z should be detected and recon-
structed as well. This is accomplished by the Forward Tracking Detector (FTD),
consisting of 2 × 7 layers of silicon disks placed perpendicular to the z axis, thus
covering the so-called forward region between the conical shaped beam tube9 and
the inner wall of the TPC. Since this thesis is about track reconstruction in this
region, a bit more information about FTD is provided in the next section below.

1.5.2.2. The Forward Tracking Detector (FTD) of ILD

Figure 1.4.: Cut view of the inner tracking part of ILD

Figure 1.4 shows the Forward Tracking Detector. It consists of 2 halves, each
with 7 disks in the forward or backward direction, respectively. The two inner disks
are silicon pixel detectors, and the 5 outer ones are “false” double-sided silicon strip
detectors. These disks are constructed of so-called petals of trapezoidal shape. The
Si sensors on the petals need frames. In a simple approach, there would be non-
sensitive material between them where tracks could escape detection. In order to
avoid this, the petals are made bigger, overlapping a bit, while staggered forth and
back. This also leads to a small overlap of sensitive parts, which means additional
space points for tracks passing through these areas of the sensors.

The exact characteristics are still an open issue, as the technologies are advancing
fast, and some better solution might be available once the construction of ILD is

9the beam-induced background of e−e+ pairs is produced mainly in the forward directions.

12

1.5. Particle detectors

about to start. This is especially true for the pixel detectors.
For the strip detectors each petal will most likely have two sensors on the front

and two on the back, oriented with a stereo angle between them, such that the
combination of the strips gives space points (details see below). In order to suppress
artificial combinations (so-called ghost hits), the stereo angle of the strips will be
chosen shallow (e.g. at 5◦), thus most ghost hits being pushed out of the sensitive
areas.

For a stand-alone track reconstruction the FTD is able to cover a region from the
beam tube at θ ' 5◦ up to θ ' 23◦, i.e. covering the ranges 5◦ < θ < 23◦ and 157◦ <
θ < 175◦. This is the region where quasi straight tracks can cause 4 hits or more.

At θ > 23◦ or θ < 157◦ some FTD disks are still hit, but only 2 or 3 hits are not
enough for a decent stand-alone track reconstruction. Yet these single FTD hits can
be used in combination with the TPC (tracks in that region are well reconstructed
there), by matching and adding them to an extrapolated TPC track. Such an update
is actually performed by the FullLDCTracking processor.

1.5.2.3. Pixel and strip detectors

Silicon detectors [9] are essentially doted silicon plus an electric potential together
with read-out electronics. A simple version could consist of the main sensitive area
consisting of n-doted silicon10; a positive potential is applied on the side opposite of
the read-out electronics; and the read-out is connected to p-doted silicon. So when
a charged particle traverses the bulk of the n-doted silicon it causes electron-hole
pairs. Due to the electric potential the electrons will travel away from, and the holes
will travel towards, the p-doted areas connected to the read-out. There they cause
an electric current, which is collected by the electronics.

Strip detectors
These are a special version of this concept, where the p-doted silicon areas are

in the form of stripes. The read-out is then simply connected to the ends of the
stripes. Such a detector can be used for 1-dimensional measurements: Imagine a
strip sensor in the x-y plane, perpendicular to the z axis at a known z coordinate,
with the strips pointing into the x direction. When a hit occurred, the measurement
gives a y coordinate (with a value usually achieved by looking for the center of the
charge distribution collected from adjacent strips). An x coordinate cannot be
determined (other than its value being somewhere between the beginning and the
end of the strips). The measurement results in exactly one equation relating y and
z, providing one dimension of measurement.

Complete space points (2-dimensional measurements) can be achieved by a double-
sided strip detector: mounting at the bottom of a normal strip sensor a second set
of stripes perpendicular to the first ones, i.e. pointing into the y direction. Be-
cause this has some technical difficulties, often a “false” double-sided strip detector

10The vice-versa kind of detector (p-doted bulk material with n-doted electrodes) works as well;
but for historical and technical reasons is far less common.

13

1. Introduction

is used, i.e. two single-sided strip sensors just attached back to back. In both cases,
the bottom side provides an additional measurement of the x coordinate. Thus one
has measured values for x and y, together with a known value for z, i.e. a space
point, as wanted for track reconstruction.

There is however a downside to this technology: artificial ghost hits. See Fig-
ure 1.5: whereas a single hit on the sensor causes the creation of one corresponding
space point, 2 hits already cause an additional 2 ghost hits, i.e. space points which
are created from the occupied strips but have no real meaning. In such a setup, for
n true hits, n2 space points are created, where n · (n− 1) are ghosts. In case of high
occupancies this means a drastic combinatorial explosion of space points, making
track reconstruction a much harder task.

(a) 1 hit (b) 2 hits

Figure 1.5.: 1 and 2 hits on a “false” double-sided silicon sensor

This can be avoided by using stripes which are not perpendicular, but at an angle
α < 90◦ oriented with each other. Such a shallow stereo angle will push most of the
ghost hits over the physical boarder of the sensor, thus giving an easy method to
identify them, since real hits must necessarily lie within (see Figure 1.6). However,
one can only reduce the number of ghost hits, not get entirely rid of them.

Note that a shallow stereo angle also deteriorates the spatial resolution in one
direction, while improving it in the perpendicular one.

Figure 1.6.: 2 hits on a ”false” double-sided sensor with a small stereo angle, ghost
hits are pushed off the sensor

14

1.5. Particle detectors

Pixel detectors
These are a detector type completely avoiding the ghost hit problem. Instead of

using stripes where only the pitch width is contributing to the precision measure-
ment, a pixel detector uses square or rectangular electrodes, thus measuring directly
two coordinates (x and y); together with the known z, this yields a space point.

The read-out, however, which is rather easy for strip sensors (simply attached
at the ends of the stripes), becomes considerably difficult for pixel sensors. The
question is, how to connect the pixels with the read-out electronics?

There are a few possible solutions, each with some drawbacks:

� Placing the read-out directly on top of the pixels will increase the material
budget, leading to more multiple Coulomb scattering and worse track resolu-
tion;

� Integrating the read-out into the sensor itself will require more space needed
for the pixels, leading dirctly to worse spatial resolution of the sensor;

� “Clocking through” the signal to the end of the sensor will need a lot more
time for the read-out, leading to event pile-up in case of high luminosities.

For the FTD pixel disks, currently the clocking through method is envisioned. The
long read-out time frame means integration over the signals from multiple bunch
crossings, causing a pile-up of hits from many events (in the order of 100).

In conclusion, both pixel and strip technology have their advantages and disad-
vantages. FTD will use a combination of both. The two inner disks will be pixels
the outer five “false” double-sided strip detectors. Since the artificial hits from the 5
outer disks (ghost hits) and the additional hits from the inner disks (hits integrated
from other events) are uncorrelated and won’t match except by chance, wrong tracks
can be easier discarded by this strategy of using both technologies.

1.5.3. The ILD software framework

When building the software framework for an experiment, it is crucial to make
sure that the simulation of data needed to test and optimize the detector, and the
reconstruction software to analyze these data, are well separated. Since ILD [28] is
still in an R&D phase, all data must be generated by Monte Carlo simulation.

1.5.3.1. The chain of simulation and analysis

The stages from simulation to analysis can roughly be described as follows [24]:

1. Event generation
Simulates the underlying physics of standard model and/or beyond. Events
are generated by a package of choice, from simple to sophisticated ones such as
Whizard [31]. Output are the kinematic parameters of the created particles,

15

1. Introduction

and possibly also short-lived decays within the beam tube (mainly c and b
hadrons and τ leptons). A common de-facto standard output format is stdhep
[26].

2. Detector simulation
Simulates as realistic as possible the passage of the particles through the de-
tector, including the decays of long-lived particles (Ko

s and Λo). It simulates
material effects like multiple Coulomb scattering and energy loss, and also cre-
ates the hits in track-sensitive detector layers. For this it relies on a detailed
detector description. ILD’s simulation framework is Mokka (for practical rea-
sons, simulation of the digitized responses to the hits is relegated to the next
step).

3. Event reconstruction
This is the point where real data will eventually start to be processed. Re-
construction of an event includes track reconstruction (i.e. track search and
fit), vertex reconstruction, and possibly kinematic fitting. Part of the detector
description is needed as well. ILD’s reconstruction framework is Marlin.

4. Physics analysis
From here the events are investigated as a sample, in order to extract the
relevant information for studying the physics reactions of interest.

1.5.3.2. The simulation package Mokka and GEANT4

Mokka is a framework to simulate the passage of particles through a realistic virtual
version of the ILD [28, p.7]. It is based on the general-purpose toolkit GEANT4 [5],
and written in C++. The different detectors can be individually programmed as
separate “drivers”, giving the possibility to compare different set-ups of the ILD. The
details needed to describe the single detectors are stored in a MySQL database, thus
are easily accessible and changeable. Provided with a stdhep input file created by
some event generator, it tracks the particles through the whole detector, realistically
simulating diverse physics effects like radiation, scattering, decay etc. It also creates
the hits in the track-sensitive detectors, and saves the results in LCIO format [23].

1.5.3.3. The detector geometry description toolkit Gear

Another Mokka output, besides the LCIO file, is the detector geometry description
file Gear (Geometry API for Reconstruction) [25]. This is a file with geometry
information about the detector, essentially an extract of the MySQL file, containing
only the information that is needed for reconstruction. It is an xml file, written
in a human readable form, giving the possibility for looking at the most important
detector parameters, or to change them by hand for debugging.

16

1.5. Particle detectors

1.5.3.4. The reconstruction framework Marlin

Marlin (Modular Analysis and Reconstruction for a Linear Collider) [28, p.7] [24] is
the modular framework where the reconstruction of events of the ILD is performed.
It is written in C++ and follows a modular design: the different tasks such as
digitization, track and vertex reconstruction, calorimetry and particle flow, etc. are
each separated into different modules, called “processors”. Marlin is run with a
steering file in human readable xml format, which tells Marlin when and how to run
each processor. This approach allows easy change of processors and/or parameters,
making it possible to compare different algorithms and to fine-tune the parameters.
It also makes adding new software considerably easier, as one can work within
a processor without too much interfering with others. All data passed between
processors is via LCIO objects stored in the event. The final results are normally
also stored in LCIO format.

1.5.3.5. The persistency framework LCIO

LCIO [23] is a data model covering all the classes that are needed to describe an
event, like hits, tracks, vertices, clusters etc. It is used from simulation to analysis,
thus guaranteeing consistent persistency without information loss. LCIO is also an
external file format, used by Mokka to save the fully simulated events, and by Marlin

to save the reconstructed events for a subsequent physics analysis.

17

2. Algorithms of event
reconstruction

The events created in high energy physics result in measurable signals in differ-
ent detectors. Event reconstruction deals with finding the causes of these signals,
i.e. with gaining as much knowledge about the underlying events as possible. In
the chain of simulation and analysis (see Subsection 1.5.3) this is the last step be-
fore the physics analysis can start. The ultimate goal of reconstruction is finding
the particles, e.g. their identity, path, momentum, energy and production vertex.
The reconstruction can be separated into distinct tasks, each dealing with different
detector hardwares and reconstruction algorithms [21].

2.1. Areas in event reconstruction

In order to reconstruct an entire event, information from different areas of recon-
struction have to be combined. These areas include: track and vertex reconstruction,
muon tracking (tracking done in the muon detectors), calorimetry (determination of
particle energy and maybe some tracking), particle jet reconstruction, time-of-flight
measurements and particle identification. Here track reconstruction is discussed and
then a short introduction to vertexing and particle identification is given, as both
have some overlap with tracking and can use its information.

2.1.1. Track reconstruction

Track reconstruction is the task of finding the trajectories of charged particles in
the detector and to estimate the parameters of these tracks. A good introduction to
the topic is given in [35] (about the hardware) and in [55] (about the algorithms).
Finding the path of a particle through the different sub-detectors is important for
two reasons. First, it enables the calculation of the kinematic parameters of the
particle at the point where it was created, the vertex, helping to reconstruct the
underlying physics of the event.

Second, the trajectories can be used to link different sub-detectors, which is a
principle typical for most modern detectors. In the ILD detector (see Figure 2.1) for
example the Time Projection Chamber (TPC) is responsible for the central tracking.
To the inside the tracks from the TPC can be linked to the vertex detector, giving
precise measurements close to the vertex. Also the tracks can then be linked to the
calorimeters on the outside, which measure the energy of the particle. There the

19

2. Algorithms of event reconstruction

information from the reconstructed tracks can help to improve the reconstruction
in the calorimeters. The approach of using information from reconstructed tracks
for the calorimetry is called “particle flow” [57] and is a fixed part in the event
reconstruction for the ILD detector. Its main benefit is a better jet energy resolution.

Figure 2.1.: The TPC is surrounded by other detectors on the in- and outside:
tracking is needed to link the signals in those detectors.

The tracks can most easily be reconstructed and extrapolated if they are not
disturbed by material. For this reason tracking detectors are usually built with a
material budget as low as possible1 [35]. If there were no material effects and the
magnetic field would be perfectly homogeneous, the charged particles would move
on helical trajectories with an axis parallel to the z-axis [7]. Such a helix can be
described by 5 parameters for a given reference point. For the ILD detector (more
specific LCIO) the helix is described by the parameters Ω, φ0, d0, z0 and tanλ. d0

for example is the distance of the helix to the reference point in the x-y plane. For
details and definitions see [34].

The interaction with the detector material causes the helices to change along the
track, making it necessary for reconstruction to take into account that the helix
parameters can change. The goal is to reconstruct the path and estimate the pa-
rameters along the whole track of the particle in the detector. This information can
later be used for vertex or particle identity reconstruction.

Track reconstruction can be subdivided into separate steps. These steps vary
however with the used algorithms; they can be further subdivided or intertwined. A

1An upside of the material effects is that they can be used to determine the identity of particles,
as they differ in the energy loss they have when traversing through material.

20

2.1. Areas in event reconstruction

relatively basic classification, as is used in this document, consists of three distinct
steps:

� At first the the hits are combined to track candidates by track finding.

� Track fitting then calculates the parameters of the track candidates.

� Finally ambiguity resolving makes sure that the final set of tracks is con-
sistent.

The same classifications can also be made for vertex reconstruction. The first
two steps are also known as pattern recognition and parameter estimation in more
general terms.

2.1.1.1. Track finding

Track finding means to group the hits from the sensors together that belong to the
same true track. There are mainly two errors that can happen, when reconstructing
a track (or any other general pattern): One can fail to find some or all tracks, thus
losing important information. And one can reconstruct tracks that do not exist,
i.e. are combinatorial background. These two errors are measured by the quantities
called efficiency and ghost rate [41]:

efficiency =
true tracks found

all true tracks to be found
(2.1)

ghost rate =
false tracks found

all found tracks
(2.2)

Both are percentages ranging from 0 to 1. It is obvious that a low ghost rate (0)
and a high efficiency (1) are desired. In order to calculate these values it is necessary
to define what qualifies a pattern as “found” and what is considered a ghost. A track
is said to be found if there is a reconstructed track that can be linked to it, which
usually means that the majority of hits in the reconstructed track come from the
true track. There can be, however, further constraints. For example a reconstructed
track could contain all hits of a true track, but have additional contamination by
signals not belonging to the original. The problem with contamination is that during
the step of parameter estimation wrong hits can cause wrong track parameter results.
Outliers, i.e. hits that either do not belong to the true track or are highly distorted
by noise, must be dealt with carefully. So called robust methods used in fitting can
do outlier removal to a certain degree, nonetheless track finding is desired to deliver
tracks as pure as possible.

A track could also contain only hits from a single true track, but miss some of its
true hits. As reconstructing the full tracks gives higher accuracy, complete tracks
are ideal, but in general the track parameters can also be determined from shorter
track segments.

21

2. Algorithms of event reconstruction

Alternatively to determining “found” tracks by their purity and completeness, it
is possible to use the parameters of the reconstructed tracks for mapping (see [41, p.
569]. If the parameters of a reconstructed track are close enough to those of a true
track, the true track is considered to be found. Throughout this document the first
method will be used, where reconstructed tracks are mapped to true tracks based
on the hits.

It is also important to specify what is meant by “all true tracks to be found”. As
a measure of quality an efficiency of 1 should mean that everything one wanted to
find got reconstructed. There are however tracks that are either not necessary to
reconstruct (because they come from background signals or are uninteresting for the
further analysis) or cannot be reconstructed. An example for latter ones are tracks
with a highly irregular behavior, such as having strong kinks from multiple scatter-
ing. If there is only a small number of hits per track, kinks are nearly impossible to
find2.

It is important to always give the definitions of what tracks are to be found and
when they count as found together with the actual numbers, when talking about
efficiency or ghost rates.

There are more quality criteria for pattern recognition, for instance the clone rate
and parameter resolution (also see [41]). A clone is a track reconstructed multiple
times, i.e. when multiple reconstructed tracks can be associated with a single true
track. As none of the compared algorithms in Chapter 5 allows for clones in the final
collections, the clone rate is a minor concern here. For example, in the packages
written by the author, the clones will get sorted out by the Hopfield neural network
at the end. Parameter resolution is a term for the residuals of the reconstructed
parameters Ptrue − Preco and is an important value, but is mainly dependent on the
hardware attributes and not the pattern recognition algorithms.

Track finding algorithms can be subdivided into 3 different general approaches as
in [17], where other sources only use the first two categories [41]:

� Global: Has its name from taking into account all hits simultaneously. The
tracks can be described by a set of parameters (e.g. helix parameters). These
span the parameter space, in which every track is a single point. As mea-
surements (i.e. hits) constitute equations limiting the possible parameters of
a corresponding track, they can be mapped into this space.

The Hough transformation for circular tracks can serve as an example. This
is of relevance, because the helices in a homogeneous magnetic field are circles
in the projection onto the x-y plane. A circular tracks in two dimensions can
be described by 3 parameters: the coordinates of its center (x0, y0) and the
radius (R). The circle equation is:

R2 = (x− x0)2 + (y − y0)2 (2.3)

2For tracks with more hits, kinks can be identified by having two tracks with the same momentum
and charge meeting at one place, which suggests that at this place the track underwent a high
multiple scattering that changed the direction but not the magnitude of the momentum.

22

2.1. Areas in event reconstruction

A hit on the circle gives a value for x and y. For every hit one gets an equation
(2.3 with fixed x and y) with 3 unknowns (R, x0, y0). The equation is therefore
under-determined by two degrees of freedom: there is an infinite number of
circles that could go through one single hit. But the equation still serves as
a restriction on the possible circles. In the parameter space (R, x0, y0) this
equation is a surface: every point on the surface corresponds to one allowed
circle through the hit. If multiple hits lie on the same track, the surfaces in
parameter space will intersect in the point corresponding to the parameters
of the circle. To find those intersection one usually histograms the parameter
space, i.e. subdivides it into small boxes and counts the number of surfaces
crossing through. The maxima, i.e. the boxes with local highest occupation
numbers correspond to tracks.

The various global algorithms use different parameter spaces and different
methods of finding these maxima. Examples are: template matching [41],
fuzzy Radon transformation [41] and Hough transformation [41, 55].

� Local: These methods take hits into account one at a time and build the track
candidates by adding hit after hit. They start from so called track seeds3, short
segments of tracks that allow to extrapolate the track with a track model. Via
extrapolation to other measurement sites hits are picked up if they pass a
certain quality criterion, i.e. fit to the track. The algorithms available differ
in the various steps: in the quality criteria applied (distance, χ2 increase), the
track models, the extrapolation algorithms (Kalman filter, helix fit) and the
seeding techniques (track road, track following).

� Semi-Global: These algorithms treat all hits at the same time, but are based
on local seeds. The system then consists of interlinked track seeds, which all
interact locally, but are processed at the same time. An example is the cellular
automaton [17].

2.1.1.2. Track fitting

Once the track finding is finished and hits supposedly belonging to the different
tracks are identified, the properties of the tracks need to be determined. This
procedure is based on a track model, which defines the free parameters of a track.
For a setup with a homogeneous magnetic field this for example is a helical track,
which can be described by 5 parameters.

In the fit, parameters are searched that result in a track that best explains the
measured hits. The hits as created by the digitizers are not a perfect representation
of the true place of impact of the particles on the sensors because of noise in the
hardware and the algorithms determining the place of the hit. This means that there

3Although sources differ about whether distant hits are seeds. For example [55] considers the
starting hits in the track road algorithm not to be seeds, while [41] does not require close
distance for track seeds.

23

2. Algorithms of event reconstruction

usually is not a single parameter set where all hits are perfectly on the track, but
rather one has to find the values of the parameters where the hits come as close as
possible to the resulting fitted track. As mentioned in [55]: “the estimation amounts
to some kind of statistical procedure”. A typical one is to minimize the χ2-value as
will be described in Subsection 2.3.2.

From the stochastic uncertainties of the hit positions follows an uncertainty in the
track parameters, which is also calculated by the fitting algorithm and is expressed
by a covariance matrix.

