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Abstract

We present eHDECAY, a modified version of the program HDECAY which includes the

full list of leading bosonic operators of the Higgs effective Lagrangian with a linear

or non-linear realization of the electroweak symmetry and implements two benchmark

composite Higgs models.
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1 Introduction

In a companion paper [1], we gave a detailed review of the low-energy effective Lagrangian

which describes a light Higgs-like boson and estimated the deviations induced by the leading

operators to the Higgs decay rates. We discussed in particular how the effective Lagrangian

can be used beyond the tree-level by performing a multiple perturbative expansion in the

SM coupling parameter α/π and in powers of E/M , where E is the energy of the process and

M is the New Physics (NP) scale at which new massive states appear. When the Higgs-like

boson is part of a weak doublet, a third expansion must be performed for v/f � 1, where

f ≡M/g? and g? is the typical coupling of the NP sector.

A recent study [2] concluded that, at tree-level, there are 8 dimension-6 CP-even operators

that can be constrained by Higgs physics only. It is of course essential to have automatic tools

to give accurate predictions of the deviations induced by these operators to Higgs observables.

These operators are all part of the Strongly Interacting Light Higgs (SILH) Lagrangian [3]

that we will be dealing with (the SILH Lagrangian, Eq. 2.2, contains 12 operators but 2

combinations of them are severely constrained by electroweak (EW) precision data and two

other combinations are constrained by the bounds on anomalous triple gauge couplings).

These operators are also included in Monte Carlo codes recently developed [4, 5].

The purpose of this note is to present the Fortran code eHDECAY, which implements

the leading operators in the effective Lagrangian and gives an extension of the program

HDECAY [6] for the automatic calculation of the Higgs decay widths and branching ratios.

The program can be obtained at the URL:

http://www-itp.particle.uni-karlsruhe.de/~maggie/eHDECAY/.

The organization of the paper is as follows. In Section 2 we briefly review the definition

of the effective Lagrangians, with linearly and non-linearly realized electroweak symmetry

breaking (EWSB), that have been implemented in the program. This is mainly to set the

notation. For more details and for a discussion of the physics implications we refer the reader

to Ref. [1]. Section 3 gives a detailed discussion of how the partial decay widths have been

implemented into the program eHDECAY, including higher-order effects in the perturbative

expansion. For issues related to the perturbative expansion and the inclusion of higher-

order corrections we again refer the reader to Ref. [1]. In Section 4 we give numerically
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approximated results for the Higgs decay rates in the framework of linearly realized EWSB.

Section 5 explains how to run eHDECAY and presents sample input and output files. We

conclude in Section 6.

2 Effective Lagrangians for linearly and non-lineary re-

alized EW symmetry

We assume for simplicity that the Higgs boson is CP-even and that baryon and lepton

numbers are conserved. If the Higgs is part of a weak doublet, the leading effects beyond

the Standard Model are parametrized by 53 operators with dimension-6 [7–9] (additional 6

operators must be added if the assumption of CP conservation is relaxed), when a single

family of quarks and leptons is considered. In the following we will adopt the so-called SILH

basis proposed in Ref. [3]:

L = LSM +
∑
i

c̄iOi ≡ LSM + ∆LSILH + ∆LF1 + ∆LF2 + ∆LV + ∆L4F , (2.1)

with 2

∆LSILH =
c̄H
2v2

∂µ
(
H†H

)
∂µ
(
H†H

)
+

c̄T
2v2

(
H†
←→
DµH

)(
H†
←→
D µH

)
− c̄6 λ

v2

(
H†H

)3

+
(( c̄u

v2
yuH

†H q̄LH
cuR +

c̄d
v2
ydH

†H q̄LHdR +
c̄l
v2
ylH

†H L̄LHlR

)
+ h.c.