The separation of track fitting from track finding is an artificial one as both can be
mixed together. Track finding procedures can already do a first estimate of the track
parameters or even do the final fitting. Track following methods that implement the
Kalman filter for example not only deliver a track when finished but also the track
parameters4. In this case it might make more sense to distinguish between the steps
“seed finding” and “track finding + fitting”.

2.1.1.3. Ambiguity resolving

After track finding and fitting are done, one is left with a collection of tracks that
all seem to fulfill the track hypothesis. It may however be that some of them are
not compatible, i.e. share hits.

In principle it is possible that two different tracks cross each other exactly at
a detector surface and create a hit that belongs to both of them. It is however
extremely rare. On the other hand, the reconstruction algorithms work from the
hits and ghost tracks that get created by them can also contain hits of true tracks.
For example, a reconstructed track could consist of 4 background hits and two hits
belonging to two different real track. This track will then be incompatible with
those two real tracks. This makes it very likely that any incompatibilities are due to
ghost tracks and should be removed. It is however not necessarily crucial to resolve
this during track finding, as additional information at a later stage, for instance
from the calorimeters can help to further distinguish between true and ghost tracks.
On the other hand, particle flow algorithms need the reconstructed tracks for better
pattern recognition in the calorimeters. Maybe the best approach would be if the
different stages of reconstruction could communicate and iterate on a final solution
step by step. Implementing this would, however, probably be a non-trivial task.

In order to resolve incompatible track situations different algorithms can be used.
First the goal needs to be defined: One wants a subset of the tracks that is in itself
completely compatible and maximizes some sort of quality. The quality could for
example be the sum of the χ2-probabilities or the mean χ2-probability.

The maybe simplest method one could come up with is this easy and fast algo-
rithm:

1. Find the track with the highest quality

4Although it usually is still necessary to use the smoothing method of the Kalman filter after the
track is found in order to get the best estimate at all measurement sites.

24

2.1. Areas in event reconstruction

2. Erase all tracks that are incompatible with it

3. Remove the track from the collection and put it in the final collection

4. Repeat until the collection is empty

The downsides are that there is no quality criterion that would separate true
tracks from background completely and that this algorithm allows a single track to
discard many incompatible tracks, while keeping as many tracks as possible seems
favorable. One could say that if the sum of the single tracks qualities is to be
maximized, this algorithm is suboptimal in such situations. An alternative is the
Hopfield Neural Network, which will be discussed in Subsection 2.3.3.

2.1.2. Particle identification (PID)

The determination of the particle identities is an important task, as it allows classifi-
cation of the events. This is especially needed for event selection in physics analysis
where only specific interactions are of importance.

In this context it is helpful that only a handful of particles live long enough to
reach the different detectors in a typical high energy physics experiment: Electrons,
muons, neutrons, protons, kaons, pions, photons and their antiparticles (if they have
one) can be detected. Neutrinos are also long-lived enough, but cannot be detected
by the usual kinds of detectors.

The subdetectors used in the ILD detector are fairly typical w.r.t the general
areas of measurement5: from inside to outside there is tracking, electromagnetic
calorimetry (ECAL), hadronic calorimetry (HCAL) and muon detection.

The distinction between the particles can partly be done by using their different
interactions with the subdetectors [40]:

� Photons do not interact with the tracking detectors and create a shower in
the electromagnetic calorimeter.

� Electrons and positrons are measured in the tracking part and are stopped
by the ECAL.

� Muons and antimuons leave traces in all subdetectors.

� Protons, antiprotons, charged kaons and pions interact mainly with the
tracking detectors, ECAL and HCAL.

� Neutrons and K0
L are detectable by the ECAL and the HCAL. The largest

part of the energy is deposited in the HCAL [40].

� Neutrinos and antineutrinos cannot be seen by any of those detectors.

5For example the same ones are found in this order in CMS and ATLAS

25

2. Algorithms of event reconstruction

Additional knowledge comes from the tracking: the sign of the helix in the mag-
netic field is determined by the charge of the particle, so one can distinguish particles
and antiparticles.

Another important source of information is the mass of the particles. From track-
ing the momenta of the charged particles are known. Via E2 = m2c4 + p2c2 the
mass can be determined after measuring the energy in the calorimeters. All these
particles have sufficiently different mass, making it easy to distinguish them, except
that the masses of muons and pions (mµ(105.66MeV) ' mπ(139.57MeV)) are of
the same order. But the latter can be distinguished using the fact that mainly only
the muons reach the muon detector and that they do not cause particle showers in
the calorimeters like pions.

Neutrinos can only be reconstructed indirectly. In an electron-positron collider
the energy and momenta are well known. So when the reactions at the primary and
secondary vertices are reconstructed one can compute the energy of the neutrinos
taking part by using energy and momentum conservation.

2.1.3. Vertex reconstruction

The vertices, i.e. the places where particles are produced, are where the interesting
physics processes happen.

Usually primary and secondary vertices are distinguished [21]:

� The primary vertex is the first vertex in an event. At the interaction point two
particles collide (or a particle with a fixed target) and create new particles.

� Secondary vertices are simply all others. Particles created by the primary
or another secondary vertex can decay (e.g. B-Mesons will decay into other
particles shortly after creation) or interact with detector material.

Vertices are found by extrapolating the tracks of different found particles to a
common point in space and possibly time. But as there can be many vertices in one
event, one has to first determine which tracks belong to the same vertex. As in track
finding, there are many different methods that can be applied, such as clustering or
topological methods.

After candidates for vertices are found they get fitted in order to estimate their
position and covariance matrix. Next, the single tracks are tested if it is likely
that they truly belong to the vertex and outliers are removed. With the decimated
number of tracks the vertex is fitted again. Also a kinematic fit can be done: from
the momentum and energy conversion the mass hypothesis of the particles partaking
in the vertex process can be tested.

In combination with particle identification the event is then fully reconstructed
and handed over to physics analysis, where the properties of the underlying physics
are determined.

26

2.2. The challenge of track reconstruction

2.2. The challenge of track reconstruction

There is no universal ideal solution to the problem of track reconstruction, because
it is highly dependent on the environment. As an example, the hits of a typical ILC
event without any background are depicted for the TPC in Figure 2.2 and the FTD
in Figure 2.3. In both pictures all hits are shown, but no tracks. In the TPC the pad
rows are so close that the tracks can be easily seen6. The fewer layers of the FTD
make it quite hard to make out any tracks. Nevertheless tracking in the TPC is
far from easy. Especially with background and tracks that are very close, advanced
algorithms are necessary. But the key point here is that the tracking situations are
quite different. Besides the detector type and specifics, also the energy of the events,
the type of background, the computing hardware and its limitations as well as the
the weighing of the different quality benchmarks of the reconstruction are important
to keep in mind when designing a tracking algorithm.

Figure 2.2.: Event in the TPC
without background

Figure 2.3.: Event in the FTD
without background

As an example for different influences, here are some of the boundary conditions
of tracking for the FTD:

� Tracks have only a few hits, as there are only 7 layers on the FTD, i.e. the
number of hits in a track is very limited. Most often tracks in the FTD will
have around 5 hits (see Figure 2.4).

� The silicon detectors cause more multiple scattering and energy loss than the
TPC.

� Especially the inner disks will see a large beam-induced background of e−e+

pairs due to proximity to the interaction point.

� The pixel disks will get pile-up background from multiple events due to readout
delay.

6The hits of the different tracks have different colors in Figure 2.2, but even if they had the same
color, they could in this case be rather easily distinguished.

27

2. Algorithms of event reconstruction

� The strip disks will have ghost hit background, especially from jets.

� There are overlapping regions in the FTD, which need to be taken into account.

� There can always be a hardware failure or an over-occupied sensor, so skipping
layers has to be possible.

� Often, the tracks will not hit the first layers of the FTD at all, for geometric
reasons (see Figure 2.5).

Entries 179995
Mean 4.672
RMS 1.221

nHits
3 4 5 6 7 8 9 100

10000

20000

30000

40000

50000

Entries 179995
Mean 4.672
RMS 1.221

Figure 2.4.: Number of hits of tracks in
the FTD (with 3 hits or more)

Entries 179995
Mean 1.809
RMS 1.132

layer
1 2 3 4 5 6 70

20

40

60

80

100

310× Entries 179995
Mean 1.809
RMS 1.132

Figure 2.5.: Number of the first layer of
the FTD hit by a true track

2.3. The tools

The algorithms “cellular automaton” for track finding, “Kalman filter” for track
fitting and “Hopfield neural network” for ambiguity resolving have been chosen for
the track reconstruction in the forward direction of the ILD detector. In 2.3.1 - 2.3.3
these algorithms are presented, as well as the reasons for their use in the packages.

2.3.1. The cellular automaton

The cellular automaton (CA) is a tool that originally did not come from high energy
physics, but that got adapted in the 1990s [33]. There is no point in looking for the
“first” use of a cellular automaton, as the basic idea behind it is a very general one:
“Cellular Automata are discrete dynamical systems whose behavior is completely
specified in terms of a local relation, ...” [58]. Many systems can qualify as cellular
automata; all they need is a discrete state that dynamically changes depending on
the local environment. The naming derives from biological cells, which also give a
good example. Cells are discrete and their behavior is determined by their local
environment. In the context of the present work, the comparison to biological cells
is too much off-topic, so the famous “Game of Life” by John Horton Conway can
serve as a far easier example.

28

2.3. The tools

This “game” is a simulation based on the principles of cellular automata. The
setting is a two dimensional grid, such as a computer monitor. The single entities of
the grid (e.g. the pixels of the monitor) are called the “cells”. They are, as mentioned
above, discrete. Dynamics come into play, by letting the situation evolve via locally
applicable rules.

These rules are the heart of every cellular automaton, and for the game of life
they read as follows: A cell has a state which is either “alive” or “dead”. Dead
cells are white pixels, alive cells are black. Cells can interact with the surrounding
8 cells, which are called neighbors. Overpopulation, which means more than 3 alive
neighbors leads to death, as does underpopulation (less than 2 neighbors). Dead
cells surrounded by 3 alive cells become alive again, which is reproduction.

These rules and the starting configuration completely determine the evolution of
the system. An example is shown in Figure 2.6, where starting from one configu-
ration a few iterations are made. One can see how the configuration evolves over
time. This is far more impressive when animated and with more complex starting
positions. What is amazing is that although the rules are so simple, many different
stable patterns can emerge. The example given in Figure 2.6 results in a stable
loop; ultimately after 15 iterations it returns to its beginning. Other objects can
keep their overall (oscillating) shape and traverse through space. Certain objects
can create those gliders periodically, while others have the potential to annihilate
them.

Figure 2.6.: Iterations in the ”game of life”

Already this simple game shows that stable patterns can emerge in such a setup
and how dependent the situation is on the input, i.e. the starting values. A slightly
different start in Figure 2.6 would have resulted in a non-stable situation.

Such a cellular automaton implementation gives the impression to be useful as
a simulation tool rather than for reconstruction. But the high dependence of the
outcome on the rules and the situation at start suggests that with the right rules
the cellular automaton may be used to find patterns in a given starting situation.
A simple ansatz could be formulated with the question “Can rules be formulated,
such that cells forming a certain pattern survive and others do not?”

The first documented use of the cellular automaton in such a way in high energy
physics was done by Kisel and Ososkov [33] for track reconstruction in a multi-wire
proportional chamber for the ARES experiment. Due to the setup, the situation

29

2. Algorithms of event reconstruction

consisted of rectangles next to each other, very much resembling the situation in the
game of life. The rules were formulated in such a way that cells that could be part
of a track survive. Also the possibility of hardware malfunction in single wires was
taken into account.

Later Kisel worked for the NEMO collaboration [32], where he refined the tracking
with the cellular automaton. This time Geiger drift cells in multiple layers where
used for tracking. While in ARES the wires and their rectangular surrounding were
the cells, for NEMO a further abstraction took place, and segments – the connections
between two hits in neighboring7 layers became the cells of the CA. The rules were
that only segments with a compatible angle (below a certain cut-off value) that share
a hit in the middle are compatible and called “neighbors”. Other segments above
the cut-off angle, even if they share the middle hit, are not neighbors.

The states of the cells were not binary anymore; a positive integer number start-
ing with 1 was used. In each iteration the CA checks all segments for a neighbor
on the inside with the same state. If one is found, then at the end of the iteration
the state of the segment is raised by 1. This is continued until no changes of state
happen anymore. With this configuration of rules, at the end the segments will have
states corresponding to their place in a possible track. Tracks then consist of seg-
ments with states in descending order, for example (when going from outside to the
inside): 4,3,2,1. Starting from the segments with the highest states, segments with
a next smaller state are added to the track candidate. This way only tracks with a
proper order (like 5,4,3,2,1) are collected, which sorts out much of the combinatorial
background.

This procedure is the basis from which the implementations in CATS [3, 2, 17],
the Belle II track reconstruction package [38] and the track reconstruction in the
packages KiTrack and ForwardTracking for the ILD detector were developed.

The cellular automaton in this form qualifies as a semi-global track finding al-
gorithm. While all segments are updated synchronously, the rules that dictate the
behavior are local. It searches for the structure of a track while inserting information
by cuts as early as possible.

2.3.1.1. The cellular automaton used in ForwardTracking

The implementations of the cellular automaton for track reconstruction differ from
experiment to experiment, due to personal likings and programming styles, different
requirements, hardware and environments. In Appendix A a more detailed introduc-
tion to the cellular automaton as used in KiTrack and ForwardTracking is given,
with examples for a toy detector as well as for the Forward Tracking Detector in the
ILD.

Two specifics are worth pointing out: First, the interaction point is used as an
additional hit, which adds information, but with the cost of losing tracks that come
from places far from the IP. So far the loss seems to be rather small, especially as

7Also skipping a layer was possible.

30

2.3. The tools

the FTD does not cover enough area in order to find most of the tracks from places
distant to the IP. This is however changeable and will be changed if it is required by
the situation and by a detailed analysis. The second specifics are the criteria that
are used by the cellular automaton, i.e. the cut-off values that qualify segments
to be neighbors. While in earlier experiments [32] the angle between segments was
used, for the ILD detector a multitude of criteria can be applied.

Criteria In order to build the segments of the cellular automaton as well as for
operating it, criteria need to be defined. A criterion is a value that is calculated
from two segments, such as the angle between them. For every criterion cut-off
values are formulated (e.g. the angle of a segment must be between a minimum and
a maximum value). These cut-offs enable to distinguish between neighbors (that can
be part of a track) and combinatorial background. Of course each of these criteria
also is a potential source of efficiency loss, as some tracks will always be outside the
cuts. One has to make a compromise between goals like efficiency, ghost rate, speed
and maintainability.

Different experiments use different definitions of cells. In order to reduce combi-
natorics it is desirable to sort out wrong combinations early on, e.g. already when
starting with single hits it is a good idea to distinguish between compatible and
incompatible ones. For this reason the cellular automaton for the FTD uses the
concept of segments of different lengths. Starting with the single hits, already those
are considered as the shortest possible segments and called 1-hit-segments. These
hits are only connected if they fulfill criteria designed for them. An example for a
criterion for two single hits is their distance. If they are much more apart than the
layers they are on, they probably do not belong to the same track. An example is
shown in Figure 2.7, where instead of connecting all hits only those fulfilling a list
of criteria are connected.

Figure 2.7.: Connected 1-hit-segments

Based on these criteria the cellular automaton can perform, making sure that

31

2. Algorithms of event reconstruction

only segments survive that are part of a connection to the IP, where all segments
in the connection fulfill the criteria. As a next step one can take the 1-hit-segments
and form longer segments with 2 hits from them. These 2-hit-segments can then be
tested again with applicable criteria such as the angle between two such segments
(like was done in the NEMO experiment). These are what is classically referred
to as segment. With these 2-hit-segments again the cellular automaton is used to
sort out combinatorics. One can take this principle to the next stage and make
even longer segments consisting of 3 hits: 3-hit-segments. Of course the cellular
automaton procedure is done with them as well.

For every length of segments the cellular automaton is run, guaranteeing a connec-
tion of segments fulfilling multiple criteria, i.e. forming a possible track. With every
rerun segments get sorted out, shrinking the overall number of track candidates in
the cellular automaton. After each run the surviving segments are combined to
form the next longer stage. In principle there is no limit to this concept and seg-
ments could be made even longer, but as the length grows the quality8 of the track
candidates does too and dismissing wrong ones becomes harder. In the implementa-
tion for the FTD the step with 3-hit-segments already has only a very small effect,
although the cuts applied there are the strongest.

When the segments get tested for compatibility (i.e. whether they are neighbors)
they have an overlap, only the innermost and outermost hit are different. That
means that 2-hit-segments share the hit in the middle and that 3-hit segments share
the 2 hits in the middle (see Figure 2.8). Therefore when comparing 1-hit-segments,
there are 2 different hits. For 2-hit-segments there are 3 different hits (2 at the ends
and 1 shared) and for 3-hit-segments there are 4 different hits (2 at the ends and 2
shared). A general formula for the number of different hits is n = nsegment + 1.

(a) two 1-hit-segments (b) two 2-hit-segments (c) two 3-hit-segments

Figure 2.8.: Two connected segments of different lengths

In Table 2.1 the different criteria that are contained in the KiTrack package are
listed for the different numbers of hits they deal with.

8Quality here means how much they resemble what one is looking for: an approximately helical
trajectory.

32

2.3. The tools

Table 2.1.: The different criteria available in the KiTrack package
(The time is given relative to the fastest criterion)

name hits time description

DeltaRho 2 1.00 The difference of the distances to the z-axis:
∆ρ =

√
x2

2 + y2
2 −

√
x2

1 + y2
1.

RZRatio 2 1.00 The distance of two hits divided by their z-

distance:

√
∆x2+∆y2+∆z2

|∆z|
StraightTrackRatio 2 1.04 Best suited for straight tracks: if the line be-

tween the two hits points towards IP. Calcu-
lated is ρ1

z1
/ρ2
z2

, where ρ =
√
x2 + y2. Is equal to

1 for completely straight tracks.
DeltaPhi 2 1.30 The difference between the φ angles of two

hits in degrees. φ is the azimuthal angle in
the x-y plane w.r.t. the positive x axis: φ =
atan2(y, x).

HelixWithIP 2 1.43 Checks if two hits are compatible with a helix
through the IP. A circle is calculated from the
two hits and the IP. Let α be the angle between
the center of the circle and two hits. For a per-
fect helix α

∆z
should be equal for all pairs of hits

on the helix. The coefficients for the first and
last two hits (including the IP) are compared:
α1

∆z1
/ α2

∆z2
. This is 1 for a perfect helix around

the z-axis.
ChangeRZRatio 3 1.23 The coefficient of the RZRatio values for the

two 2-hit-segments. Ideally this would equal 1.
2DAngle 3 1.23 The angle between two 2-hit-segments in the

x-y plane.
2DAngleTimesR 3 1.46 The 2DAngle, but multiplied with the radius

of the circle the segments form, in order to get
better values for low momentum tracks.

3DAngle 3 1.25 The angle between two 2-hit-segments.
3DAngleTimesR 3 1.48 3DAngle times the radius of the circle.
PT 3 1.30 The transversal momentum as calculated from

a circle in the x-y plane. This criterion includes
knowledge about the magnetic field and in this
way differs from the rest. A more basic version
would be to either use the radius of the circle or
its inverse Ω. Using pT was chosen for reasons
of readability.

33

2. Algorithms of event reconstruction

IPCircleDist 3 1.30 From the 3 hits a circle is calculated in the
x-y plane and the distance of the IP to this cir-
cle is measured.

IPCircleDistTimesR 3 1.30 Distance of the IP to the circle multiplied with
the radius of the circle to take into account
higher deviations for low transversal momentum
tracks.

DistOfCircleCenters 4 1.66 Circles are calculated for the first and last 3
hits. The distance of their centers is measured.

RChange 4 1.66 The coefficient of the radii of the two circles.
DistToExtrapolation 4 2.21 From the first 3 hits the relation of α to ∆z is

calculated. This is used to predict x and y of the
fourth hit for the given z-value. The distance of
this prediction to the actual position in x and
y is measured.

NoZigZag 4 2.30 A criterion to sort out tracks that make a zig
zag movement. The 2-D angles are measured
for the first and the last three hits. Then they
are transposed to the area of −π to π and mul-
tiplied. A zig-zagging track would give angles
with different signs and therefore a negative
multiplication result.

2DAngleChange 4 2.30 The coefficient of the 2-D angles.
3DAngleChange 4 2.41 The coefficient of the 3-D angles.
PhiZRatioChange 4 2.50 The coefficient of the PhiZRatio of the first 3

and the last 3 hits.

Usefulness of criteria There is a multitude of criteria one can come up with and
there are certainly more possibilities than in Table 2.1. But not all criteria are
equally useful. First, as they are used quite often in the cellular automaton in order
to filter away the combinatorial background, they need to be fast. There is no reason
why one could not implement a Kalman filter criterion for longer segments, but it
costs quite some time. In Table 2.1 the calculation time, relative to the fastest one,
is shown9. Each of the criteria is based on rather simple and fast calculations, so
that the time used to do the actual calculation is in the order of the time needed to
reserve memory for the variables.

Another important factor is the distribution of the criterion for true tracks. As
an example in Figure 2.9 and 2.10 one can see the differences between the 2- and
3-dimensional angles between 2-hit-segments. The tail of the 2DAngle criterion

9Each criterion was used a thousand times with given segments by an executable. The executable
was monitored with the profiling tool callgrind. The computing times of the criteria were
normalized, so that the fastest one had the value 1.

34

2.3. The tools

reaches far to the right10. If one wants to use the 2DAngle criterion and not loose
too much of the true tracks, one would have to keep segment connections with very
large angles and thus be only able to sort out a tiny fraction of the combinatorial
background. The 3DAngle criterion on the other hand is much more useful, having
almost no tail beyond 10◦.

Entries 471060
Mean 6.24
RMS 8.273

2DAngle [deg]
0 10 20 30 40 50 60 70 80 900

20

40

60

80

100

310̄

Entries 471060
Mean 6.24
RMS 8.273

Crit3_2DAngle

Figure 2.9.: The 2DAngle criterion

Entries 471060
Mean 1.265
RMS 2.036

3DAngle [deg]
0 10 20 30 40 50 60 70 80 900

50

100

150

200

250

300

310̄

Entries 471060
Mean 1.265
RMS 2.036

Crit3_3DAngle

Figure 2.10.: The 3DAngle criterion

Another important factor is the dependence of the criterion on the transversal
momentum. A good example for this is the criterion DistOfCircleCenters for 3-hit-

10The maximum value for these angles is 90◦.

35

2. Algorithms of event reconstruction

segments (i.e. 4 different hits). It calculates two circles: one from the first and one
from the last 3 hits. Then the distance between the centers of the circles is measured.
This works rather well for low transversal momentum tracks; it fails, however, for
high pT tracks. The reason is simple: high pT tracks have a large radius, they are
almost straight lines. A tiny change in one of the three hits that define the circle
results in a huge change of the position of the center. It is even possible that the
sign of the curvature changes with small deviations, giving a center of the circle in a
completely different position. As for the ILD detector it is more important to keep
high momentum tracks than low momentum ones, this criterion cannot be used11.

Also criteria will have overlaps with other ones. If two segments are incompatible,
this can be found by multiple criteria. So if criterion A and criterion B filter away
the same, it would be a waste of computing time to use them simultaneously.

The criteria currently used in the reconstruction of FTD tracks are a subset of
those in table 2.1 and are hand selected to avoid problems like those just mentioned,
to keep the reconstruction fast and still efficient. For the future a clear definition
catalogue that qualifies and disqualifies criteria could add further systematics and
let the criteria be tuned and selected automatically.

The merits of the cellular automaton for track finding The main advantage of
the cellular automaton is that information can be used very early. When set up the
right way, the criteria are able to filter away much of the combinatorics as early as
possible. Before two hits are considered to be compatible, they are tested for the
different criteria. As many of those criteria can be formulated with easy calculations,
the cellular automaton consumes relatively little computing time12.

The implementation with integers as states of the cellular automaton additionally
filters all segments that are not part of a longer valid chain of connections, i.e. that
are not able to form a track.

The tunability of the single criteria and the possibility to easily add further ones
suited to certain situations makes it a flexible tool that can be adapted to many
different detector layouts.

11At least not in the search for high pT tracks. It is however imaginable that in the future a
dedicated low transversal momentum track finder module is used, and there it could certainly
be of value.

12This is of course highly dependent of the tightness of the cuts and the specific implementation,
but as an example, there is a current discussion to use the CA as an online trigger for Belle II,
which requires a high speed. In ForwardTracking the needed computing time is not dominated
by the CA, but by the Kalman filter: if the CA gives too many track candidates, the fitting
can take a very long time.

36

2.3. The tools

2.3.2. The Kalman filter

Once track candidates are found by track search algorithms like the cellular automa-
ton, one needs to estimate the parameters of the tracks. As previously mentioned,
the path of a charged particle in a homogeneous magnetic field is a helix and can be
described by 5 parameters for a given reference point. In order to determine these
parameters a so-called fit is done, which means finding the parameters that best
approximate the actual track and are in compliance with the measured values.

The global least squares fit, which is still very important in high energy physics,
will be presented briefly and then the Kalman filter, which has since around 1987
probably become the most used fitting technique in this area, is discussed in more
detail.

Formulas from [20] for the global least squares fitting and [19] for the Kalman filter
are used. As both have overlapping use of variable names with different meanings,
the notation in [19] is used and the other formulas are adapted to it. Also the
additional variable mp (definition below) is introduced for convenience.

The basis for fitting are the hits measured by the detectors. They provide one-
dimensional (e.g. strip detectors) or two-dimensional (e.g. TPC, pixel, double sided
strip) measurements13.

The 5 parameters of the track are put together in the so called state vector14 x.
One can use these parameters to predict measurements by extrapolating the track
and determining where sensors are hit. This is not always solvable in an analytic
fashion, but often has to be done by iterative algorithms like the Newtonian solver.
These predicted measurements mp are of course a function of the track parameters:

mp : x→mp(x) (2.4)

The global least squares method (LSM) works with the linear expansion of the
actual track model by neglecting higher order terms:

mp(x) = mp(x
0) +A(x− x0) +O((x− x0)2) (2.5)

A =
∂mp

∂x
|x=x0 (2.6)

It is important to note that the appropriateness of the linear expansion is depen-
dent on a good choice of parameters for the description of the path.

Let the matrix W be the weight matrix15 of the measurements m. Then the least

13A three-dimensional space point is only a two-dimensional measurement, because only two in-
dependent equations can be formed from it.

14e.g. in LCIO this would be the vector (Ω, φ0, d0, z0, tan(λ))
15The weight matrix is the inverse of the corresponding covariance matrix, which is by definition

symmetric and positive-definite.

37

2. Algorithms of event reconstruction

squares method aims to minimize the so called χ2 value16:

χ2 = [mp(x
0) +A(x− x0)−m]TW [mp(x

0) +A(x− x0)−m] (2.7)

It is the minimization of the quadratic distances of the predicted to the measured
values, but with an additional weight on each measurement, so that measurements
with huge errors contribute less than more accurate ones.

In order to minimize χ2, ∂χ2

∂x
= 0 has to be calculated. To do the minimization,

at least as many measurements as track parameters are required. Otherwise the
equation system is under-determined. Setting the derivative to 0 gives:

x = x0 + (ATWA)−1ATW [m−mp(x
0)] (2.8)

cov(x) = (ATWA)−1 (2.9)

Thus one has estimated the parameters of the helix, minimizing χ2.

It can be shown that if the linear approximation is valid and the variation of the
errors w.r.t the track parameters are small enough to approximate them as constant
in the neighborhood of the path , the linear LSM “has minimum variance among
the class of linear and unbiased estimates”[20, p.246].

There is however a flaw in the approach so far, namely that the tracks get dis-
turbed by material effects leading to tracks being multiple helices attached to one
another, changing parameters every time there is interaction with material. This
can be included in the linear LSM by the price that the matrices that need to be
inverted become very large and the computing time rises considerably. Also the
implementation becomes more complex.

This problem is solved by the Kalman filter, which works in a local way in contrast
to a global fit. The Kalman filter is an iterative procedure, not taking into account
all hits at a single time, but adding them sequentially17.

The parameters of the track change depending on the reference point. If for every
new measurement site a new reference point on the site is chosen, the parameters
vary with the position z on the track (and the corresponding measurement site).

x = x(z) (2.10)

As there is only a finite number of sensors in an experiment, these positions on
the track can be treated in discrete steps. The material between two sites is usually
concentrated to one or more infinitely thin layer containing all the material effects

16In case of unbiased measurements with Gaussian errors, and a strict linear model, these values
follow a χ2-distribution.

17This sub-sequential adding makes it useful for local tracking methods, for example as the so
called “Combinatorial Kalman filter” or “Concurrent Track Evolution” [43].

38

2.3. The tools

between the sites. The parameters at a place k can then be calculated from the
parameters at the place k − 1:

x(zk) ≡ xk = fk−1(xk−1) +wk−1 (2.11)

f is called the track propagator, because it propagates the parameters from one
measurement site to the next. wk−1 is a random disturbance that occurs between
k − 1 and k. This could be for example multiple scattering.

The measurement at a detector is dependent on the track parameter. If a detector
measures x and y for a given z, these values change in dependence on the track
parameters. In this process too there is an additional error that always comes with
measurement:

mk = hk(xk) + εk (2.12)

hk calculates the measured values from the parameters.
The usual Kalman filter is not only discrete, but linearized as well, which means

that h and f can be described by matrices H and F , giving the basic equations:

xk = Fk−1(xk−1) +wk−1 (2.13)

and

mk = Hk(xk) + εk (2.14)

The Kalman filter works in 3 different steps:

� Prediction is estimating track parameters at the next measurement site. From
them estimated measurement values can be calculated.

� Filtering, or Updating calculates the parameters and error matrices at a given
point from the measurement at the point and the previous predicted state
vector.

� Smoothing means to go back to previous hits and recalculating their param-
eters based upon the full information acquired so far. This is essential, as
the Kalman filter, if no smoothing is used always has full information from
previous measurements at the last one, but only there. Smoothing brings this
information back to previous sites, making the estimates there as good as
possible.

The variables used in the following equations:

� Qk = cov{wk} Covariance of the process noise

� Vk = G−1
k = cov{εk} Covariance of the measurement error (= inverse of the

weight matrix for the measurement errors)

� xk,t true value of x at k

39

2. Algorithms of event reconstruction

� xik estimate of xk based on the measurements up to i. (xkk = xk)

� Ci
k = cov{xik − xk,t} Covariance of the difference of the true value to the

estimated one.

� rik = mk −Hkx
i
k The residual of the measurement: difference between esti-

mated measurement and actual one.

� Ri
k = cov{rik} Covariance of the residual.

Before the Kalman filter can start with the first prediction, it needs to have an
initial guess (to be given extremely small weights). This could for example come
from a quick helix fit of three points of the track with a huge covariance matrix,
so that the guess has negligible impact. Also track parameters could already be
estimated in the track finding procedure.

2.3.2.1. Prediction

The track parameters at a measurement site k−1 are extrapolated with the evolution
matrix Fk−1 to the place k.

xk−1
k = Fk−1xk−1 (2.15)

The covariance of the track parameters has to be extrapolated as well:

Ck−1
k = Fk−1Ck−1F

T
k−1 +Qk−1 (2.16)

From the estimated parameters at k (xk−1
k) a measurement result can be predicted:

mk−1
k,p = Hkx

k−1
k (2.17)

The difference of this predicted measurement mk−1
k,p to the true measurement18

mk is the so called residual:

rk−1
k = mk −mk−1

k,p (2.18)

The covariance of the residual is:

Rk−1
k = Vk +HkC

k−1
k HT

k (2.19)

This is the covariance of the actual measurement error added to the covariance
coming from the extrapolation.

18It is noteworthy to stress the point that mk and Vk are the only actual measured values in the
whole procedure. The covariance of the measurement error Vk can be determined beforehand
in a simplified way, or more accurately be calculated based on the measurement signal. For
example if a cluster is built in a silicon sensor, the shape of the cluster can influence the error.

40

2.3. The tools

2.3.2.2. Filtering

Here the filtering method with the so called “gain matrix formalism” is shown. There
is an equivalent formalism that is called “weighted means formalism” that can be
used as well and can be more efficient for small state vectors.

Filtering, or updating, is the important step in which the prediction is combined
with the actual measurement and the parameters of the track are modified accord-
ingly. This is done in by the Kalman gain matrix Kk:

xk = xk−1
k +Kkr

k−1
k = xk−1

k +Kk(mk −Hkx
k−1
k) (2.20)

The Kalman gain matrix transforms the information from the residual to the ac-
tual change of the parameter vector. If one were to ignore the covariances, one would
simply transform the residuals of the measurement to residuals of the parameters
by multiplying with HT

k and add that to the old parameter vector. Kk contains
exactly this, plus the influences from the different errors:

Kk = Ck−1
k HT

k (Vk +HkC
k−1
k HT

k)−1 (2.21)

As stated HT
k transforms measurement values to parameter values. On the left

of it is Ck−1
k , the covariance of the parameters. The higher the errors in the deter-

mination of the parameters from k to k − 1 are the higher is the influence of the
residuals. If one is very uncertain about the parameters, the measurement gets more
weight.

In the bracket to the right on the other hand, the covariance of the measurement
errors Vk and the covariance of the prediction of the measurement are added. Taking
the inverse of it gives a weight of the measurement. The higher the errors in the
measurement or the prediction of the measurement values, the lower the influence
of the measurement on the result.

The Kalman gain matrix can also be written with the covariance Ck as:

Kk = CkH
T
kGk (2.22)

Ck = (1−KkHk)C
k−1
k (2.23)

The residual rk can be easily determined by:

rk = mk −Hkxk

= mk −Hk(x
k−1
k +Kkr

k−1
k)

= mk −Hkx
k−1
k −HkKkr

k−1
k

= rk−1
k −HkKkr

k−1
k

= (1−HkKk)r
k−1
k

(2.24)

41

2. Algorithms of event reconstruction

And the covariance of the residual:

Rk = (1−HkKk)Vk

= (1−HkCkH
T
kGk)Vk

= Vk −HkCkH
T
k

(2.25)

Now that all the values at k are calculated, one can determine the χ2 increment
(χ2

+). As before the χ2 value is the quadratic form of the residuals multiplied by
their weight:

χ2
+ = rTkR

−1
k rk (2.26)

χ2
k = χ2

k−1 + χ2
+ (2.27)

This is a very important value, because it contains an estimate for the goodness of
the fit. The χ2 values of different fits will follow a χ2-distribution if the measurement
errors are unbiased and Gaussian, and the linear model is a good approximation. The
distribution depends only on the number of degrees of freedom (see Figure 2.11).
If for example a helix is fitted with 4 2-dimensional measurements, this gives 8
equations. 5 are at least needed, leaving 3 degrees of freedom.

As χ2 is dependent on the residuals, a higher χ2 means more deviation of the
measurements from the fit. If for example one would fit a circle to a number of
hits lying on a perfect circle, the result would be a χ2 of 0, as all the hits have no
distance to the actual circle. If one instead had hits distributed along a square and
tried to fit a circle with that, of course not all hits would be on the fitted circle, but
differ from it, giving it a high χ2.

If the track model is correct19 and the effects that are taken into account in the
propagation are too20, then high χ2 values are improbable for true tracks. For every
χ2 one can calculate the probability that such a high χ2 or a higher one occurs for
the given degrees of freedom21. Random combinatorial background from the track
finding algorithms can be discarded to a certain degree, if one applies a probability
cut here. For example if all tracks with a fit of a probability of below 0.005 are cut,
then only 0.5% of true tracks get discarded while many among the combinatorial
background are sorted out. The χ2 can also be used during the fitting procedure as
well, by not adding hits that would give a large χ2

+. A more sophisticated version
of that can be used for outlier removal in the track.

19Deviations could for example come from not taking into account a not perfectly homogeneous
magnetic field.

20Possible deviations: material over or underestimation, incorrect treatment of multiple scattering
or energy loss.

21This “upper tail probability” is simply 1 minus the cumulative distribution function for this
value

42

2.3. The tools

Figure 2.11.: χ2 distributions with different degrees of freedom (k)

2.3.2.3. Smoothing

Once the Kalman filter reaches the last hit in the fit, the full information from all
hits has been used for this last hit, giving it the optimal estimate of parameters.
But the hits further back in the fit have less and less accurate estimates due to their
lack of information at that points. For this reason fits in collider experiments are
usually done from outside to inside, as the most important point for knowing the
parameters is near the vertex. This is however not necessary with the use of the so
called smoothing, where the Kalman filter goes back again to previous points, once
all the information is available, and updates them once more.

For smoothing the smoother gain matrix Ak is used22:

xnk = xk +Ak(x
n
k+1 − xkk+1) (2.28)

xnk is the smoothed state vector at the place k. The term in the bracket is the
difference between the smoothed state vector of the place k+ 1 and the state vector
at k+1 as extrapolated from k. So it is the difference between the extrapolation and
the best guess we have at that site. This difference needs to be extrapolated from
k + 1 to k in order to correct the state vector there. This is done by the smoother
gain matrix Ak:

Ak = CkF
T
k (Ck

k+1)−1 (2.29)

The covariance matrix of the smoothed state vector is:

Cn
k = Ck +Ak(C

n
k+1 −Ck

k+1)AT
k (2.30)

22An equivalent approach for smoothing would be to run a second filter in the backward direction,
calculating at each place k the weighted mean of the forward filter and the backward prediction.

43

2. Algorithms of event reconstruction

After smoothing all the way back, the parameters are determined at every (dis-
crete) site of the track. From them the momentum and the charge of the particle
can be calculated.

2.3.2.4. The merits of the linear Kalman filter

The Kalman filter has meanwhile risen to be the standard tool for track fitting in
high energy physics for different reasons:

� Its local approach keeps the calculation time relatively low23, as the size of
the matrices that have to be inverted24 is determined by the dimension of the
measurements and the state vector. The largest matrices are usually of the
size 5× 5 (dimension of the state vector). Also the smoothing takes only little
effort, if intermediate results of the previous filtering steps are kept.

� One does not lose any information by that approach and it is as efficient as
a global least squares fit, taking all effects into account: “If wk and εk are
Gaussian random variables, the Kalman filter is the optimal filter; no other
filter can do better. In other cases it is simply the optimal linear filter.” [19].

� Although it is already sophisticated statistics, it is easier to work with than
other equally good methods. Material effects can more easily be included and
altered.

� It fulfills important criteria for a good estimator: the variance is minimal (for
a linear estimator), for Gaussian errors it is efficient and unbiased.

� The χ2 values can allow to discard hits on the go or to give a feedback of track
quality after the fit.

� Via the extension to a Combinatorial Kalman filter it can be used for track
finding too [43].

� A non-linear generalization of the Kalman filter, the Gaussian-sum Filter is
very effective to take non-Gaussian noise into account.

2.3.3. The Hopfield neural network

The Hopfield neural network can be used to resolve ambiguities in the final track col-
lection and is, as the name suggests, a neural network invented by J.J. Hopfield[29].
Neural means that all elements are called neurons, because they can (like neurons in
biological terms) be connected to and influence each other. The original neurons in
the Hopfield net are binary, so they are either in state 0 or 1. Each neuron updates
its state in each iteration. The new value it gets (again 0 or 1) depends on the other

23The calculation time is roughly proportional to the number of measurement sites.
24The computing time for inverting a matrix is proportional to the 3rd power of its dimension.

44

2.3. The tools

neurons around it. Every neuron may be connected to it and have an activating or
damping effect. If a neuron is updated the activation is calculated by:

ai =
∑
j 6=i

wijxj (2.31)

The xj are the states of the neurons and the matrix wij gives the strength of the
connection. The new state of the neuron xi is then either 0 if ai is below a certain
activation threshold or 1 otherwise.

A simple example is shown in Figure 2.12. There are 4 neurons (in red) connected
to each other (connections are in blue). The strengths of the connections are written
besides them. (The dashed ones are 0, which just means there is no connection).

Figure 2.12.: Neurons connected to each other with different weights on the connec-
tions

The matrix W contains the strength of these connections:

W =


0 3.2 0.7 −5.7

3.2 0 0 0
0.7 0 0 3.4
−5.7 0 3.4 0

 (2.32)

In this case the connections are symmetric and therefore so is W . All neurons
are assumed to have state 1 at the moment. Updating neuron number 1 gives:

a1 =
∑
j 6=1

w1jxj = 0× 1 + 3.2× 1 + 0.7× 1− 5.7× 1 = −1.8 (2.33)

The new state of the neuron now depends on the activation threshold. If 0 is chosen
as activation threshold, below 0 means inactive and above 0 means active, so the
neuron number 1 is now inactive (its state is now 0).

Though the original idea of Hopfield was to describe a way information can be
handled by neural cells and how memory storage can work within that context, the
Hopfield neural net can be used as a tool for many different areas like combinatorial
optimization.

45

2. Algorithms of event reconstruction

As shown in [53] the Hopfield neural network can be used to find maximal com-
patible sets and with a modification [22] also to find nearly optimal subsets, with
optimal meaning as large as possible and with a quality as high as possible.

It works the following way: the matrix wij is set up like this:

wij =

{
−1 if i and j are incompatible,
(1− ω)/N if i and j are compatible.

(2.34)

N is the number of neurons in the network and ω is a tunable parameter that
controls how important the quality of a neuron is: the higher ω, the more influence
comes from the quality. The updating of the neurons is done asynchronously (one
at a time in a random order) to avoid cycling between states.

There is an additional vector holding the quality of the neurons:

wi0 = ω · qi (2.35)

where qi is the quality of neuron i. This quality indicator (QI) must be between 0
(lowest quality) and 1 (highest quality). For example the χ2-probability could be
used as QI.

For this version of the Hopfield neural network the discrete states of the neurons
get replaced by a real number between 0 and 1. So instead of being inactive (0) or
active (1) there is a continuous interval in between.