)
+
ic̄W g

2m2
W

(
H†σi

←→
DµH

)
(DνWµν)

i +
ic̄B g

′

2m2
W

(
H†
←→
DµH

)
(∂νBµν)

+
ic̄HW g

m2
W

(DµH)†σi(DνH)W i
µν +

ic̄HB g
′

m2
W

(DµH)†(DνH)Bµν

+
c̄γ g

′2

m2
W

H†HBµνB
µν +

c̄g g
2
S

m2
W

H†HGa
µνG

aµν ,

(2.2)

2In this paper we follow the same notation as in Ref. [1]. In particular, the expression of the SM

Lagrangian LSM and the convention for the covariant derivatives and the gauge field strengths can be found

in Appendix A of Ref. [1].
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∆LF1 =
ic̄Hq
v2

(q̄Lγ
µqL)

(
H†
←→
D µH

)
+
ic̄′Hq
v2

(
q̄Lγ

µσiqL
) (
H†σi

←→
D µH

)
+
ic̄Hu
v2

(ūRγ
µuR)

(
H†
←→
D µH

)
+
ic̄Hd
v2

(
d̄Rγ

µdR
) (
H†
←→
D µH

)
+

(
ic̄Hud
v2

(ūRγ
µdR)

(
Hc †←→D µH

)
+ h.c.

)
+
ic̄HL
v2

(
L̄Lγ

µLL
) (
H†
←→
D µH

)
+
ic̄′HL
v2

(
L̄Lγ

µσiLL
) (
H†σi

←→
D µH

)
+
ic̄Hl
v2

(
l̄Rγ

µlR
) (
H†
←→
D µH

)
,

(2.3)

∆LF2 =
c̄uB g

′

m2
W

yu q̄LH
cσµνuRBµν +

c̄uW g

m2
W

yu q̄Lσ
iHcσµνuRW

i
µν +

c̄uG gS
m2
W

yu q̄LH
cσµνλauRG

a
µν

+
c̄dB g

′

m2
W

yd q̄LHσ
µνdRBµν +

c̄dW g

m2
W

yd q̄Lσ
iHσµνdRW

i
µν +

c̄dG gS
m2
W

yd q̄LHσ
µνλadRG

a
µν

+
c̄lB g

′

m2
W

yl L̄LHσ
µνlRBµν +

c̄lW g

m2
W

yl L̄Lσ
iHσµνlRW

i
µν + h.c. .

(2.4)

Here λ denotes the Higgs quartic coupling which appears in the SM Lagrangian LSM , and

the weak scale is defined by

v ≡ 1

(
√

2GF )1/2
' 246 GeV . (2.5)

We have defined the Hermitian derivative

iH†
←→
DµH ≡ iH†(DµH)− i(DµH)†H (2.6)

and σµν ≡ i[γµ, γν ]/2. The Yukawa couplings yu,d,l and the Wilson coefficients c̄i are matrices

in flavor space, and a summation over flavor indices has been implicitly assumed. In order

to avoid large Flavor-Changing Neutral Currents (FCNC) through the tree-level exchange

of the Higgs boson, we assume that each of the operators Ou,d,l is flavor-aligned with the

corresponding mass term. The coefficients c̄u,d,l are then proportional to the identity matrix

in flavor space. Furthermore, as we assume CP-invariance, they are taken to be real. A

naive estimate of the Wilson coefficients c̄i can be found in Eq. (2.9) of Ref. [1], following

the power counting of Ref. [3].
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In addition to those listed in Eqs. (2.2)-(2.4), the effective Lagrangian includes also five

extra bosonic operators, ∆LV , as well as 22 four-Fermi baryon-number conserving opera-

tors, ∆L4F . Two of the operators in Eqs. (2.2), (2.3) are in fact redundant and can be

eliminated through the equations of motion. A most convenient choice is that of eliminating

two of the three operators involving leptons in ∆LF1 .

In the unitary gauge with canonically normalized fields, the SILH effective Lagrangian

∆LSILH reads:

L =
1

2
∂µh ∂

µh− 1

2
m2
hh

2 − c3
1

6

(
3m2

h

v

)
h3 −

∑
ψ=u,d,l

mψ(i) ψ̄(i)ψ(i)

(
1 + cψ

h

v
+ . . .

)
+m2

W W+
µ W

−µ
(

1 + 2cW
h

v
+ . . .

)
+

1

2
m2
Z ZµZ

µ

(
1 + 2cZ

h

v
+ . . .