At the beginning the states of all neurons are set to a small random number (closer
to 0 than to 1, so they are close to inactive). Then the iterations begin and in each
of them the state xi of a neuron is calculated like this:

ai = wi0 +
∑
j 6=i

wijxj (2.36)

So in addition to the influence from the other neurons the quality of the specific
neuron itself helps it getting activated. Instead of checking whether the value a is
below or above a threshold, a so called activation function is used.

xi =
1

2
(1 + tanh(ai/T)) (2.37)

The activation function maps any value between −∞ and∞ to a number between
0 and 1. It is depicted in Figure 2.13 for different values of T. The lower T gets, the
sharper the assignment, at T = 0 either 0 or 1 is assigned25, which is precisely the
situation when only discrete states are used. So one can call the activation function
method a generalization of the discrete method, approaching it towards T = 0.

The idea behind T is that it resembles a temperature. Instead of neurons going
into full activation or deactivation, while it is “hot” the temperature prevents them
from doing this. If the system starts with a certain temperature and cools down
gradually, this makes sure that the neurons get enough iterations so that the system
can gradually evolve and avoid local minima, i.e. situations where the neural network

25i.e. the function approaches the Heaviside step function

46

2.3. The tools

Figure 2.13.: Activation function

reaches a stable state that is not optimal. It is a bit like marbles in movement on a
surface with cavities of different depth. If they are too slow at the beginning they
will get stuck in the first cavity, even if it is just a minor one. Shaking the surface
ensures that they will rather end up in one of the deeper cavities.

The start is at a finite temperature T and all neurons get updated in a random
order. After the first round the temperature gets lowered by:

Tn+1 =
1

2
(Tn + T∞) (2.38)

As the temperature gets cooler, the winners and losers become gradually clearer.
The procedure is stopped, once the changes of the states are sufficiently small (like
below 0.01 for example). At this time all states above a certain threshold (like 0.75)
are considered active and form the best subset.

The Hopfield neural network in this form is very fast, because it only relies on
matrix multiplication, no inversion is needed like for the Kalman filter. In operation
in ForwardTracking its computing time was always far below every other algorithm
in the course of track reconstruction, so that optimizing speed was not needed at
all.

In the application so far it has shown to be more than is needed in the sense that
the simple algorithm presented in Sub-subsection 2.1.1.326 came very close in the
results. This could come from the fact that most overlapping comes from clones at
the moment and for them, the method of taking the best quality track is completely
sufficient. Only when the situation becomes more entangled, the Hopfield neural
network can use its advantage of optimizing for highest quality and total number of
tracks. It works well as a compatible subset finder, but the conditions under which
it can surpass the simpler algorithm should be further investigated in the future.

26Saving the track with highest quality, discarding all incompatible ones and repeating the step
until all tracks are either discarded or saved.

47

3. Related work

As track reconstruction is a key element that is part of almost all high energy collider
experiments, the number of related works would exhaust this thesis. This chapter
will focus on experiments and track reconstruction strategies that are thematically
linked to ForwardTracking (track reconstruction for the Forward Tracking Detector
FTD of the ILD). All works are summarized rather briefly, there are always more
details to be taken into account.

First, the track reconstruction software that was used for FTD track reconstruc-
tion before ForwardTracking and now still runs in parallel is discussed. Its im-
portance lies in the direct comparison to ForwardTracking, which will be made in
Chapter 5. As different experiments yield different environments for reconstruction,
the comparison of two methods from different setups is hardly meaningful. So the
opportunity to compare algorithms under the same circumstances is highly useful.

The next method discussed is the current tracking in CMS, as this is a contem-
porary experiment and a good example of the usage of the Kalman filter for track
finding. Also the combinatorial Kalman filter used there could in principle be im-
plemented in a similar fashion for the FTD tracking as well.

The next portrayed experiment, HERA-B, is already finished, but is mentioned
as it gives a good overview of different approaches, using three different tracking
methods in the same experiment. Also HERA-B was a milestone for the cellular
automaton: the concept was further advanced and the results were the inspiration for
ForwardTracking as well as for the vertex detector track reconstruction in Belle II.
Finally the Belle II track reconstruction for the Silicon Vertex Detector (SVD) is
discussed as its software grew in parallel to ForwardTracking and utilizes the same
basic algorithms.

3.1. The previous track reconstruction for the FTD:
SiliconTracking

The track reconstruction in the International Large Detector as it was used for the
Letter of Intent1 [28] was done in two separate modules [49]. The tracks in the
Time Projection Chamber (TPC) were found by the LEPTrackingProcessor2 and

1The Letter of Intent (LoI) was the first full document on plans and studies of the ILD detector
concept.

2As the name suggests, it contained mainly algorithms still from the Large Electron Positron
Collider (LEP). The main job of the LEPTrackingProcessor was to invoke the LEP algorithms,
which were in the form of Fortran routines, with C++ wrappers.

49

3. Related work

the tracks through the silicon detectors were reconstructed by SiliconTracking.
Afterwards the results of these were combined by FullLDCTracking: the tracks
going through silicon detectors and TPC were matched, remaining hits were picked
up and finally the tracks were fitted and saved.

FullLDCTracking is still operating3, but LEPTracking has meanwhile been re-
placed by Clupatra (tracking for the TPC by cluster pattern recognition). SiliconTracking,
as FullLDCTracking, has been updated to SiliconTracking MarlinTrk (it will be
still referred as SiliconTracking here for the shorter form) and is now purely based
on C++ and utilizes the modern Kalman filter KalTest.

SiliconTracking is reconstructing tracks through the vertex detector VTX, the
Silicon Inner Tracker SIT, the Silicon External Tracker SET and the Forward Track-
ing Detector FTD. The description here concentrates on the tracking algorithms for
the FTD, as this is what is needed to be compared to the new software for the FTD
track reconstruction. While ForwardTracking now reconstructs tracks through the
FTD in parallel to SiliconTracking, the tracks through the other silicon tracking
detectors are still solely searched for by SiliconTracking.

SiliconTracking is mainly programmed in the procedural paradigm. It is a
class itself, because all modules in Marlin need to be derived from the base class
Processor, so they can be invoked by Marlin, but besides this, SiliconTracking
only takes advantage of the object oriented paradigm for fitting methods (e.g.
Kalman- and Helix fit). The other algorithms, mainly the pattern recognition,
are directly contained within the processor, which has the disadvantage of a lower
maintainability and flexibility, and makes understanding the code harder.

The algorithm in SiliconTracking used for track finding is a triplet search: hit
triplets from different combinations of layers in the FTD are checked with a quick
helix fit. If several criteria for the helix fit are fulfilled (like χ2 being below an
upper limit or d0 and z0 being low, i.e. the helix being close to the IP) the helix is
extrapolated to other layers to pick up further hits if they are close enough to the
intersection point of the helix and the layer. This rather simple approach is stable
and fast for easy situations, but when there are additional hits, e.g. from higher
background, the combinatorics grow very fast, i.e. the number of possible triplets
rises considerably.

SiliconTracking basically does a good job and is able to reconstruct the tracks
through the FTD to a good degree4, but has deficits in maintainability, readabil-
ity, flexibility and background handling. For those reasons the standalone track
reconstruction for the FTD ForwardTracking was envisioned.

3although it was updated by Steve Aplin to FullLDCTracking MarlinTrk
4At the beginning of my work the efficiencies of SiliconTracking ranged around 60% for
pT >1 GeV, which is considered to be very low. This was one of the incentives to replace
it with ForwardTracking. Meanwhile bugs and reasons for inefficiencies have been found and
removed, giving SiliconTracking quite reasonable efficiencies.

50

3.2. Track reconstruction in CMS

3.2. Track reconstruction in CMS

The Compact Muon Solenoid detector (CMS) is located at the Large Hadron Collider
and is together with the ATLAS detector, the main experiment where the search
for the Higgs boson is performed. One of its main features is the tracking section of
the detector, which is like the SiD completely silicon based. A combination of pixel,
strip and back to back strip sensors are used to cover the region between the beam
pipe and the calorimeters.

The track reconstruction for CMS is done in multiple steps [8, 30]. First, only
the pixel hits, which are closest to the IP, are used to find vertices. This is done
by first searching for hit pairs [15]: different sets of two layers are considered5. For
every hit on the outer layer, a possible area on the inner layer, where compatible
hits could be, is calculated. This area is determined based on kinematic constraints
such as the transversal momentum and limitations on vertex positions. For every
hit within the allowed region a hit pair is stored.

A third hit is added from a third layer, which is given for each two-layer combi-
nation. On this layer again constraints on the possible area of hits are made. This
approach resembles the one used in ForwardTracking as the first constraints are
already made for pairs of hits and for triplets a next set of constraints is introduced
and used: in every stage wrong combinations get sorted out as fast as possible,
instead of allowing them to pollute the next stage.

The triplets are enough to estimate helix parameters, which then get extrapolated
and vertices are reconstructed. These so called pixel vertices play an important role,
as from there the more general tracking in the CMS detector starts. This concept
could also be implemented for the ILD detector track reconstruction in a slightly
different way: vertices from the best tracks could be reconstructed and used to sort
out ghost tracks by dismissing tracks that do not come close enough to one of the
vertices. With the remaining tracks the final vertices could be reconstructed. The
benefit would be that once the vertices are known they can be used as a further
constraint on tracks. If for example tracks with only 3 hits are reconstructed, the
ghost rate will be considerably high. But constraining these 3-hit-tracks to those,
which can be extrapolated to a known vertex could greatly reduce the ghosts.

The general tracking in the CMS that follows utilizes the Combinatorial Kalman
filter. The doublets and triplets are turned into track seeds if they correspond to
a vertex and then are extrapolated outwards. This is done with the Combinatorial
Kalman filter, meaning that the tracks are extrapolated and updated as described
in Subsection 2.3.2, but in this version the hit that is going to be added to the fit on
the next layer is not known previously. Hits close to the extrapolation are searched
and for every hit within a certain range a copied version of the track is created and
the hit gets added. So after a layer has been processed, for every compatible hit
there is a new version of the track, including the track without any added hit to
take into account the possibility that a layer was missed. Tracks are collected once

5including a certain redundancy in order to ensure sufficient efficiency in case of hardware failures.

51

3. Related work

they reach the outermost layer. In order to prevent the number of tracks to grow
exponentially in every step the number of tracks is decreased by applying quality
cuts. Ambiguities of tracks are resolved at the end by taking the tracks with the
best quality (length and χ2) and discarding incompatible ones.

This approach could be implemented for the track reconstruction in the Forward
Region of the ILD detector as well. A problem could be the seeding, as the set
up is slightly different. In CMS the vertex detector covers all possible directions of
the track, if it afterwards traverses the outer silicon sensors. For the FTD this is
not given. Not only will the VTX not be hit in most cases, but also the innermost
FTD layers are skipped frequently by tracks (see Section 2.2). This means that
one cannot use the inner layers for seeding, at least not exclusively. Also the outer
layers and the middle ones are not always hit. If such an approach should be used,
combinations of different layers all over the FTD need to be taken into account for
seeding. This however has the problem that over larger distances the kinematic
region of allowed hit pairs and triplets grows because of the high distances and
more material effects. In the end this is the approach that SiliconTracking uses,
without using a combinatorial Kalman filter, but a Helix extrapolation. Also the
triplet building is done without the cuts in the hit-pairs. It would be interesting to
modify SiliconTracking in this way and check out the gain.

3.3. Track reconstruction in HERA-B

HERA-B was a fixed target experiment originally built to study CP -violation in
the decays of B mesons into J/ΨK0. But with the rise of the B-factories at KEK
and SLAC and due to construction delays, it was finally decided to use HERA-B to
study heavy flavor physics. It implemented a new version of fixed target experiments,
where protons with 920 GeV were collided with a wire target which was moved into
the halo of the proton beam, yielding high collision rates.

Track reconstruction in HERA-B makes for a good discussion of different tracking
algorithms, as three different packages where used in parallel to reconstruct tracks:
a local approach, a global and a semi-global one. As mentioned before, it is always
useful to compare different algorithms under the same circumstances.

3.3.1. The local approach RANGER

The package RANGER [42] uses a local pattern recognition technique for track recon-
struction. First, seeds are found and then extrapolated with a Kalman filter. As
with most local approaches the seeding step is crucial. If the number of seeds is too
high, the computing intensive Kalman filter will exhaust computing time6. Different
cut-offs can be introduced early on, but this can of course cost efficiency. The seeds
are built at the beginning of the tracker where the magnetic field is low and the

6This is the reason why SiliconTracking runs with a faster helix fit as standard and only uses
the Kalman filter in the finals fits.

52

3.3. Track reconstruction in HERA-B

paths therefore almost straight. Triplets are used as seeds and are constructed by
taking all possible doublets and combining them pairwise if they share a hit and
have the same direction within a certain allowed deviation. To prevent an excess
of triplets, if two or more triplets too close to each other are found, they get clus-
tered. The seeds then get extrapolated to farther detector surfaces. In order to
make the calculations faster the detector is divided into “domains” and a look-up
table provides information on where to extrapolate next.

The track candidates (or the seeds at the beginning) can either have the flag
“alive”, “mature” or “dead”. All candidates start with the flag “alive”. In a recursive
method, the track candidates get extrapolated to the allowed domains, where hits
within a certain range to the prediction get picked up and a new branch of the track
candidate containing the hit is created. This approach is the already mentioned
Combinatorial Kalman filter, which was named “Concurrent Track Evolution” [43]
at the time. This way the growth of the number of branches can be very fast, thus it
is necessary to discard wrong ones as fast as possible. For this, only hits are added
that add a χ2 below a certain limit to the fit. And secondly, after each evolution
step the quality7 of the branches gets assessed and branches with a low quality get
sorted out. As a further mechanism, every track candidate is only allowed to have
5 branches in each step at most. If there are more, only the best ones are kept.

Once there are no further layers to propagate to a track is labeled as “mature”
if it has enough hits, or “dead” if not. When there are no tracks left “alive” the
procedure is done and the “mature” tracks are collected and saved.

3.3.2. The global approach TEMA

As mentioned before, global approaches take into account all measurements at the
same time. A popular one, as used in the package TEMA [52], is the Hough trans-
formation as mentioned in Subsection 2.1.1. The hits are mapped to the parameter
space, where via a binning method maxima are searched for that represent multiple
measurements coming from one track. There are however strong limitations that
cause Hough transformations to be less useful than other methods and are the reason
why they have not been considered for ForwardTracking:

� For a helix 5 parameters need to be estimated, leading to a 5-dimensional
parameter space. But as the computation time is proportional to nD, with n
being the number of hits and D the dimensions, dimensions above 2 quickly
need unrealistic huge computation power. So the models are usually reduced:
instead of three dimensional helices, circles in two dimensions are searched or
the tracks are estimated as straight lines, losing of course important informa-
tion.

7The quality was calculated based on the number of hits in the track, number of missed layers
and the χ2 value.

53

3. Related work

� But even if a 5 dimensional Hough transformation were practical, the material
effects cause deviations from the track model. This is why the so successful
Kalman filter needs a different track state at each measurement site. As soon
as material effects come into play, the maxima in the parameter space get
smeared out and become harder to detect and start overlapping with other
maxima.

� Also the resolution (here the ability to distinguish between the parameters of
two different tracks) depends on the binning. The bigger the bins, the easier
it happens that two different tracks occupy the same bin in parameter space.
This can be avoided by making the bins smaller, but that on the other hand
raises the computing time again. Infinitely thin binning would take an infinite
time to process.

The above reasons suggest, why the Hough transformation needs to be used care-
fully, as with higher occupancy or more material effects it can quickly become very
inefficient.

3.3.3. The semi-global approach CATS

The CATS [17] package successfully utilizes a combination of a cellular automaton
and a Kalman filter for track reconstruction. The Cellular Automaton as described
earlier is a semi-global method and brings different advantages over the methods of
the other two packages TEMA and RANGER, mostly time and efficiency.

The CA version of CATS works in principle like the cellular automaton described
in Subsection 2.3.1, but is (as it was one of the first implementations) a bit simpler.
The cells in this scenario are the space points and there are no longer segments
involved like in ForwardTracking. Two cells are compatible if their χ2-distance is
low enough.

After the cellular automaton has collected the track candidates, a Kalman filter
propagates the tracks to further layers, picking up hits and finally refitting the tracks
with outlier removal. Once this is done, a χ2-cut is applied and the remaining tracks
are given to an elastic neural net for ambiguity resolving.

This general approach is also the basis for the Forward Tracking in the ILD
detector as well as the tracking in the Belle II SVD, although they all differ by
the specific implementations, specializations and adaptations due to the different
detector setups.

3.3.4. Comparison of the 3 approaches in HERA-B

In [17] the approaches were compared for a J/Ψ → µ+µ− decay plus two super-
imposed inelastic events as background. The comparison showed that the global
approach TEMA acquired the lowest efficiencies, followed by RANGER and then
CATS. CATS also ranked first for the lowest ghost rate. Additionally a comparison

54

3.4. Belle II track reconstruction

of RANGER and CATS was made on the dependence on superimposed inelastic in-
teractions. It showed that CATS keeps its superiority with higher background, but
of course loses efficiency and increases ghost rate, as is expected with addition of
background. Also the computing time of CATS is faster than RANGER for higher
backgrounds (compare to the results of SiliconTracking vs. ForwardTracking in 5).

The results show that the race between a combinatorial Kalman filter and a
cellular automaton + Kalman filter is a close one and that the cellular automaton
proves to be a viable tool in track reconstruction.

3.4. Belle II track reconstruction

Belle II is a detector for the SuperKEKB e−e+-collider in Japan, which currently is
under construction, as is the software it will use. It is a successor of the Belle detec-
tor, which was used to determine the properties of the CKM matrix (as mentioned
in Section 1.2). While the results from Belle are in compliance with the Standard
Model, Belle II aims to find small violations in order to search for “beyond the
standard model physics”.

Outside the pixel vertex detector of the Belle II detector is the silicon vertex de-
tector (SVD), which not only provides high precision hits for tracks extrapolated in
from the outer detectors, but also has the goal to find tracks that do not reach outer
detectors at all. Tracks with a low transversal momentum (below about 100 MeV)
will stay contained within the SVD and loop there, or if they reach the surrounding
Central Drift Chamber they do not cause enough hits there in order to be found. For
the reconstruction of these tracks a cellular automaton approach has been developed
by Jakob Lettenbichler and is currently under refinement and testing. Jakob Let-
tenbichler deserves a special mention, as we both worked on the cellular automaton
and shared and discussed many ideas. For the details on his reconstruction I recom-
mend reading [39]. In principle we both base our programs on the same algorithm
combination: cellular automaton, Kalman filter and Hopfield neural network.

The main differences in our works are the technical approaches and the envi-
ronments. As the main excellence of SuperKEKB lies in high luminosity and not
energy, the low momentum loopers are more important than for the ILD detector.
On the other hand high transversal momentum tracks can be extrapolated in from
the outside detectors and do not need to be necessarily found in the SVD. The
reconstruction in the outer detectors will even happen first, and the hits, picked
up from the high pT tracks, could8 be subtracted from the hit collection which is
used by the SVD reconstruction algorithm. This is a method that could be used
for the intermediate region in the ILD, where tracks hit the inner FTD disks and
also cause enough hits in the TPC in order to reconstruct the track there. As in the
FTD only few layers are hit, but many in the TPC, the TPC has an advantage in
reconstruction in the intermediate region. Extrapolating the tracks from the TPC

8This is work in progress and under current discussion.

55

3. Related work

to the FTD and picking up hits, including their removal from the hit collection,
could ease the combinatorial situation for ForwardTracking.

For tracking in the FTD finding the high pT tracks is way more important, as for
smaller θ (angle of track momentum to the beam pipe) these tracks cannot be found
by the TPC and extrapolated, thus they must be found by the FTD tracking alone.
Losing those tracks would mean a high loss of energy and momentum information
at the vertex.

The backgrounds and signals are different as well. While in the high energy
environment of the ILD jets9 and electron-positron pairs from photon conversion
cause background, in Belle II other effects, such as the Touschek-effect, 10 play a
more important role.

Other differences concern the environment. The tools that are available in each
framework differ, for example ILD uses the Kalman filter package KalTest, while
Belle II utilizes the package Genfit. The structure of the overall framework and its
demands are also of course different.

In the implementations there are further major differences: While the packages Ki-
Track, KiTrackMarlin and ForwardTracking use a highly object oriented approach,
the tracking for the Belle II SVD is more procedural. Another example is the con-
cept of segments of different lengths that I use in the cellular automaton; in Belle II,
on the other hand, there is a stronger focus on sector specific cut-offs.

9The jets themselves are of course not background as they come from the events to be recon-
structed, but their dense tracks can cause a high rate of ghost hits on the silicon strip detectors
(see Subsection 1.5.2)

10single particles leaving the beam and interacting with the detector

56

4. Implementation

The algorithms that were written for track reconstruction in the forward region of
the ILD detector are separated into 3 distinct packages:

� KiTrack: Contains the core software with the basic algorithms such as the
Hopfield neural network and the cellular automaton. It also includes the ab-
stract base classes to support these algorithms and define hits, tracks etc. This
package is not dependent on Marlin and can be used in other frameworks as
well1. For using the package (in Marlin or another framework) a package that
implements the abstract base classes within the specific framework is neces-
sary. The package depends on ROOT for mathematical classes such as vectors.

� KiTrackMarlin: Implements the abstract base classes in the framework
Marlin. It combines the classes from KiTrack with the LCIO-classes and han-
dles the fitting of tracks via the MarlinTrk interfaces. The package depends
on the packages KiTrack, Marlin, MarlinTrk for fitting, MarlinUtil, ROOT
and GSL for randomization.

� ForwardTracking: Contains the actual processors used for track reconstruc-
tion and tracking specific analysis of the events in the ILD detector. It depends
on the packages KiTrack, KiTrackMarlin, Marlin, MarlinTrk, MarlinUtil,
ROOT and GSL.

The separation into 3 packages has several reasons:

1. It allows other packages within the Marlin framework to use the algorithms
of KiTrack and KiTrackMarlin without creating mutual dependencies. This
is especially important if ForwardTracking is dependent on other packages.
If for example the package MarlinTrkProcessors (which contains other pro-
cessors for tracking in the ILD detector) would contain its core algorithms and
ForwardTracking would also contain its core algorithms, this would mean
that if they want to each use algorithms from the other package, this gives
rise to a cyclic dependence. If they both outsource their algorithm classes to
distinct packages, this problem is resolved.

2. The core algorithms are well separated from the rest, so changes in the imple-
mentation will never affect the basic algorithms and vice versa.

1There is a technical dependency on Marlin at the moment, simply for debugging convenience -
a few output statements using the debug-output methods of Marlin are still in place. This can
however be resolved rather easily.

57

4. Implementation

3. As a part of the AIDA project, the packages are a first implementation of the
work package D2.4, which consists of creating a general tracking toolkit. As
KiTrack is not dependent on ILD or Marlin, it can be more easily included in
this toolkit.

All three packages are written in C++ and are part of the current ILD software
repositories, which can be viewed at https://svnsrv.desy.de/viewvc/marlinreco/.
They follow an object oriented design philosophy, thus granting flexibility and pos-
sible comparison of different variations. The classes are documented with Doxygen,
which allows the generation of HTML files documenting the code and the depen-
dencies of the classes.

4.1. Requirements

There are several requirements that need to be met by the new track reconstruction
packages:

� Flexibility: Allows for the configuration of the behavior of the algorithms at
runtime without modification of the algorithms themselves. This is especially
important in order to compare different approaches. One could for example
design different additional algorithms for track reconstruction such as Hough
transformation, combinatorial Kalman filters or others and directly compare
them to and combine them with the current approaches.

� Background handling: The more robust (in terms of efficiency) the algo-
rithms are concerning growing background, the bigger the field of problems
that can be solved with them. It could for example be that instead of a
500 GeV - 1 TeV ILC, a CLIC with 3 TeV gets built, which has estimated
background levels higher than ILC.

� Speed: One of the main reasons background can become a problem is the
increased calculation time for the higher combinatorics. As the amount of
physics events recorded at the ILC will be huge, a fast reconstruction is nec-
essary in order to make them available to physics analysis as fast as possible.
One could always increase the computational power, but that adds additional
cost to the project.

� Object orientation: Although this is no strict requirement for track recon-
struction, it gives several benefits, especially in terms of readability, flexibility
and maintainability.

58

https://svnsrv.desy.de/viewvc/marlinreco/

4.2. KiTrack

4.2. KiTrack

KiTrack, as in “Kit for Tracking”, is a collection of classes that contain algorithms
for track reconstruction and the necessary interfaces. At the moment there are
mainly two groups of classes: the cellular automaton and its environment and the
subset algorithms.

The task of the subset classes is to resolve ambiguity situations as described in
Sub-subsection 2.1.1.3. Such situations are not dependent on tracking, but can
happen in almost any subject, thus this can be defined in a very generalized form.
For these reasons the subset classes are defined as templates. Templates in C++ [56]
are a concept that separates algorithms from the data they process. As an example,
this means that a sorting algorithm does not require the complete information of
the object being sorted, merely access to a criterion by which it can sort the object.

Likewise the subset problem can be defined independent of tracking: A set consists
of elements that can be compatible or incompatible with each other and are able to
have different qualities. The task is to find a subset that contains only compatible
elements, while maximizing for a specified quality and the size of the subset.

The base class Subset defines a few basic methods for this. Derived from it are two
other classes SubsetHopfieldNN and SubsetSimple, which implement the actual
algorithms. SubsetHopfieldNN is a subset finder using a Hopfield Neural Network
as described in Subsection 2.3.3. For this the class HopfieldNeuralNet, which
contains the core algorithm of a HNN is used. SubsetSimple is an implementation
of the simple algorithm mentioned in Subsection 2.1.1.3. As a class diagram this
gives Figure 4.1.

Figure 4.1.: The subset classes

59

4. Implementation

Additional flexibility of these subset classes is provided by the way they determine
quality and compatibility of the elements: users can define functors2 for quality and
compatibility and hand them over to the template on creation. This gives the
possibility to compare different quality indicators and to adapt the compatibility
determining method to the specific needs.

The classes for the cellular automaton are shown in Figures 4.2-4.4. The core
algorithms of the cellular automaton are contained in the class Automaton. It takes
care of the iterations and extending of the segments. It also creates track candidates
as its final result3.

The criteria, which are needed to determine the compatibility of two segments,
are stored as pointers to a generic base class ICriterion. This is what is called
the strategy design pattern [59]: the Automaton does not determine the criteria it is
going to use, it only has a container for criteria, which are derived from the abstract
base class ICriterion4. ICriterion provides an abstract interface defining the
methods required by all derived classes. For example a class derived from ICriterion
must have a method that calculates the compatibility of two segments. There is a
class for every criterion used and all of them are derived from the same ICriterion

base class. An example can be seen in Figure 4.3.

This leads to an increase in flexibility: the class Automaton can then fulfill its
requirements without prior knowledge of which criteria will be used. Because of this
the behavior of the cellular automaton can be steered at runtime: the user decides
which criteria to use.

Figure 4.2.: The class Automaton Figure 4.3.: A criterion

The class SegmentBuilder is responsible for creating the first 1-hit-segments from
the basic hits. The main task is to establish the connections between the segments.

2A functor in C++ is a class that is mainly consisting of a single function with specified input
and output variable types.

3A track candidate there is simply a vector of hits.
4The naming convention in the following will be that a class starting with “I” is an interface class.

60

4.3. KiTrackMarlin

This is one of the main features of the Segment objects: they hold pointers to their
inner and outer connecting segments.

The space is divided into discrete sectors. Every hit is determined to lie in only one
sector. The method of encoding and decoding the place is flexible (this again follows
the strategy pattern). The method of connecting segments again uses a pointer to
a base class: ISectorConnector. Classes derived from ISectorConnector are able
to find for any given sector, all the sectors with which a given sector is allowed to
connect. In an example for the FTD this could mean that it will connect the hits
from FTD layer 6 to those on layer 5, but not those on layer 2.

The hits which need to be checked for compatibility are provided by the classes
derived from ISectorConnector. Also criteria are provided for the SegmentBuilder
in the same manner as they are provided for the cellular automaton. Based on the
allowed connections and the criteria, the segments are built and connected. In a
final step the SegmentBuilder creates an Automaton object and provides it with
the segments.

Figure 4.4.: The class SegmentBuilder

4.3. KiTrackMarlin

In the KiTrack package different abstract base classes are defined, making the al-
gorithms independent of the concrete implementation. ForwardTracking on the
other hand is responsible for the specific track reconstruction in the forward region
of the ILD detector concept and therefore needs to work within the ILD software
framework (Marlin). For this reason a concrete implementation, which utilizes the
generic algorithms described in the KiTrack library, is needed. KiTrackMarlin is
a library which allows for efficient implementation of tracking strategies within the
Marlin framework (LCIO, Gear) .

61

4. Implementation

There all the different abstract base classes of KiTrack get implemented in a
framework specific fashion. For example, KiTrack defines the abstract base class
ISectorConnector, which contains the rules that a sector connector class needs
to fulfill so that the SegmentBuilder can operate with it. In KiTrackMarlin this
abstract class is implemented with the class FTDSectorConnector.

While ISectorConnector has no content concerning the specifics of the underly-
ing sectors, FTDSectorConnector is based on the real FTD. It allows connections
based on the geometry of the Forward Tracking Detector. The previously abstract
“sectors” are now replaced by the concept of real sensors on different layers and
modules of the FTD.

For every class that is defined abstractly in KiTrack there is an implementation
in KiTrackMarlin. Additionally there are classes that handle the fitting procedures
(Kalman fit and helix fit). In principle these classes could have been included in
ForwardTracking, but experience has shown that it is good practice to keep the
algorithm libraries and the processors separated to prevent unwanted dependencies.

4.4. ForwardTracking

ForwardTracking contains all the processors that can be run by Marlin. The most
important one has the same name as the package and is responsible for reconstructing
the tracks in the Forward Tracking Detector of the ILD. It uses the classes from
KiTrack and KiTrackMarlin for the reconstruction.

Here is a short summary on how ForwardTracking does track reconstruction:

1. All collections of hits on the FTD are read in.

2. The hits are stored in a map that links the sectors of the hits to the hits
themselves. The sectors specify the sensors the hits are on.

3. A safety check is done to ensure no single sector is overflowing with hits. This
could give a combinatorial disaster leading to very long calculation times. If
a sector is overflowing, it is dropped and the reconstructed tracks are marked
as having a bad quality.

4. A virtual hit is added at the position of the IP. It is used by the Cellular
Automaton as additional information.

5. Hits on overlapping petals are looked for. If two petals from the FTD overlap,
a track may pass through both and thus create two hits in close range. For
pattern recognition as it is now, they are not useful (the lever arm is too short
for good cut-offs). Such short connections are therefore looked for and stored,
but are not dealt with until later the track candidates have been found.

6. The SegmentBuilder uses the hits and a vector of criteria. The criteria tell the
SegmentBuilder when two hits might be part of a possible track. Additionally

62

4.4. ForwardTracking

an FTDSectorConnector is passed that specifies in which sectors of the FTD
hit-pairs may be looked for. This reduces computing time, as not all possible
hit-pairs need to be checked with the criteria. The SegmentBuilder builds the
allowed segments from the hits and stores them in a new created Automaton.

7. The Automaton performs. For every rerun with longer segments it is passed
a new vector of criteria suited for the different segment-lengths. As a safety
mechanism the number of connections in the automaton is monitored. If an
upper limit of the number of connections is exceeded, the Automaton is rerun
with tighter criteria. These tighter criteria can be specified in the steering
file, the number of steps of tighter criteria can be set flexibly. In case the
last set of criteria still yields too many connections, the procedure is stopped.
This is a harsh method, but a mere safety mechanism. While it can happen
for high backgrounds that the automaton has to be rerun with tighter cuts,
a complete drop is highly unlikely, especially for real data. It is nonetheless
implemented that way, because it might happen that in the simulation or
digitization something goes wrong.

8. After the automaton has performed for 3-hit-segments, the track candidates
are read out and further processed.

9. The hits from overlapping petals are added and every possible combination
of the track candidate and the suited hits from overlapping petals is created.
The version with the best fit result (highest χ2-probability) is then kept, while
the others are discarded.

10. During this procedure cuts can be applied. Tracks with a χ2-probability below
a certain value get discarded.

11. Also a simple helix fit cut is applied. As it is faster than the Kalman fit because
it does not take into account any material effects, it is performed previously.
It uses currently rather loose cuts in order to only discard tracks that will also
give a bad Kalman fit (at the moment the rule is χ2

Ndf
< 500)

12. The ambiguities are resolved: the tracks gathered may not be all compatible
with each other (i.e. share hits). This is solved with a best-subset-finder, for
instance the Hopfield neural network or an alternative simple algorithm.

13. At the end the tracks are finalized (all necessary information is added to the
track objects) and stored in the output collection.

The package ForwardTracking also contains different other processors mainly
used for tracking analysis and background simulation. They will not be described
here, but are documented in the source code with Doxygen.

63

4. Implementation

4.5. Integration in the framework Marlin

In Figure 4.5 the integration of ForwardTracking in the chain of simulation and
analysis of the ILD detector can be seen.
Mokka is propagating the particles generated in the events (by programs such

as Whizard) through the detector and creates the raw hit collections. In a real
application of the ILD detector this step will be replaced by the experiment itself.
The data then comes from the read out electronics on the sensors.

The digitizer PlanarDigiProcessor uses the raw hit collections from Mokka to
simulate the digitization process and create hits that can be used by the track
reconstruction software.

The hits on the “false” double-sided silicon strip detectors are not yet ready for
track finding as this would need a 3-dimensional space point and not strips (2-
dimensional “lines”). The processor SpacePointBuilder therefore combines the
strip measurements to space points. This is the stage where ghost hits are created.

For the different hit collections, there are multiple reconstruction processors taking
care of them. As mentioned before ForwardTracking uses all hits on the FTD as
input. SiliconTracking MarlinTrk processes them too and other silicon tracker
hits as well. Tracks in the TPC are reconstructed by Clupatra. When the tracking
is done, the different collections need to be combined to a final track collection
containing all tracks in the ILD detector.

First the results of SiliconTracking MarlinTrk and ForwardTracking are com-
bined via the TrackSubsetProcessor, which uses the Hopfield Neural Network from
KiTrack to get a compatible subset of tracks. This is needed as both processors
search for tracks on the FTD, i.e. will have overlapping results. This method makes
it possible to also add other tracking processors to search for tracks in the silicon
detectors.
FullLDCTracking MarlinTrk is the last tracking step. Here the tracks from the

silicon detectors and the TPC are merged and a final track collection is saved.
The tracks are then used to find neutral vertices (V0Finder) and kinked tracks

from charged particle decays (KinkFinder). The resulting information is together
with the data from the calorimeters passed to MarlinPandora, which does the
calorimeter reconstruction and particle flow.

Finally the VertextFinder reconstructs the primary and secondary vertices. The
results of the processors are saved in the data format LCIO, so they can later be
accessed by physics analysis.

64

4.5. Integration in the framework Marlin

Figure 4.5.: Activity diagram of reconstruction in the Marlin framework

65

5. Results

This chapter presents the results of the new written tracking software. First the
benchmark parameters used to measure the success are explained, then different
possibilities of tuning the used algorithms to optimize these parameters are intro-
duced. At last the final results are presented and a comparison to SiliconTracking

is given.

5.1. Important benchmark parameters of track
reconstruction

There are different parameters that mark the quality of track reconstruction. The
most important ones are

� Efficiency: the fraction of true tracks that are successfully reconstructed. Of
course this should be as high as possible and is maybe the most important
parameter as every true track that is lost is a loss of information.

� Ghost rate: the rate of tracks in the collection of reconstructed ones that
are combinatorial background. Many ghost tracks can be discarded in further
steps, like when linking the tracks to the measurements of the calorimeters,
but still ghost rates as low as possible are desired.

� Speed: as ten thousands of events need to be reconstructed in order to analyze
the physics behind them, slow algorithms delay the time the physics analysis
can start. Therefore track reconstruction should be as fast as possible.

The speed was measured by taking the average reconstruction time the processors
needed in seconds. This is dependent on the computer hardware and the comput-
ers used for future event reconstruction in grids are probably faster than the local
machine used by the author. The main concern here is the order of time and the
comparison between the different algorithms.

Ghost rate and Efficiency were already defined in Chapter 2 as:

efficiency =
true tracks found

all true tracks to be found
(5.1)

ghost rate =
false tracks found

all found tracks
(5.2)

67

5. Results

There also the importance of defining the methods for determining these values
was mentioned. The rules applied here are:

� A reconstructed track is associated with a true track,

– if the reconstructed track consists to at least 75% of hits from the true
track (purity ≥ 75%)

– and more than 50% of the true track hits are in the reconstructed track
(completeness > 50%).

� Tracks to be found (the denominator in the efficiency) have only the following
cut: The number of space-point-like hits (2-dimensional measurements) must
be at least 3 (nHits ≥ 3).

� A ghost track is a track that cannot be associated with a true track.

� A true track is regarded as found if at least one reconstructed track is associ-
ated with it. Otherwise it is a lost track.

� The software used for track reconstruction with ForwardTracking, SiliconTracking
and the TrackSubsetProcessor is the same version as used for the DBD.

� The steering of the three processors was identical to the one in the standard
steering file “bbudsc 3evt stdreco.xml” from the ILDConfig package, except
for tuning the parameters.

� The detector model used by Mokka was ILD o1 v05, also used for the DBD.

� The simulated events come from an “e−e+ →WW→ 4quarks” event genera-
tor file as the hadronic jets cause higher occupancies.

� Only hits in the FTD were processed by the digitizers. The comparison gives
no information on reconstruction in any other detector. Therefore the effi-
ciency, time and ghost rate of SiliconTracking are not necessarily the same
as in its other track reconstruction parts, i.e. the reconstruction in the barrel
region1.

1However similarities are to be expected as the basic methods used in both directions are very
much alike

68

5.2. Tuning of parameters

5.2. Tuning of parameters

For each stage in the track reconstruction some tuning is necessary, because the
algorithms depend on multiple parameters determining their behavior. For every
step of reconstruction an example of a tunable parameter is given and others are
mentioned.

5.2.1. Tuning the cellular automaton

The cellular automaton uses multiple criteria in every reiteration. Those criteria all
define a lower and an upper cut, which can be tuned.

For example, a criterion that can be applied to two hits, is the difference of their
distance from the z-axis2. In Figure 5.1 the distribution of this value for hit-pairs
of true Monte Carlo tracks in a collection of 10000 events is shown.

Figure 5.1.: Histogram of a cellular automaton criterion

If the Cellular Automaton shall keep these true tracks, it must set its lower and
upper cut in a way that as many true tracks as possible are in between. The figure
also shows 5 different cuts that can be made. In this instance the cuts are all set
symmetric, therefore as much is cut away for low as for high values.

Making the quantiles as big as possible to include 100% may seem reasonable,
but multiple scattering and energy loss cause the tracks to deviate from perfect

2This is mainly a useful criterion, as it can be calculated fast and tracks that don’t curl back
between the hits, will always give a positive value.

69

5. Results

helices. As these processes are of a stochastic nature any physical possible value will
appear for a large enough sample. Also the cuts define the selection power of the
cellular automaton; broadening them too much takes aways much of its capability
to reduce combinatorics. One can therefore never keep all tracks without accepting
more combinatorial background and therefore slowing down the reconstruction and
boosting the ghost rate.

One way to decide which cuts to make, is to use a fixed quantile size for all
criteria. This approach, however, has limitations, as different criteria have different
characteristics. Sometimes it does not make sense to use a cut on one side at
all. For example there is a criterion (DistToExtrapolation) that measures the
distance of a hit to its extrapolation based on other hits. The lowest possible value
0 (i.e. a perfect prediction of the hit-position) is ideal and any cuts on the left side
would be counterproductive. A solution for this can be to determine a right-left
distribution of the quantile for every criterion, but there is also the additional point
that different criteria have also a different usefulness: some are faster, some sort out
more background, some have very high efficiencies.

The current approach is to base the decisions on 99.5% quantiles3 and to refine
these cuts by manual adjustment. The probably ideal solution would be to exactly
define a coefficient of what is desired, which needs to include parameters such as
computing time, efficiency and ghost rates and then to vary all the different cuts
stepwise to find a maximum of this parameter. This however needs a careful ap-
proach and a lot of time.

Finally it is noteworthy to point out the visibility of the underlying structure in the
histogram. The distribution of values already gives a hint that multiple distributions
are superimposed here, namely 2-hit combinations from different layers all over the
FTD. Hit-pairs from layer 5 and 6 for example have a different distribution than
those from layer 1 and 2, because first, the distances are larger on the outside and
second: the further away from the vertex, the more tracks come curling back. In
Figure 5.2 the same histogram is plotted, but only hit-pairs from layer 5 and 6 were
taken into account. One can see, how the cuts could be made tighter by making
them sector specific. This is for example done in [38] and could be implemented for
tracking in the forward region of the ILD as well in the future.

3with hand-tuned right-left distributions

70

5.2. Tuning of parameters

Entries 58915
Mean 49.22
RMS 10.64

Crit2_DeltaRho, segments on layer 5 and 6
-100 -50 0 50 1000

1000

2000

3000

4000

5000 Entries 58915
Mean 49.22
RMS 10.64

Figure 5.2.: Criterion only for 2 hits on layer 5 and 6

5.2.2. Tuning the Kalman filter cuts

As mentioned in Subsection 2.3.2, χ2 is the sum of the weighted quadratic forms of
the residuals. For errors that are independent and Gaussian χ2 follows the so-called
χ2-distribution. Based on this the χ2-probability can be calculated: the probability
that for a number of degrees of freedom a random χ2 has a certain value or higher.