)
+ . . .

+
(
cWW W+

µνW
−µν +

cZZ
2
ZµνZ

µν + cZγ Zµνγ
µν +

cγγ
2
γµνγ

µν +
cgg
2
Ga
µνG

aµν
) h
v

+
( (
cW∂W W−

ν DµW
+µν + h.c.

)
+ cZ∂Z Zν∂µZ

µν + cZ∂γ Zν∂µγ
µν
) h
v

+ . . .

(2.7)

where we have shown terms with up to three fields and at least one Higgs boson. The

couplings ci are linear functions of the Wilson coefficients of the effective Lagrangian (2.1)

and are reported in Table 1. 3 In particular, the following relations hold

cWW − cZZ cos2θW = cZγ sin 2θW + cγγ sin2θW (2.8)

cW∂W − cZ∂Z cos2θW =
cZ∂γ

2
sin 2θW , (2.9)

which are a consequence of the accidental custodial invariance of the SILH Lagrangian at the

level of dimension-6 operators [1]. 4 Imposing custodial invariance for the Lagrangian (2.2),

so that c̄T = 0, implies a third relation that holds for the non-derivative couplings cW and cZ :

cW = cZ . (2.10)

For arbitrary values of the couplings ci, Eq. (2.7) represents the most general effective La-

grangian which can be written at O(p4) in a derivative expansion by focusing on cubic terms

3Notice that the similar Table 1 in Ref. [1] contains an erroneous factor 2 in the dependence of cZ on c̄T .
4If the assumption of CP conservation is relaxed, cW∂W can in general be complex, while the other bosonic

couplings of Eq. (2.7) are real. In this case Eq. (2.9) corresponds to two real identities, respectively, on the

real and on the imaginary parts, so that custodial symmetry implies Im(cW∂W ) = 0.
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Higgs couplings ∆LSILH MCHM4 MCHM5

cW 1− c̄H/2
√

1− ξ
√

1− ξ

cZ 1− c̄H/2− c̄T
√

1− ξ
√

1− ξ

cψ (ψ = u, d, l) 1− (c̄H/2 + c̄ψ)
√

1− ξ 1− 2ξ√
1− ξ

c3 1 + c̄6 − 3c̄H/2
√

1− ξ 1− 2ξ√
1− ξ

cgg 8 (αs/α2) c̄g 0 0

cγγ 8 sin2θW c̄γ 0 0

cZγ
(
c̄HB − c̄HW − 8 c̄γ sin2θW

)
tan θW 0 0

cWW −2 c̄HW 0 0

cZZ −2
(
c̄HW + c̄HB tan2θW − 4c̄γ tan2θW sin2θW

)
0 0

cW∂W −2(c̄W + c̄HW ) 0 0

cZ∂Z −2(c̄W + c̄HW )− 2 (c̄B + c̄HB) tan2θW 0 0

cZ∂γ 2 (c̄B + c̄HB − c̄W − c̄HW ) tan θW 0 0

Table 1: The second column reports the values of the Higgs couplings ci defined in Eq. (2.7) in

terms of the coefficients c̄i of the effective Lagrangian ∆LSILH . The last two columns show the

predictions of the MCHM4 and MCHM5 models in terms of ξ = (v/f)2, see Ref. [1] for details.

The auxiliary parameter α2 is defined by Eq. (3.12).
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with at least one Higgs boson and making the following two assumptions: i) CP is conserved;

ii) vector fields couple to conserved currents. Effects which violate the second assumption,

in particular, are suppressed by the fermion masses, hence they are small for all the processes

of interest in this work. Such description does not require the Higgs boson to be part of an

electroweak doublet, and in this sense Eq. (2.7) can be considered as a generalization of the

SILH Lagrangian ∆LSILH . It contains 10 couplings involving a single Higgs boson and two

gauge fields (hV V couplings, with V = W,Z, γ, g), 3 linear combinations of which vanish

if custodial symmetry is imposed [1]. This counting agrees with the complete non-linear