For a correct track model and if material effects are taken into account correctly,
the χ2-probability should be a flat distribution. In Figure 5.3 this is plotted for true
tracks in the FTD from 10000 simulated events fitted with KalTest. The result is
rather flat as it should be, the peak on the left is a common problem with the χ2

test, when errors are not perfectly Gaussian (see [41, page 606]). Especially low
momentum tracks are subject to this problem. In comparison, in Figure 5.4 the
distribution for high pT tracks can be seen, the tail on the left is far less dominant.

Entries 179998
Mean 0.4315
RMS 0.3203

-probability2χ

0 0.2 0.4 0.6 0.8 1
0

5000

10000

15000

20000

25000 Entries 179998
Mean 0.4315
RMS 0.3203

Figure 5.3.: χ2-probability distribution of true tracks in 10000 WW events

71

5. Results

Entries 99184
Mean 0.488
RMS 0.2986

> 1 GeV
T

-probability, p2χ
0 0.2 0.4 0.6 0.8 1

0

500

1000

1500

2000

2500

3000

3500

4000

4500
Entries 99184
Mean 0.488
RMS 0.2986

Figure 5.4.: χ2-probability distribution of true tracks with pT > 1GeV in 10000
WW events

As a measure for the goodness of fit the χ2-probability can be useful. A flat
distribution would guarantee that if one applies cuts for tracks with a very low χ2-
probability, only tiny fractions of true tracks are dismissed. The peak on the left
however shows that in the given situation a higher fraction of true tracks would be
cut away. Also “small χ2 probability does not necessarily imply a bad estimation
of the parameters, hence special care is required when a χ2 cut is to be used to
eliminate improperly reconstructed tracks” [41].

In Figure 5.5 tuning of the χ2-probability-cut in ForwardTracking is shown. Ef-
ficiency and ghost rate are plotted over the value of the cut. Also the values that
efficiency and ghost rate reach when the cut is not used at all is depicted. For
this plot the ambiguity resolving was switched off. The tracks are the result of the
cellular automaton with the addition of suited hits from overlapping petals.

One can see that the cut can lead to a reduction of ghost rate, for example a cut
at 0.001 reduces the ghost rate by a factor of 2, while the efficiency is only reduced
by a few percent. Note however that for a perfect χ2-probability distribution the
reduction should only be in the order of 0.001 – this is the influence of the low-
probability peak.

At the moment this cut is not used in ForwardTracking but at a later stage in
FullLDCTracking (with the value 0.001), because at later stages more information
is available and further hits might have been added to the tracks or others excluded.

72

5.2. Tuning of parameters

-probability cut2χ

-810 -710 -610 -510 -410 -310 -210 -110 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Efficiency

Efficiency limit at cut = 0

Ghost Rate

Ghost Rate limit at cut = 0

Figure 5.5.: Tuning of the χ2-probability cut

5.2.3. Tuning the Hopfield neural network

The Hopfield neural network and its capabilities for ambiguity resolving were de-
scribed in Subsection 2.3.3. The algorithm is used via the class SubsetHopfieldNN.
It possesses a multitude of tunable parameters as listed in Table 5.1. The most
influential parameters are ω and the quality indicator.

Different quality indicators have been tried, two are presented here: the χ2-
probability (p) and a modified version4 (p′). Quality indicators for the Hopfield
neural network have to be in the range between 0 and 1. The modified version of
the χ2-probability distinguishes between tracks with 3 hits and tracks with 4 hits or
more, thus granting a bonus for longer tracks:

p′ =

{
p
2

3 hits or less
0.5 + p

2
4 hits or more

(5.3)

For tuning the Hopfield neural network, at first ω was varied over its whole range
from 0 to 1. Figures 5.6-5.9 show the efficiency and ghost rate for different values
of ω and the two mentioned quality indicators. The Hopfield network works with
the tracks reconstructed by the cellular automaton. Each measurement is based on
100 event samples with additional background (half of LoI background, see Sub-
subsection 5.3.0.1). No χ2-probability cut was applied.

4which does no longer correspond to an actual probability

73

5. Results

parameter description

T0 The initial temperature
T∞ The temperature limit
ω controls the influence of the quality of the tracks, ranges

from 0 (no influence) to 1 (full influence)
activation threshold controls which elements are in the final set
QI Quality Indicator

Table 5.1.: Tunable parameters of the Hopfield neural network

Additionally the results for no ambiguity resolving5 and the results of a simple
algorithm6 (SubsetSimple) for the same quality indicator are shown.

The conclusions one can draw from the plots are:

� For both SubsetHopfieldNN and SubsetSimple the modified quality indicator
gives better results - a longer track with a good χ2-probability is more likely
to be a true track, than a shorter one.

� Concerning efficiency the simple algorithm performs a bit better than the
Hopfield network, which might be due to the reason that most incompatibilities
come from clones, while the Hopfield network is especially useful for highly
entangled situations. If for example the incompatibilities can be separated
into distinct mutual exclusive groups, as would be the case for incompatibilities
coming only from clones, the simple algorithm is by default the best one: if the
groups are mutually exclusive and there are no cross incompatibilities between
the groups, the solution contains exactly one element from each group. There
cannot be more elements coming from a single group as they are mutually
exclusive within the group and therefore are not compatible. The remaining
task is to select the one best element from each group. This is exactly what the
simple algorithm does: it saves the element with highest quality and deletes
all incompatible ones. Therefore for the case of distinct groups, it will take
the element with highest quality from each group and discard the whole rest
of the group. It will therefore maximize the sum of quality indicators in the
final set.

� The ghost rate suppression is best done with the Hopfield network at ω = 1.

5which however also results in a clone rate above 0
6The simple algorithm was described in 2.1.1.3. The track with the highest quality in the set is

saved and all incompatible ones are discarded from the set. This is repeated until the set is
empty.

74

5.2. Tuning of parameters

ω
0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-probability2χEfficiency, QI =

SubsetHopfieldNN

SubsetSimple

No Ambiguity Resolving

Figure 5.6.: Efficiency of subset algorithms, χ2-probability is used as QI

ω
0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-probability2χEfficiency, QI = modification of

SubsetHopfieldNN

SubsetSimple

No Ambiguity Resolving

Figure 5.7.: Efficiency of subset algorithms, a special QI is used based on the χ2-
probability

75

5. Results

ω
0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-probability2χGhost Rate, QI =

SubsetHopfieldNN

SubsetSimple

No Ambiguity Resolving

Figure 5.8.: Ghost rate of subset algorithms, χ2-probability is used as QI

ω
0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-probability2χGhost Rate, QI = modification of

SubsetHopfieldNN

SubsetSimple

No Ambiguity Resolving

Figure 5.9.: Ghost rate of subset algorithms, a special QI is used based on the
χ2-probability

76

5.2. Tuning of parameters

The other parameters have less effect on efficiency and ghost rate, except if they
are far from the optimal value. Investigation has shown that the values recommended
in [22] (e.g. T∞ = 0.1, T0 = 2.1) are well suited. For example in Figure 5.10 the
modified QI and an ω of 0.9 (which maximizes efficiency) have been used and T∞
was tuned around the recommended value of 0.1. In contrast to the previous figures
here the vertical range is smaller. One can see that this parameter has almost no
influence, with 0.08 giving slightly better result.

As the optimal values of the parameters are not independent of each other a
mechanism for tuning would probably still improve the results. Maybe the most
efficient way would be to try additional quality indicators. But as for now the
results are slightly worse than those of the SubsetSimple, which is simpler and
faster, the SubsetSimple is used in standard track reconstruction. The race is
however very close and it could well be that with different background or in situations
giving higher entanglement the Hopfield Neural Network gives better results than
the simple algorithm.

∞T
0.06 0.08 0.1 0.12 0.140.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

= 0.9ω-probability, 2χEfficiency, QI = modification of

SubsetHopfieldNN

SubsetSimple

No Ambiguity Resolving

Figure 5.10.: Efficiency of subset algorithms, a special QI is used based on the χ2-
probability and ω = 0.9

77

5. Results

5.3. Comparison with SiliconTracking MarlinTrk

As mentioned in Section 3.1 SiliconTracking MarlinTrk is the processor that has
so far been used for track reconstruction for the FTD. SiliconTracking MarlinTrk

is already the updated an enhanced version of the older SiliconTracking. As the
older version is not used anymore the shorter name SiliconTracking will here be
used to address SiliconTracking MarlinTrk.

As ForwardTracking was written specifically to take over the forward tracking,
it is expected to show equal or better results than SiliconTracking, in addition to
being easier to maintain and to read.

The following plots come from a 10000 event sample without background. Fig-
ure 5.11 shows the dependence of the efficiency on the transversal momentum of the
tracks. Plotting the efficiency (or ghost rate) against the transversal momentum is
quite common, as pT is one of the most important factors determining the path of
the track: high transversal momentum tracks also have a high overall momentum7

and are therefore less easily affected by multiple scattering or energy loss [41]. Also
their helices have larger radii, therefore the path inside the detector approaches a
straight line for higher pT . For event reconstruction in the ILD detector the most
important tracks are the high energetic ones, therefore they are the most important
to be reconstructed.

Figure 5.11 shows that ForwardTracking has indeed accomplished a decent re-
construction efficiency, being better than its competitor, but still with room for
improvement8.

Another important parameter that has an effect on the efficiency is the distance
of the vertex of a track to the IP9. In Figure 5.12 it can be seen that both algorithms
lose efficiency with the distance from the IP. As most tracks come from an area close
to the IP this drop is no catastrophe, but it should nonetheless be considered and
improved in future versions.

Figure 5.13 shows that with increased number of hits in the true track the recon-
struction efficiency rises. The drop of SiliconTracking for 7-hit-tracks should be
further investigated.

Plotting efficiency vs. θ shows that the forward region is covered well, and that
for higher θ the efficiency gets worse. This comes from the reduced number of layers
of the FTD that are hit for higher θ as well as the θ-dependence of some criteria.
The region above θ = 20◦ is already well covered by the TPC10, so forward tracking
efficiency is not very important there.

In Figure 5.15 the ghost rate is plotted. One can see that without background a
ghost rate of around 10% can be achieved for the most values of pT .

7In the forward region p is roughly ten times as high as pT .
8The efficiency could be even higher, but that would lead to a longer computing time. This

trade-off always needs to be carefully considered.
9E.g. the cellular automaton uses the IP as an additional hit. While this helps to reduce combi-

natorics it has a bad effect on reconstruction of tracks not coming from the area of the IP
10Already around 70 pad rows of the TPC are hit by tracks with θ = 20◦

78

5.3. Comparison with SiliconTracking MarlinTrk

[GeV]
T

p
-110 1 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Efficiency

ForwardTracking

SiliconTracking

Figure 5.11.: Efficiency vs. pT

distance of vertex to IP [mm]
0 100 200 300 400 5000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Efficiency

ForwardTracking

SiliconTracking

Figure 5.12.: Efficiency vs. distance to vertex

79

5. Results

number of hits
3 4 5 6 7 80

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Efficiency

ForwardTracking

SiliconTracking

Figure 5.13.: Efficiency vs. number of hits in true track

θ
0 5 10 15 20 25 300

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Efficiency

ForwardTracking

SiliconTracking

Figure 5.14.: Efficiency vs. θ

80

5.3. Comparison with SiliconTracking MarlinTrk

[GeV]
T

p
-110 1 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ghost Rate

ForwardTracking

SiliconTracking

Figure 5.15.: Ghost Rate vs. pT

81

5. Results

5.3.0.1. Behavior under the addition of background

The behavior of the reconstruction algorithms under background addition is of spe-
cial interest, as in the real application background will definitely be present. The
expected levels of background vary with the used technology. For this study back-
ground levels as specified in the Letter of Intent of the ILD (LoI) [28] for the FTD
at 1 TeV were used. The number of integrated bunch crossings of the pixel detectors
were estimated to be 100.

In Figure 5.16–5.18 efficiency, ghost rate and time as a function of the background
are plotted. Each measurement was based on 100 simulated events. The background
parameter describes a multiplication factor on the LoI background, i.e. a background
of 1 means 100% of the LoI background.

The results show that ForwardTracking copes with background very well: it loses
almost no efficiency, and the ghost rate increases more slowly with background. Also
the time consumed is less for high background. Note that the ghost rate is very high
for large background – 70% of the reconstructed tracks are then ghost tracks. This
could be reduced by applying cuts such the χ2-probability cut, but it was decided to
keep as many tracks as possible until the last stage of tracking FullLDCTracking,
where the tracking results from the TPC and the silicon detectors are combined.

In Figure 5.19–5.22 the efficiency and ghost rate are plotted against pT for different
values of background in order to see the influence of background on the reconstruc-
tion of tracks with different transversal momentum. Efficiency in ForwardTracking

drops equally for different pT , while SiliconTracking shows especially losses in the
high-pT region under background. The strongest ghost rate contribution for both
processors comes from the tracks with low transversal momentum.

Background
0 0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Efficiency

Efficiency SiliconTracking

Efficiency ForwardTracking

Figure 5.16.: Efficiency vs. background

82

5.3. Comparison with SiliconTracking MarlinTrk

Background
0 0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ghost Rate

Ghost Rate SiliconTracking

Ghost Rate ForwardTracking

Figure 5.17.: Ghost rate vs. background

Background
0 0.2 0.4 0.6 0.8 1 1.2 1.40

5

10

15

20

25

Time per event [s]

Time SiliconTracking

Time ForwardTracking

Figure 5.18.: Time vs. background

83

5. Results

[GeV]
T

p
-110 1 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Efficiency ForwardTracking

no background
50% background
100% background
150% background

Figure 5.19.: Efficiency of ForwardTracking vs. pT for different backgrounds

[GeV]
T

p
-110 1 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Efficiency SiliconTracking

no background
50% background
100% background
150% background

Figure 5.20.: Efficiency of SiliconTracking vs. pT for different backgrounds

84

5.3. Comparison with SiliconTracking MarlinTrk

[GeV]
T

p
-110 1 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ghost rate ForwardTracking

no background
50% background

100% background
150% background

Figure 5.21.: Ghost rate of ForwardTracking vs. pT for different backgrounds

[GeV]
T

p
-110 1 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ghost rate SiliconTracking

no background
50% background

100% background
150% background

Figure 5.22.: Ghost rate of SiliconTracking vs. pT for different backgrounds

85

6. Conclusion

For track reconstruction in the forward region of the ILD detector a new approach,
differing from the previous track reconstruction has been chosen. It is based on a
cellular automaton for track finding, a Kalman filter for track fitting and a Hopfield
neural network (or a simpler algorithm) for ambiguity resolving.

The resulting software was split into the 3 distinct packages, named KiTrack,
KiTrackMarlin and ForwardTracking, providing a separation of algorithms and ab-
stract base classes, the framework dependent implementation and the actual module
for track reconstruction.

The software was written in an object-oriented fashion and allows a high level
of flexibility in the execution of the algorithms. The packages have become part
of the standard reconstruction chain in the ILD detector reconstruction framework
(Marlin) which is used for the upcoming Detailed Baseline Design report.
ForwardTracking allows for tuning of multiple parameters, in order to optimize

especially for efficiency. The tuning shows that a χ2-probability cut can reduce the
ghost rate by a factor of 2 and that the Hopfield neural network was not able to
surpass the efficiency of a simpler algorithm for the specific tracking problem at
hand, but it still might prove useful for different background and reconstruction
situations.

The direct comparison of the new track reconstruction ForwardTracking and
the previous SiliconTracking has shown improved results for the new software.
An increase in efficiency was achieved while keeping the ghost rate at the same
level. With additional simulation of background on the Forward Tracking Detector,
ForwardTracking has shown to need less reconstruction time and to achieve lower
ghost rates and higher efficiencies.

Both old and new software are probably still operating below their full potential
and could be further enhanced with additional, even more sophisticated methods
and a thorough analysis of remaining weaknesses. They are both currently run in
parallel in order to ensure a maximum of redundancy and thus safety.

87

7. Outlook

In the next years decisions concerning a future linear collider will be made, giving
a clear path on the time line also for the reconstruction software. Currently the
Detailed Baseline Design report DBD is prepared by the ILD collaboration and
will document the technical features and possibilities of the ILD detector as well as
giving a basis for making decisions about the future of the high energy landscape.
In this context the performance of the tracking software in its latest version is also
included. The DBD is to be finished by the end of 2012.

After the DBD decisions on the precise contents of the AIDA tracking package
will be made, and it is possible that the packages KiTrack and ForwardTracking

undergo further changes. Especially KiTrack could be unified with tracking software
from other sources, for example the one in Clupatra.

Until a future linear collider is operational, the reconstruction software can be
further enhanced. The current design allows to easily add additional algorithms
at each stage (track search, track fit and ambiguity resolving). By adding new
methods of track reconstruction and comparing the benefits in different scenarios
the capabilities of the software could be further improved.

For the first stage, track finding tools such as the multilayer perceptron, easy back
up methods such as Hough transformation or conformal mapping can be added. A
combinatorial Kalman filter could be implemented as well, following the success-
ful application at CMS [8]. Algorithms to remove outliers with robust methods,
for instance the deterministic annealing filter, could be added to the fitting stage.
Regarding fitting itself, different fitting-packages other than KalTest (for example
GenFit) could be used in order to gain a comparison of speed and handling of ma-
terial effects. A Gaussian-sum filter [4] could improve the fitting of electron tracks
with their non-Gaussian errors.

For ambiguity resolving further algorithms could prove useful; however, alterna-
tive criteria for track quality determination may be even more important.

A more detailed steering and sector specific cut-offs, could improve the power
to reduce combinatorics. Modules to automatically deduce steering values for the
different algorithms based on the Monte Carlo truth could reduce ghost rates while
keeping efficiencies stable.

The future of the software packages is now dependent on the overall situation
of the ILD detector and the decisions of the high energy physics community and
politics whether ILC or CLIC will be built and when. Whatever the future course
will be, the tracking approach chosen here has shown to be a viable path in track
reconstruction for a future linear collider.

89

A. The cellular automaton for track
finding

The basic obstacles in track reconstruction are time and combinatorics and especially
their mutual relationship. The task to achieve is easily formulated: to find the true
tracks from a few dozen to a few thousand hits. After all, a very small algorithm
could solve this problem: take every possible hit combination and use a quality
indicator, such as the goodness of a fit, to decide whether it is a possible track.
Throwing away the bad results leaves one with track candidates for further use.

One could use methods like the Kalman filter to determine the quality of hit-
combinations as possible tracks, as it is one of the best tools to distinguish a real
track from combinatorial background. There is however a downside: it takes quite
some time.

In offline track reconstruction the time needed by the Kalman filter makes it suited
to maybe fit thousands of tracks, but if one were to create track candidates from
every possible combination of hits, this would give numbers far beyond that, even
when there are only a few dozen hits. If one had for example 7 layers and on each
of them were 10 hits, the number of possible track candidates that could be built
from these hits is 107 if the tracks are restricted to each contain 7 hits.

The key is to greatly reduce the number of track candidates by finding a clever
solution that sorts out as much combinatorial background as early as possible. A
useful tool to achieve this is the cellular automaton. In this chapter is summarized,
how the cellular automaton can be used for track finding in high energy physics.
First, Section A.1 gives a short introduction on the task and the environment the
author is using the cellular automaton in. In Sections A.2 and A.3 the definition
of cellular automata and their application in tracking are presented and illustrated
with a simplified toy detector. Finally Section A.4 gives an impression on how the
procedure looks like for the Forward Tracking Detector at the ILD detector.

A.1. The environment: Track reconstruction in the
Forward Tracking Detector of the ILD

Here some context on the experiment, the author is working for is given. Partly,
because later in A.4 an example of how the cellular automaton can work within that
environment is shown.

The International Large Detector ILD[28] is a detector for a future linear collider

91

A. The cellular automaton for track finding

Figure A.1.: The Forward Tracking Detector in the ILD (a schematic 270◦ cut)

(e.g. ILC or CLIC). Most tracking is done in the time projection chamber TPC
(yellow in Figure A.1), but for the forward region, the area close around the beam
pipe, an additional detector is needed to make the ILD detector as hermetically
sealed as possible. This is the task of the Forward Tracking Detector FTD (violet).
It consists of each two pixel and 5 back-to-back strip disks in the forward and
the backward region. Only the forward region will be referred to, including the
backward region as well; for symmetry reasons they can be treated the same way
and it is common to address them both with the term “forward region”.

The software packages written for track reconstruction in the Forward Tracking
Detector are called KiTrack, KiTrackMarlin and ForwardTracking and are part
of the ILD event reconstruction software at the moment. They can be accessed via
the SVN repository at https://svnsrv.desy.de/public/marlinreco/. Also the
repository can be explored with a web browser under https://svnsrv.desy.de/

viewvc/marlinreco/.

A homogeneous magnetic field of 3.5 T pointing into z-direction (the direction of
the beam pipe) is applied in the tracking parts of the detector. The charged particles
therefore move on helical trajectories. Material effects such as multiple scattering
and energy loss can however cause the trajectories to deviate from perfect helices.
This is especially true for low momentum particles.

The goal is to use the hits caused by the particles on the silicon sensors to re-
construct their trajectories. The first step to achieve this, is to find which particles
belong to the same track. This is called “track finding” or more general “pattern
recognition” and is done with a cellular automaton, which will be presented in the
next sections.

92

https://svnsrv.desy.de/public/marlinreco/
https://svnsrv.desy.de/viewvc/marlinreco/
https://svnsrv.desy.de/viewvc/marlinreco/

A.2. What is a cellular automaton

A.2. What is a cellular automaton

A cellular automaton (CA) essentially is a set of discrete entities with discrete states
that can change depending on the local environment. The keywords are “discrete”
and “local”: the behavior of the entities, the cells, is completely determined by the
other cells in their neighborhood. The maybe best example are real cells themselves,
which is the original idea behind it. Cells are discrete, because there is always one
cell or two or seven cells, but never 2.3 cells. And one can assign them discrete
states like: “living” or “dead”.

What distinguishes the CA from biological cells is that it also uses discrete time
steps. The situation does not change continually, but stepwise. With every iteration
the situation evolves following rules that specify the dependence of a cell on its
environment.

A.3. The cellular automaton for pattern recognition

So far it sounds as if the cellular automaton would be an interesting tool to simulate
cells or population growth, but that is not its limit. For example, it is useful for
pattern recognition.

What is a pattern? As hard as it is to define “pattern”, one might say that a
pattern follows some rules: like the pattern of tiles on a chess board will always
follow the rule that there is a black tile next to a white tile.

Cellular automata are based on rules as well: the rules on how the states of the
cells change for a given environment. Different rules give different results. If one
implements rules in a cellular automaton that resemble the rules of a pattern, one
wants to find, and then lets the cells following this pattern survive and others die,
at the end the living cells will form the pattern.

A.3.1. Demonstration with a toy detector

The basic principles of the cellular automaton for track reconstruction can best be
understood by studying it step by step with a graphic aid. Here the steps of the CA
for track finding are explained with the help of the toy detector in Figure A.2.

This is a two dimensional detector, for the sake of simplicity the third dimension
is ignored. Still the magnetic field lines point into z-direction, so the paths one
expects of charged particles are circles. The blue dot in the middle of the detector
is the nominal IP (interaction point).

The event that is to be reconstructed is shown in Figure A.3. These tracks are
the patterns one wants to find. The event is unrealistic in the sense that all the
tracks are in the upper half, but for didactic purposes it is more comfortable to only
show the upper half of the detector, simply because it saves space and there will be
enough to look at in the upper half anyway.

93

A. The cellular automaton for track finding

Figure A.2.: 2-dimensional toy detector Figure A.3.: True tracks from an event

The particles ionize the material of the detector as they pass through and this
results in the measurement of hits: Figure A.4. Of course one does not know the
tracks, when reconstructing the event, only the hits are known as in Figure A.5.

Figure A.4.: The true tracks + hits Figure A.5.: The true hits

Also in real applications there is always background1. Figure A.6 depicts a more
realistic picture of the situation by adding background (red hits).

As one usually does not have the possibility to know what hits come from back-
ground, the realistic starting situation for the reconstruction of tracks in the toy
detector is Figure A.7, where hits cannot be distinguished anymore.

This already makes it harder to find the tracks simply by looking at the hits. Still
it is possible, as this is a simplified 2 dimensional environment and the human brain
is very capable of pattern recognition. In a 3-dimensional situation with a large
background, however, the task gets much more difficult.

1e.g. electron-positron pair production, the slow read out time of pixel sensors causing pile-up of
events or the ghost hits on back-to-back strip detectors

94

A.3. The cellular automaton for pattern recognition

Figure A.6.: True and background hits Figure A.7.: All hits, indistinguishable

Next the procedure how the cellular automaton is applied to reconstruct this event
is shown. Before it was mentioned that a cellular automaton consists of discrete
entities, so-called cells. In a biological simulation these are simply representatives
of real cells, but what is a cell in track reconstruction? As one wants to find tracks,
parts of them would be a good starting point. These are called segments. Their
loosest definition would be: a collection of hits, which, by combining several of them,
could form a track.

Therefore the most simple segment is a single hit. It is the smallest part of a
track and if hits are combined, this results in a track. In other experiments using
the cellular automaton often segments are defined as two-hit combinations, but here
this more general concept was chosen.

Segment consisting of exactly 1 hit can be called 1-hit-segment. A segment con-
sisting of two hits is then a 2-hit-segment. These can be illustrated by connecting
two hits, for example by a straight line from one hit to the other, which of course
does not represent the actual path, which is usually curved. Longer segments can be
formulated as well, giving 3-hit-segments, 4-hit-segments and so on. An illustration
of segments used in this demonstration is shown in Figure A.8.

(a) 1-hit-segment (b) 2-hit-segment (c) 3-hit-segment

Figure A.8.: Segments of different lengths

Looking back at Figure A.7, one can see that it already contains segments in the
form of the single hits, i.e. 1-hit-segments. One could start the cellular automaton
algorithm right there, but waiting until the next iteration makes more sense, because
for 1-hit-segments there simply is not much gain in doing it. In this example event,

95

A. The cellular automaton for track finding

as in many real applications, there would not be much to see. Coming back here
once the CA is fully explained and checking out the benefits of the CA for the
1-hit-segments in this example is probably a good idea.

Instead, everything that the automaton does for 1-hit-segments will be shown,
while skipping the single characteristic step of the CA there and explaining it af-
terwards for the 2-hit-segments, as this gives a better example. If one wants to
get to 2-hit-segments, one needs to connect the 1-hit-segments first. There are an
awful lot of possible connections that can be made and in real events there are even
drastically more.

Therefore one needs a criterion that determines, whether it makes sense to connect
two hits. If one looks at the true tracks in Figure A.4, one sees that all the hits
coming from one true track are not too far apart from one layer to the next. If the
layers have a distance of 15 cm, then one could try to connect only hits that have a
distance of less than 20 cm. This 20 cm cut-off seems completely arbitrary, but for
real applications this value is found by analyzing lots of true tracks and checking in
what range these values lie. In order not to lose (too many) genuine tracks, but to
dismiss as many wrong ones as possible, careful analysis is crucial. Connecting hits
close enough results in Figure A.9. The IP was used as an additional hit, adding
information to the cellular automaton. Including it is valid insofar as most tracks
come from an area close to the IP2

Figure A.9.: Hits are connected if close enough

The straight lines in Figure A.9 are the 2-hit-segments, the cells for the cellular
automaton. One can now start the algorithm. One of the key features of the
segments (cells) is that they have a state. While a biologist might find states like
“living”, “dead” or “reproducing” useful, for track reconstruction unsigned integer

2To handle secondary vertices farther away there are different possibilities. If for example their
rough location is known from other sources, they can be added as additional hits, although
this needs to be carefully considered on a technical level (especially concerning the layers of the
vertices and the hits).

96

A.3. The cellular automaton for pattern recognition

values can be used. In Figure A.9 all the segments have state 0, which is depicted
by their black color. At the beginning the CA always starts with all states being 03.

The algorithm is as follows:

1. Every segment is checked if it has a segment connected on the inside with the
same state fulfilling some criteria that separate combinatorial background from
valid signals as much as possible. These inner segments are called “neighbors”.

2. If a segment has at least one neighbor, the state of the segment is raised by 1
at the end of the iteration.

3. This is repeated until the states of all segments are stationary.

The criteria are very important. They allow to sort out as many false connections
as possible. A criterion has to be something that can distinguish between real tracks
and wrong ones. For this example the following simple criterion will be used: If two
segments have an angle smaller than 10° they are compatible, if it is bigger they are
incompatible, see Figure A.10.

Figure A.10.: The criterion: angle between two 2-hit-segments

This is only one of many possible criteria. It is simple, fast and it works for the
true tracks that are searched for4.

So the first iteration of the automaton reads as follows: Every segment gets
checked for neighbors: connected segments on the inside that have an angle be-
low 10° to the segment, and that have the same state. If a segments has at least one
neighbor the state of the segment is raised by 1. This results in Figure A.11.

3In other experiments a starting state of 1 has been chosen, but it essentially makes no difference
as long as one uses it in a consistent fashion throughout the algorithms

4This criterion is especially useful for high transversal momentum tracks as they result in rather
straight trajectories. For low momentum tracks, the angles between the segments grow bigger.
So if one wants to look for low transversal momentum tracks, other criteria are better suited.
There is however still a use for this criterion when it comes to low-pT -tracks if one applies a
minimum cut-off. Actually most cut-offs can be formulated with a minimum and maximum
cut-off.

97

A. The cellular automaton for track finding

Figure A.11.: First iteration

The red segments have state 1, the black ones are still on state 0. Before further
investigating the result, “layers” are introduced for easier addressing the segments.
For single hits, layers can easily be assigned. One can say that the IP has layer 0 and
the first detector on the inside is layer 1 and so on. One can continue this method
for longer segments as well if one assigns every segment the layer of its innermost
hit. This results in the 2-hit-segments lying on layers 0 to 4 as shown in Figure A.12.

Figure A.12.: Layers of the 2-hit-segments

If one takes a look at the result of the first iteration in Figure A.11, one notices
that all the segments on layer 0 (i.e. the innermost segments) are all still in state 0.
This is due to the fact that they don’t have any segments on the inside, i.e. have no
neighbors, thus can’t raise their states. Segments on higher layers do have segments
on the inside, so in principle it is possible for them to raise their states.

A second iteration leads to Figure A.13. Now there are also segments with state
2 depicted in orange. Of course the segments in layer 0 still stay at state 0. But

98

A.3. The cellular automaton for pattern recognition

also the segments in layer 1 could not reach a state higher than 1. This is for the
simple reason that a segment with state 1 needs a segment on the inside with state
1 in order to reach state 2. But as the potential neighbors of the segments on layer
1 are on layer 0 and thus stay at state 0, this never happens. This is a general rule:
no segment can have a state higher than its layer and this derives from the segments
at layer 0 and the “neighbors must have the same state”-rule5.

Figure A.13.: Second iteration

In this second iteration the question if potential neighbors have the same state
or not became important. It was not important in the first iteration, as there all
the segments had the same state: 0. This time many segments could not raise their
state due to this rule. This will be important in the final result later on.

Repeating the procedure again two times until there are no changes of states
anymore gives Figure A.14 and Figure A.15.

Figure A.14.: Third iteration

5This also limits the maximum number of iterations: after n iterations the highest possible state
is n, therefore one can stop iterating, if n = layermax, because no changes can happen anymore.

99

A. The cellular automaton for track finding

Figure A.15.: Fourth iteration

The possibility to change states in further iterations has now stopped. This means
one can now collect the results of the first round. This is where the question arises,
what one has gained besides nicely colored lines. One can see the answer in an
example: A blue segment in layer 4 has state 4. In order to arrive at state 4, it
needed a neighbor with state 3 on layer 3. This one on the other hand needed a
neighbor with state 2 on layer 2 and so on; until one arrives at the innermost layer,
the IP. It all just comes from the rule, that a segment can only increase its state,
when it has a segment on the inside with the same state. This gives a connection
all the way from the outermost layer to the IP. This connection fulfills in every step
(in every combination of two following segments) the criterion that was applied (the
angle between the segments) and gives a possible track candidate.

What if a segment on layer 4 has not state 4? Then it is not connected all the way
through to the IP! That is a very useful information, because that identifies these
segments as potential combinatorial background6. The same applies for all segments
on layer 3: if they didn’t reach state 3, they are not connected to the IP. So every
layer has an allowed state as depicted in Figure A.16. One can now erase all the
segments which have a state below their layer-number and thus greatly reduce the
combinatorics: Figure A.17.

The combinatorics can be still further improved by repeating the same procedure
with longer 3-hit-segments and a new criterion suited for them. First one has to
connect the remaining 2-hit-segments in Figure A.18.

6Of course not all tracks necessarily come from the IP. But nearly all of them come from the
area roughly around it. If one had a situation with a high percentage of tracks coming from
different areas, this could be taken into account by keeping all end-segments above a certain
state, which guarantees sufficient length, but not a connection to the IP.

100

A.3. The cellular automaton for pattern recognition

Figure A.16.: The allowed states Figure A.17.: Erased bad segments

Figure A.18.: The remaining 2-hit-segments

The 2-hit-segments were connected over single hits, i.e. 1-hit-segments. 3-hit-
segments are likewise connected by 2-hit-segments. To say it in a different way:
two connected 2-hit-segments share exactly one hit: the one in the middle. Two
connected 3-hit-segments share exactly 2 hits, the ones in the middle.

This means that there will be quite some overlapping in the next picture, so for
reasons of visibility the depicted segments will mostly not be perfectly in place, but
shifted a bit sidewards, so that the lines overlap as little as possible: Figure A.19.

Before one can start the cellular automaton again, one has to come up with a
new criterion for these longer segments. A quite simple but effective one is to
use the outer segment to extrapolate into the direction of the innermost hit of the
inner segment and measure the distance from the hit to the extrapolation. Only
distances below 1 cm are allowed. Based on this, the first two iterations of the
cellular automaton are done like before in Figure A.20 and A.21.

Again every segment was checked, if it had a segment on the inside that fulfilled
the criterion and had the same state. If a segment had at least one of those neighbors,
it was able to raise its state after the iteration. Repeating this once more, the last

101

A. The cellular automaton for track finding

Figure A.19.: The 3-hit-segments

Figure A.20.: First iteration Figure A.21.: Second iteration

iteration7 results in Figure A.22. Cleaning by erasing the segments with bad states
results in Figure A.23.

The remaining segments are the final results of the cellular automaton, the track
candidates in Figure A.24. Here the work of the cellular automaton is done. One
could still make longer segments and use criteria suited to further decrease the
amount of track candidates, but experience has shown that the most decrease of
combinatorics happens with the 2-hit-segments, if the cuts for the criteria are set in
a good way.

To come back to what was said at the beginning: this is also true for the 1-hit-
segments. Almost all single hits are connected all the way through to the IP. Many
of the possible connections got sorted out by the cut-offs applied at the beginning,
but there are still enough to connect almost every single one all the way through.
One could use the CA there, but the benefit is minimal and doesn’t pay off.

The 3-hit-segments do of course use refined criteria and are able to distinguish

7The layers of the segments are still the layers of their innermost hit, so the highest layer here is
layer 3, because a 3-hit-segment starting from layer 4 would reach layer 6 with the outermost
hit and there is no layer 6 in the toy detector. This is why the third iteration is already the
last one.

102

A.3. The cellular automaton for pattern recognition

Figure A.22.: Third iteration
Figure A.23.: Erased segments with bad

states

Figure A.24.: Track candidates resulting from the cellular automaton

even better, but their usefulness highly depends on the situation (e.g. are there many
hits because of background or because of ghost hits from a jet?).

For all different lengths just one criterion was given each as an example, but
usually multiple criteria are utilized for in step. There are many different possible
criteria one can come up with, but their power depends strongly on a careful analysis
and not all criteria are suited for every tracking situation.

To summarize the procedure in the toy detector: The patterns searched for were
tracks. Due to analysis ones knows certain things about those tracks:

� They come from an area around the IP

� The hits caused by them are closer to the next hit in the track than 20 cm

� The 2-hit-segments of the tracks all have angles below 10 degrees

� The extrapolation of 3 hits in the tracks to the next hit is closer to the hit
than 1 cm

103

A. The cellular automaton for track finding

These criteria define the patterns that can be found. If more criteria had been
used, it would have been more effective8. The cellular automaton was used in such
a way that only cells fulfilling these criteria reached a state (an integer number)
that was equivalent to the layer they were on, giving the possibility to identify false
segments and erasing them. This way, the combinatorics could be reduced in each
step. Finally, when all the criteria have been used, the remaining cells reproduced
the pattern that was searched for: tracks.

A.3.1.1. Remaining track reconstruction

The cellular automaton delivered track candidates, but one can see in Figure A.24,
that the final tracking is not yet done. There are usually two more steps that are
performed. First, the reconstructed track candidates are fitted and a quality cut
is applied. This can be done with the before mentioned Kalman filter, which can
give a feedback on the goodness of the fit (i.e. the χ2-probability). The quality cut
results in Figure A.25 and Figure A.26.

Figure A.25.: Results of a quality cut
on the track candidates

Figure A.26.: After the quality cut
has been applied

A final step is the resolution of ambiguities: In Figure A.27 tracks sharing hits are
marked in red. These tracks are incompatible and only a subset of those is usually
saved, where no tracks share hits. There are various algorithms able to solve this
problem, for example a Hopfield Neural Network. The solution could look like in
Figure A.28.

With these last steps the tracking is finished, resulting in the final track collection
shown in Figure A.29. In this toy detector example the original tracks were all
found. Additionally there is a ghost track in the final collection, the short 3-hit
track.

8On the other hand each criterion needs calculation time, so a few criteria in each step of the
cellular automaton are usually sufficient. Sooner or later additional criteria don’t give any more
benefit.

104

A.3. The cellular automaton for pattern recognition

Figure A.27.: Incompatible tracks Figure A.28.: After ambiguity resolving

Figure A.29.: The final track collection

A.3.2. All the small things

There are quite a few mistakes that can be done when implementing a cellular
automaton. Some of them are listed here, but there surely are far more.

A.3.2.1. Sectors

The use of sectors can save some time or even a lot, depending on how it is applied.
At the moment in ForwardTracking the sectors are used in a very basic way. There
is more power to them, as will be explained later.

Usually when one starts with all the hits, one has to save them in some sort of
container anyway, so one might as well store them with different keys (e.g. in a map).
For example the layers of the toy detector (Figure A.2) form a dodecagon. One could
take every side of them as a single sector. In fact they would for construction reasons
possibly even correspond to real single sensors. One then stores the hits in a map
under some sector identification key. When afterwards the hits are connected to 2-
hit-segments, one only connects hits from sectors that will possibly give meaningful
results. So for example it would make sense to only connect two hits on the next

105

A. The cellular automaton for track finding

inner layer that are on the same sensor or the adjacent ones: Figure A.30.

Figure A.30.: Connecting only hits from certain areas

This way a lot of computing steps are saved, because the computer does not need
to calculate the criteria for every possible combination. If there is a hit on a sensor,
it does not need to check 12 other sensors on the next inner layer, it is enough to
check 3 sensors, saving 75% of calculation time.

But there is an even higher power to sectors: the cut-off values used for the criteria
can be made sector specific. This might not seem meaningful in the toy-detector, but
usual detectors don’t have this perfect simplified geometry. There might be overlaps
or layers which are not equidistant. In those cases it can be useful to apply rules
like: “segments from inner layers might only have an angle of 2 degrees, while the
ones further on the outside are allowed larger angles”. This, in combination with a
good analysis, can help to reduce wrong combinations and especially in asymmetric
detectors this can be crucial. For example this has been done in [38].

This is not implemented in forward track reconstruction for the ILD so far for two
reasons: First, the detector in the forward region (the FTD) is symmetric in many
ways and sector specific cut offs don not seem too important at the moment. And
second, because implementing it and doing the corresponding analysis takes quite
some time. For example: the sectors of 1-hit-segments are simply the sectors of the
hits, but for 2-hit-segments this gets harder. One could define a new “sector” for
2-hit-segments by somehow combining the sectors of the two single hits. This is not
trivial as the resulting number of sectors can be huge, for 3-hit-segments even more
so. Also for analysis one needs multiple tracks through all those sectors. Of course
one could use every symmetry in the detector to combine single sectors into larger
ones, but still it remains a non-trivial task.

A.3.2.2. Tracks not from the IP

Tracks coming from secondary vertices far from the IP can also be found. For this,
at track-collection all segments with a state above a certain minimum are used as

106

A.4. Demonstration for the FTD

start for tracks. This way one gets also tracks that are not connected to the IP,
but have a minimum length. Of course this requires not to delete segments just
because they have a state below their layer at the end of each CA step, thus it
reduces the power of dismissing combinatorial background. Another idea would be
to use pre-calculated vertices based on other reconstructed tracks if available. For
the FTD these could come from the tracking in the TPC. Instead of only using the
IP as additional hit for the cellular automaton, one could create an additional hit
for every found vertex.

A.3.2.3. When to check the Criteria

Checking the criteria too often is a waste of computing time. When to actually
calculate them ideally depends on the implementation of the cellular automaton. If
one would use a CA similar to the one described here, the calculation best happens
when the segments are combined to longer ones. In these steps the connections to
the other now longer segments have to be stored somewhere. If these connections are
only made, when the criteria are fulfilled, one can later iterate over every connection
without recalculating the criteria.

A.4. Demonstration for the FTD

The goal of this work is track search in the forward direction of the ILD detec-
tor, where the Forward Tracking Detector FTD is placed. Here the just presented
procedure of the cellular automaton is shown for track reconstruction for the FTD.