Lagrangian at O(p4) recently built in Refs. [10–13]. This general Lagrangian contains many

more operators but it can be easily checked that only 10 independent operators remain after

assuming CP invariance and the conservation of fermionic currents, and among them 3 break

the custodial symmetry. If the assumption on conserved currents is relaxed, there are two

more independent operators at O(p4) that give rise to hV V couplings (they are the opera-

tors P9 and P10 of Ref. [13], see also the general form factor description of Ref. [14]). These

two additional couplings can only be obtained from dimension-8 operators when the Higgs

boson is part of an EW doublet. In the non-linear realization of the EW symmetry, all Higgs

couplings are truly independent of other parameters that do not involve the Higgs boson,

like EW oblique parameters or anomalous triple gauge couplings. In a linear realization, on

the other hand, only 4 hV V couplings are independent of the other EW measurements [2].

In custodial invariant scenarios, it is thus not possible to tell whether the Higgs is part of

an EW doublet by focusing only on hV V couplings, since their number is the same in both

the linear and non-linear descriptions under our assumptions (CP and current conservation).

The decorrelation between the hV V couplings and the other EW data might instead be a

way to disprove the doublet nature of the Higgs boson [13].

The code eHDECAY retains only the couplings induced by the operators of ∆LSILH since

the effects of the other operators with fermions are either severely constrained by non-Higgs

physics or, like the top dipoles, are irrelevant for the Higgs total decay rates (they could

modify in a sensible way the differential decay rates but such an analysis is beyond the scope

of the present work). The CP-odd operators are not considered either since they do not

interfere with the inclusive SM amplitudes and thus modify the decay rates at a subleading

order in the perturbative expansion considered in this paper.
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3 Implementation of the Higgs effective Lagrangian

into eHDECAY

The program HDECAY [6] was originally written for the automatic computation of the Higgs

partial decay widths and branching ratios in the SM and in its Minimal Supersymmetric

extension (MSSM). It includes the possibility of specifying modified couplings for up-type

quarks, down-type quarks, leptons and vector bosons in the parametrization of Eq. (2.7),

as well as of including the effective couplings cgg, cγγ and cZγ. We present here a modified

version of the program, labelled eHDECAY. It is available at the following URL:

http://www-itp.particle.uni-karlsruhe.de/~maggie/eHDECAY/.

In addition to the features already present in HDECAY, the new program includes the ef-

fective couplings cWW , cZZ , cW∂W and cZ∂Z , and thus fully implements the non-linear La-

grangian (2.7). 5 In fact, similarly to HDECAY 5.10, it also includes the possibility of choosing

different couplings of the Higgs boson to each of the up and down quark flavors and lepton

flavors. In this sense the program assumes neither custodial symmetry nor flavor alignment.

As explained in the text, Eq. (2.7) describes a generic CP-even scalar h at O(p4) in the

derivative expansion. If h forms an SU(2)L doublet together with the longitudinal polariza-

tions of the W and the Z, the Lagrangian can be expanded as in Eq. (2.2) for (v/f) � 1;

in this case the values of the Higgs couplings ci are given in the second column of Table 1.

The program eHDECAY provides an option in its input file where the user can switch from

the non-linear parametrization of Eq. (2.7) to that of the SILH Lagrangian Eq. (2.2). The

user can also choose to set the values of the Higgs couplings to those predicted at leading

order in an expansion in powers of weak couplings in the benchmark composite Higgs models

MCHM4 [15] and MCHM5 [16], see the last two columns of Table 1.

Similarly to the original version of HDECAY, all the relevant QCD corrections are included.

They generally factorize with respect to the expansion in the number of fields and deriva-

tives of the effective Lagrangian, and can thus be straightforwardly included by making

use of the existing SM computations. The inclusion of the electroweak corrections is less

straightforward and can currently be done in a consistent way only in the framework of the

5Notice that the operator proportional to cZ∂γ does not affect the decay h → Zγ as long as the photon

is on-shell.
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Lagrangian (2.2) and up to higher orders in (v/f). Going beyond such approximations would

require dedicated computations which at the moment are not available in the literature. In

eHDECAY the user has the option to include the one-loop EW corrections to a given decay

rate only if the parametrization of Eq. (2.2) has been chosen. The same EW scheme as used

by HDECAY, with GF , mW and mZ taken as input parameters, is also adopted in eHDECAY.

The sine of the Weinberg angle is defined as

sin2θW = 1− m2
W

m2
Z

, (3.11)

following the conventional on-shell scheme [17]. Derived quantities in this scheme are also the

electromagnetic coupling and the weak coupling. To describe the latter we have conveniently

defined the parameter

α2 ≡
√

2GFm
2
W

π
. (3.12)

The formulas implemented in the program are thus written in terms of only the input pa-

rameters or their derived quantities sin θW and α2. The only exception to this rule is given

by the decay rates Γ(h → γγ) and Γ(h → Zγ), where we use the experimental value of

the electromagnetic coupling in the Thomson limit, αem(q2 = 0), in order to avoid large

logarithms for on-shell photons.

Below a detailed discussion follows of how the New Physics corrections are incorporated

for each of the Higgs decay modes. We report explicitly the formulas implemented in the code

and their level of approximation in the perturbative expansion of the effective Lagrangian.

In all the following expressions, as explained in the text, the coefficients of the dimension-6

operators of the SILH Lagrangian (2.2) and those of the derivative operators of Eq. (2.7)

must be identified with their values at the relevant low-energy scale µ = mh.

3.1 Decays into quarks and leptons

Upon adopting the effective description of the non-linear Lagrangian (2.7) and working

at leading order in the derivative expansion, the Higgs boson partial decay width into a

pair of fermions is obtained by rescaling the tree-level SM value ΓSM0 (ψψ̄) by a factor c2
ψ.

The QCD corrections to the decay widths into quarks which are currently available for the

SM case include fully massive next-to-leading order (NLO) corrections near threshold [18]
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and massless O(α4
s) corrections far above threshold [19–22]. Also, large logarithms can be

resummed through the running of the quark masses and of the strong coupling constant.

They are evaluated at the scale given by the Higgs mass. The transition from the threshold

region involving mass effects to the renormalization-group-improved large-Higgs mass regime

is provided by a smooth linear interpolation. All these QCD corrections factorize with respect

to the tree-level amplitude and can therefore be incorporated as done in HDECAY for the SM

case. The decay rate can be written as follows:

Γ(ψ̄ψ)
∣∣
NL

= c2
ψ ΓSM0 (ψ̄ψ)

[
1 + δψ κ

QCD
]
, (3.13)

where ΓSM0 denotes the leading-order decay width, δψ = 1(0) for ψ = quark (lepton) and

κQCD encodes the QCD corrections.6 This is the formula implemented by eHDECAY in the

case of the non-linear Lagrangian (2.7). It is valid up to corrections of O(m2
h/M

2) in the

derivative expansion and of O(α2/4π) from EW loops. These latter corrections are available

in the SM but contrary to the QCD ones do not factorize. Their inclusion in the case

of generic Higgs couplings thus requires a dedicated calculation, which is not available at

present. The two benchmark composite Higgs models MCHM4 and MCHM5 provide a

resummation of higher-order terms in ξ = v2/f 2. Contrary to the SILH Lagrangian which is

to be seen as an expansion in ξ, in these two models rather large coupling deviations can in

principle be possible (eventually they are precluded due to the constraints from electroweak

precision measurements). We therefore apply the formula Eq. (3.13) also for the MCHM4

and MCHM5, with cψ given by the corresponding coupling values in columns 3 and 4 of

Table 1.

In case of the SILH parametrization, where the deviations of the Higgs couplings from

their SM values are assumed to be of O(v2/f 2) and small, the decay rate can be written as

Γ(ψ̄ψ)
∣∣
SILH

= ΓSM0 (ψ̄ψ)

[
1− c̄H − 2c̄ψ +

2

|ASM0 |2
Re
(
A∗SM0 ASM1,ew

)] [
1 + δψ κ

QCD
]
, (3.14)

where ASM0 , ASM1,ew are, respectively, the tree-level and EW one-loop [23] amplitudes of

the SM. In this case the one-loop EW corrections can be easily included if one neglects