It starts with the building of the 2-hit-segments. As mentioned before, two hits
only get combined into a 2-hit-segment, if they fulfill certain criteria. For example
one criterion used for these pictures is the distance between two hits divided through
their z-distance. This value must be below some reasonable cut-off such as 1.1:

R

∆z
< 1.1 (A.1)

In Figure A.31 the hits and the 2-hit-segments can be seen. In reality many more
segments are present. The reason the fully realistic picture is not yet shown is that
one could not see too much. Ten thousands of segments fill the space and are hard
to distinguish. Still, this will be shown later on.

On the 2-hit-segments the cellular automaton can be used. In every iteration
it checks every segment if it has a neighbor. Criteria of compatibility of two 2-hit-
segments here are for example the angle between the segments in 2 and 3 dimensions.
After the Automaton was processed one gets Figure A.32, where segments with a
low state are bright blue and thin, while segments with higher states become redder
and thicker.

In the next step the situation is cleaned up and all segments that don’t have the
highest possible state in their layer get erased: Figure A.33.

107

A. The cellular automaton for track finding

Figure A.31.: Build 2-hit-segments

Figure A.32.: After the cellular automaton has performed

Now the 2-hit-segments step is done and it is time to build longer ones: 3-hit-
segments. Again the cellular automaton is performed on them using other criteria
for 3-hit-segments, for example the compatibility of the radii of the circles they
form (which follows from momentum conservation if there are no material effects).
After the CA procedure and cleaning, at the end one gets a final track candidate in
Figure A.34.

108

A.4. Demonstration for the FTD

Figure A.33.: After erasing bad segments

Figure A.34.: Track candidates

In this simplified example there was only low background, no skipped layers etc.,
which is why it still looked rather clean. Figure A.35 to Figure A.41 depicts the
same event including more background and skipping of layers, which gives a denser,
but also more realistic example. Also much more tracks can be found if the skipping
mechanism is in place.

109

A. The cellular automaton for track finding

Figure A.35.: The hits

Figure A.36.: Built 2-hit-segments

Figure A.37.: The cellular automaton performed with the 2-hit-segments

110

A.4. Demonstration for the FTD

Figure A.38.: After removing segments with bad states

Figure A.39.: The cellular automaton performed with 3-hit-segments

Figure A.40.: After erasing bad states

111

A. The cellular automaton for track finding

Figure A.41.: The final track candidates

112

B. Acknowledgements

There are many people I want to thank, without whom writing this thesis would
not have been possible:

First I want to thank Winfried Mitaroff. He brought me into the subject of high
energy physics and put a lot of effort into supervising me. I owe him great thanks
for taking so much care of this project and me – his enthusiasm and feedback kept
me going.

I also thank Rudolf Frühwirth for providing me with great help and insights in
algorithms and statistics, for always being a productive and calm supervisor. Thanks
to my supervisors, I never felt lost on my way.

Many ideas and great inspiration came from numerous talks with Jakob Letten-
bichler. I will always remember how fruitful the exchange between different working
groups can be.

I want to thank Felicitas Thorne and Moritz Nadler for all the small things, that
help so much – the talks at lunch, the guidance with ROOT and the companionship.

And I want to thank all of the High Energy Physics Institute of the Austrian
Academy of Sciences – this has been a wonderful year and I’ve never before worked
in such an inspiring atmosphere. Special thanks go to Christian Fabjan, Manfred
Krammer and Christoph Schwanda for their administration and financial support.

My gratitudes also go to DESY, which had become my second home for a part of
this work, and the people with whom I collaborated there. Especially Steve Aplin,
with whom I shared the happy and insane moments of writing software algorithms
and from whom I learned that life only makes sense backwards while we are under
the burden of living it forwards. Frank Gaede and Jan Engels have been a great
help in the ILD collaboration welcoming me so open hearted and supporting me on
many frontiers.

Finally I want to mention those who helped me on a personal level. Without my
family and their support none of this would have been possible. I deeply thank you.

Last, I want to thank my spouse Simone for giving me encouragement and comfort
when I needed them, for being patient when I had to leave the country and for giving
me a place I was always happy to come back to.

113

Bibliography

[1] Georges Aad et al. Observation of a new particle in the search for the Standard
Model Higgs boson with the ATLAS detector at the LHC. Phys.Lett., B716:1–
29, 2012.

[2] I. Abt, D. Emeliyanov, I. Gorbounov, and I. Kisel. Cellular automaton and
Kalman filter based track search in the HERA-B pattern tracker. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spec-
trometers, Detectors and Associated Equipment, 490(3):546–558, 2002.

[3] I. Abt, D. Emeliyanov, I. Kisel, and S. Masciocchi. CATS: a cellular automaton
for tracking in silicon for the HERA-B vertex detector. Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment, 489(1):389–405, 2002.

[4] W. Adam, R. Frühwirth, A. Strandlie, and T. Todorov. Reconstruction of
electrons with the Gaussian-sum filter in the CMS tracker at the LHC. Journal
of Physics G: Nuclear and Particle Physics, 31(9):N9, 2005.

[5] S. Agostinelli et al. Geant4—a simulation toolkit. Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment, 506(3):250–303, 2003.

[6] H. Aihara, P. Burrows, and M. Oreglia. Sid letter of intent. arXiv preprint
arXiv:0911.0006, 2009.

[7] J. Alcaraz. Helicoidal tracks. L3 Note 1666, 1995.

[8] P. Azzurri. Track reconstruction performance in CMS. Nuclear Physics B-
Proceedings Supplements, 197(1):275–278, 2009.

[9] Thomas Bergauer. Lecture: Silicon detectors in high energy physics, 2011.

[10] J. Beringer et al. Review of particle physics. Physical Review D, 86(1):010001,
2012.

[11] O. Brüning, P. Collier, P. Lebrun, S. Myers, R. Ostojic, J. Poole, and P. Proud-
lock. LHC design report. http://lhc.web.cern.ch/lhc/LHC-DesignReport.
html, 2004.

115

http://lhc.web.cern.ch/lhc/LHC-DesignReport.html
http://lhc.web.cern.ch/lhc/LHC-DesignReport.html

Bibliography

[12] Karsten Buesser. Why is it desirable to build the ILC in a linear format
rather than in a cyclotron format? http://www.linearcollider.org/about/

Why-do-we-need-the-ILC/Ask-a-scientist/.

[13] Serguei Chatrchyan et al. Observation of a new boson at a mass of 125 GeV
with the CMS experiment at the LHC. Phys.Lett., B716:30–61, 2012.

[14] M.M. Collider. A feasibility study. 1996.

[15] S. Cucciarelli, M. Konecki, D. Kotlinski, and T. Todorov. Track reconstruction,
primary vertex finding and seed generation with the pixel detector. CMS Note,
2006026, 2006.

[16] ILC Global Design Effort and World Wide Study. International Linear
Collider reference design report. http://www.linearcollider.org/about/

Publications/Reference-Design-Report, 2007.

[17] D. Emeliyanov, I. Gorbounov, and I. Kisel. OTR/ITR-CATS: Tracking based
on cellular automaton and Kalman filter. HERA-B internal note, HERA-B,
pages 01–137, 2001.

[18] The Tevatron Electroweak Working Group for the CDF and DØ Collaborations.
Combination of cdf and DØ results on the mass of the top quark using up to 5.8
fb−1 of data. http://tevewwg.fnal.gov/top/TevSum11MtCombo.pdf, 2011.

[19] R. Frühwirth. Application of Kalman filtering to track and vertex fitting. Nu-
clear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 262(2):444–450, 1987.

[20] R. Frühwirth, M. Regler, R.K. Bock, H. Grote, and D. Notz. Data analysis
techniques for high-energy physics, volume 11. Cambridge University Press,
2000.

[21] Frühwirth and Strandlie. Pattern recognition and reconstruction in Landolt-
Börrnstein new series, group I: Detectors for particles and radiation. part 1:
Principles and methods vol 21B1 chap 4.3. 2011.

[22] Rudolf Frühwirth. Selection of optimal subsets of tracks with a feed-back neural
network. Computer Physics Communications, 78:23–38, 1993.

[23] F. Gaede, T. Behnke, N. Graf, and T. Johnson. LCIO-a persistency framework
for linear collider simulation studies. arXiv preprint physics/0306114, 2003.

[24] F. Gaede and J. Engels. Marlin et al-a software framework for ILC detector
R&D. EUDET-Report-2007-11, 2007.

[25] Frank Gaede. GEAR - a geometry description toolkit for ILC reconstruction
software. http://ilcsoft.desy.de/portal/software_packages/gear.

116

http://www.linearcollider.org/about/Why-do-we-need-the-ILC/Ask-a-scientist/
http://www.linearcollider.org/about/Why-do-we-need-the-ILC/Ask-a-scientist/
http://www.linearcollider.org/about/Publications/Reference-Design-Report
http://www.linearcollider.org/about/Publications/Reference-Design-Report
http://tevewwg.fnal.gov/top/TevSum11MtCombo.pdf
http://ilcsoft.desy.de/portal/software_packages/gear

Bibliography

[26] L. Garren. Stdhep 5.05 monte carlo standardization at FNAL. Fermilab
PM0091. Available from http://cepa. fnal. gov/psm/stdhep.

[27] RL Gluckstern. Uncertainties in track momentum and direction, due to multiple
scattering and measurement errors. Nuclear Instruments and Methods, 24:381–
389, 1963.

[28] ILD Concept Group. The international large detector: Letter of intent. http:
//ilcild.org/documents/ild-letter-of-intent/, 2010.

[29] J. J. Hopfield. Neural networks and physical systems with emergent collective
computational abilities. Proc. Natl. Acad. Sci. USA, 79:2554–2558, 1982.

[30] V. Khachatryan, AM Sirunyan, A. Tumasyan, W. Adam, T. Bergauer, M. Drag-
icevic, J. Erö, C. Fabjan, M. Friedl, R. Frühwirth, et al. CMS tracking per-
formance results from early LHC operation. The European Physical Journal
C-Particles and Fields, 70(4):1165–1192, 2010.

[31] W. Kilian, T. Ohl, and J. Reuter. WHIZARD—simulating multi-particle pro-
cesses at LHC and ILC. The European Physical Journal C-Particles and Fields,
71(9):1–29, 2011.

[32] I. Kisel, V. Kovalenko, F. Laplanche, R. Arnold, C. Augier, A. Barabash,
D. Blum, V. Brudanin, JE Campagne, D. Dassie, et al. Cellular automaton and
elastic net for event reconstruction in the NEMO-2 experiment. Nuclear Instru-
ments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, 387(3):433–442, 1997.

[33] IV Kisel and GA Ososkov. An application of cellular automata and neural
networks for event reconstruction in discrete detectors. Cern European Orga-
nization for Nuclear Research-Reports, pages 646–646, 1992.

[34] T. Krämer. Track parameters in LCIO. 2006.

[35] Manfred Krammer and Winfried Mitaroff. Tracking detectors, in “handbook
of particle detection and imaging”, vol. 1, pp. 265 – 295, springer, berlin-
heidelberg. 2012.

[36] P. Lebrun, L. Linssen, A. Lucaci-Timoce, D. Schulte, F. Simon, S. Stapnes,
N. Toge, H. Weerts, and J. Wells. The CLIC programme: Towards a staged e+
e-linear collider exploring the terascale: CLIC conceptual design report. arXiv
preprint arXiv:1209.2543, 2012.

[37] C. Lefevre. Lhc: the guide. http://cdsweb.cern.ch/record/1092437, 2008.

[38] J. Lettenbichler, R. Frühwirth, M. Nadler, and R. Glattauer. Low-momentum
track finding in Belle II. 2012.

117

http://ilcild.org/documents/ild-letter-of-intent/
http://ilcild.org/documents/ild-letter-of-intent/
http://cdsweb.cern.ch/record/1092437

Bibliography

[39] Jakob Lettenbichler. Pattern recognition in the silicon vertex detector of the
Belle II experiment. Master’s thesis, 2012.

[40] C. Lippmann. Particle identification. Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and Asso-
ciated Equipment, 666:148–172, 2012.

[41] R. Mankel. Pattern recognition and event reconstruction in particle physics
experiments. Reports on Progress in Physics, 67(4):553, 2004.

[42] R. Mankel and A. Spiridonov. Ranger-a pattern recognition algorithm for the
HERA-B main tracking system. Part I: The HERA-B pattern tracker. HERA–B
note, pages 97–082, 1997.

[43] Rainer Mankel and Alexander Spiridonov. The Concurrent track evolution
algorithm: Extension for track finding in the inhomogeneous magnetic field of
the HERA-B spectrometer. Nucl.Instrum.Meth., A426:268–282, 1999.

[44] G. Moortgat-Pick. News from polarized e-and e+ at the ILC. arXiv preprint
hep-ph/0509099, 2005.

[45] G. Moortgat-Pick, Abe, et al. Revealing fundamental interactions: the role
of polarized positrons and electrons at the linear collider. Technical report,
Stanford Linear Accelerator Center (SLAC), 2005.

[46] G. Moortgat-Pick and H. Steiner. Physics opportunities with polarized e- and
e+ beams at TESLA. EPJ direct, 3(1):1–27, 2001.

[47] S. Myers and E. Picasso. The design, construction and commissioning of the
CERN large electron–positron collider. Contemporary Physics, 31(6):387–403,
1990.

[48] Bodgan Povh, Klaus Rith, Christoph Scholz, and Frank Zetsche. Teilchen und
Kerne, 7. Auflage. 2006.

[49] A. Raspereza. LDC tracking package user’s manual, 2007.

[50] M. Regler and R. Frühwirth. Generalization of the gluckstern formulas i: Higher
orders, alternatives and exact results. Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and Asso-
ciated Equipment, 589(1):109–117, 2008.

[51] M. Regler, M. Valentan, and R. Früwirth. LiCToy 2.0, 2008.

[52] T. Schober. Untersuchung der Hough-Transformation als Beispiel eines globalen
Algorithmus zur Mustererkennung im HERA-B Spurkammersystem. Master’s
thesis, Humboldt-Universit. at zu Berlin, 1996.

118

Bibliography

[53] Yash Shrivastava. Guaranteed convergence in a class of hopfield networks. IEEE
Transactions on Neural Networks, 3(6):951–961, 1992.

[54] M. Srednicki. Quantum field theory. Cambridge University Press, 2007.

[55] A. Strandlie and R. Frühwirth. Track and vertex reconstruction: From classical
to adaptive methods. Reviews of Modern Physics, 82(2):1419, 2010.

[56] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Profes-
sional, third edition, June 1997.

[57] M.A. Thomson. Particle Flow Calorimetry and the PandoraPFA Algorithm.
Nucl.Instrum.Meth., A611:25–40, 2009.

[58] T. Toffoli and N. Margolus. Cellular automata machines: a new environment
for modeling. MIT press, 1987.

[59] J. Vlissides, R. Helm, R. Johnson, and E. Gamma. Design patterns: Elements
of reusable object-oriented software. 1995.

[60] G. Weiglein. The LHC and the ILC. arXiv preprint hep-ph/0508181, 2005.

119

Glossary

θ The polar angle w.r.t. the z-axis (origin at center of detector, direction of the
beam tube and the magnetic field). 11–13, 78

AIDA Advanced European Infrastructures for Detectors at Accelerators, a project
funded by the EU’s 7th framework programme. 58, 89

ATLAS A detector at the LHC. 25, 51

Belle Detector at the KEKB accelerator. 55

Belle II Detector at the SuperKEKB accelerator, upgrade of Belle. 30, 36, 49, 54–56

C++ An object-oriented programming language, quasi standard in high energy
physics. 16, 17, 49, 50, 58–60

CA Cellular Automaton, discrete entities evolving in discrete timesteps depending
on the local environment. III, 28, 36, 54, 93, 96, 97, 102, 107, 108

CATS Track reconstruction program for the HERA-B vertex detector based on a
cellular automaton. 30, 54, 55

CERN European Organization for Nuclear Research, near Geneva, Switzerland/France.
4

CKM Cabibbo-Kobayashi-Maskawa matrix, unitary matrix describing the mixing
of quark generations. 2, 55

CLIC Compact Linear Collider, project of a linear electron-positron collider. 3, 4,
7, 9, 58, 89, 92

CMS Compact Muon Solenoid detector, a detector at the LHC. 25, 49, 51, 52, 89

CP Combined charge-conjugation and parity symmetry; its violation expresses an
asymmetry between matter and anti-matter. 2, 6, 52

DBD Detailed Baseline Design, reports being written by the two ILC detector
groups. III, IV, 68, 89

DESY Deutsches Elektronen-Synchrotron, at Hamburg, Germany. 4, 8, 113

121

Glossary

ECAL Electromagnetic Calorimeter. 10, 25

FTD Forward Tracking Detector, a silicon sub-detector in the ILD covering the
tracking area around the beam pipe. III, IV, 12, 13, 15, 27, 28, 31, 32, 36, 49,
50, 52, 55, 56, 61–64, 68, 70, 71, 78, 82, 92, 106, 107

GEANT4 A toolkit for simulating the passage of particles through matter[5]. 16

GSL GNU Scientific Library. 57

HCAL Hadronic Calorimeter. 10, 25

HERA Hadron-Elektron-Ring-Anlage, a proton-electron collider at DESY. 4

HERA-B Spectrometer operated in the halo of the HERA proton beam, used to
measure CP -violation. 49, 52

Higgs boson A fundamental spin-0 particle, the last missing part of the SM; pos-
sibly discovered 2012 at LHC. III, 2–4, 51

HNN Hopfield neural network, a recurrent neural network with symmetric connec-
tions. III, 59

ILC International Linear Collider, project of a linear electron-positron collider. III,
IV, 1, 3–5, 7–10, 27, 58, 89, 92

ILD International Large Detector, one of two validated detector concepts for the
ILC. III, IV, 1, 8, 10–12, 15–17, 19, 20, 25, 28, 30, 31, 36, 49, 51, 52, 54–58,
61, 62, 64, 70, 78, 82, 87, 89, 91, 92, 106, 107, 113

IP Interaction Point, spot where beam particle collisions occur. 30–34, 50, 51, 62,
78, 93, 96, 98, 100, 102, 103, 106, 107

KEK A high energy accelerator research organization in Tsukuba, Japan. 52

KEKB A high luminosity electron positron synchrotron used as B-factory at KEK.
4

KF Kalman f ilter, a recursive and locally linear estimator, equivalent to the global
least squares method. III

LCIO Linear Collider I/O, a data model and persistency system containing classes
for describing high energy physics events. 16, 17, 20, 37, 57, 61, 64

LEP Large Electron-Positron Collider, an electron-positron synchrotron at CERN.
4, 7

122

Glossary

LHC Large Hadron Collider, a proton-proton and ion-ion synchrotron at CERN
and successor to LEP. III, IV, 3–7, 11

LoI Letter of Intent, proposals submitted by the then 3 ILC detector groups in
2009, two of which were eventually validated. 49, 73, 82

Marlin Modular analysis and reconstruction for the Linear collider, framework for
event reconstruction at ILD. 16, 17, 57, 61, 62, 87

Mokka Program package for detector simulation based upon GEANT4, used by
ILD. 16, 17, 64, 68

MSSM Minimal Supersymmetric extension of the Standard Model. 3

QCD Quantum Chromodynamics, theory of the strong interaction, part of the SM.
2, 5

QED Quantum Electrodynamics, theory of the electromagnetic interaction; as uni-
fied with the weak interaction (electroweak theory) part of the SM. 1

QI Quality indicator, a test value between 0 and 1, used by the HNN. 46, 74, 77

RF Radio frequency, a wide range of oscillation frequencies from 30 kHz upwards,
originally used by radio; in acceleration cavities, e.g. 1.3 GHz (ILC), 12 GHz
(CLIC). 4–9

ROOT A data analysis system developed for and mainly used in high energy physics.
57, 113

SET Silicon External Tracker, a silicon sub-detector in the ILD just outside the
TPC. 11, 12

SiD Silicon Detector, one of two validated detector concept for the ILC description.
8, 10, 11, 51

SIT Silicon Inner Tracker, a silicon sub-detector in the ILD just inside the TPC.
11, 12, 50

SLAC Stanford Linear Accelerator Center, at Stanford University, CA, USA. 52

SM Standard Model, the present theory of particle physics. III, IV, 1–3

SuperKEKB A high luminosity electron positron synchrotron used as B-factory at
KEK, successor to KEKB. 55

SUSY Supersymmetry, a possible theoretical extension of the SM. 3, 6

123

Glossary

SVD Silicon Vertex Detector, the outer part of the silicon tracking system at
Belle II, between a pixel vertex detector and a central drift chamber. 49,
54–56

SVN Apache Subversion, a software versioning system. 92

TPC Time Projection Chamber, a gaseous tracking detector. III, IV, 8–13, 19, 27,
37, 49, 50, 55, 56, 64, 78, 82, 92, 107

vertex Point in space of the beam interaction (primary vertex), or of the decay of an
unstable particle (secondary vertex) - hence the origin of particle trajectories.
9, 12, 16, 17, 19–21, 26, 43, 51, 56, 64, 70, 78, 96, 106, 107

VTX Multi-layer pixel-Vertex detector, a sub-detector in the ILD, close around the
beam tube covering the IP region. 12, 50, 52

Whizard A modern event generator package, for SM physics and beyond. 15, 64

124