6There is one caveat, however. In the case of decays into strange, charm or bottom quarks there are two-

loop diagrams which involve loops of top quarks coupling to the Higgs boson. They need a rescaling different

from c2ψ. It has been correctly taken into account by the appropriate modification factor cψct (ψ = c, s, b).
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terms of O[(α2/4π)(v/f)2] 7. In particular, mixed contributions up to O[(α2/4π)(αs/4π)4]

have been included by assuming that the electroweak and QCD corrections factorize, as

the non-factorizable contributions are small. From the viewpoint of the expansion in inverse

powers of the NP scale, the formula (3.14) includes corrections of order O(v2/f 2). It neglects

terms of O(v4/f 4), O[(α2/4π)(v/f)2], O[(α2/4π)2].

3.2 Decay into gluons

Upon selecting the Lagrangian (2.7), the rate into two gluons is computed in eHDECAY by

means of the following formula:

Γ(gg)
∣∣
NL

=
GFα

2
sm

3
h

4
√

2π3

[∣∣∣∣ ∑
q=t,b,c

cq
3
A1/2 (τq)

∣∣∣∣2c2
eff κsoft

+ 2 Re

( ∑
q=t,b,c

cq
3
A∗1/2 (τq)

2πcgg
αs

)
ceff κsoft +

∣∣∣∣2πcggαs

∣∣∣∣2 κsoft
+

1

9

∑
q,q′=t,b

cq A
∗
1/2 (τq) cq′ A1/2 (τq′)κ

NLO(τq, τq′)

]
,

(3.15)

where τq = 4m2
q/m

2
h and the loop function, normalized to A1/2(∞) = 1, is defined as

A1/2 (τ) =
3

2
τ [1 + (1− τ) f (τ)] , (3.16)

with

f (τ) =


arcsin2 1√

τ
τ ≥ 1

−1

4

[
ln

1 +
√

1− τ
1−
√

1− τ
− iπ

]2

τ < 1 .

(3.17)

The first term corresponds to the one-loop contribution from the top, bottom and charm

quarks, whose couplings to the Higgs boson are modified with respect to their SM values.

7As pointed out in footnote 21 of Ref. [1], in the strict sense this equation is valid for the genuine

EW corrections only, while for simplicity we include the (IR-divergent) virtual QED corrections to the SM

amplitude in the same way. The corresponding real photon radiation contributions to the decay rates are

treated in terms of a linear novel contribution to the Higgs coupling for the squared amplitude in order to

obtain an infrared finite result. Pure QED corrections factorize as QCD corrections in general so that their

amplitudes scale with the modified Higgs couplings. However, they cannot be separated from the genuine

EW corrections in a simple way.
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In order to minimize the effects from higher-order QCD corrections, we use the pole masses

for the top, bottom and charm quarks, mt = 172.5 GeV, mb = 4.75 GeV and mc = 1.42 GeV.

The second and third terms encode the effect of the derivative interaction between the Higgs

boson and two gluons generated by New Physics. Naively cgg ≈ (αs/4π)(g2
∗v

2/M2), so that

the correction from the effective interaction can be as important as the one from the top

quark if (g2
∗v

2/M2) ≈ 1. No expansion is thus possible in cgg in the general case.

The QCD corrections have been included up to N3LO in Eq. (3.15) in the limit of large

loop-particle masses, similarly to what is done in HDECAY for the SM. In this limit the effect of

soft radiation factorizes and is encoded by the coefficient κsoft. The coefficient ceff , instead,

takes into account the correction from the exchange of hard gluons and quarks with virtuality

q2 � m2
t . More in detail, for mh � 2mt, one can integrate out the top quark and obtain the

following five-flavour effective Lagrangian

Leff = −21/4G
1/2
F C1G

0
aµνG

0µν
a h , (3.18)

where bare fields are labeled by the superscript 0. The renormalized coefficient function C1

encodes the dependence on the top quark mass mt. The coefficients κsoft and ceff are thus

defined as

κsoft =
π

2m4
h

Im ΠGG(q2 = m2
h)

ceff = − 12π C1

α
(5)
s (mh)

,

(3.19)

where ΠGG(q2) is the vacuum polarization induced by the gluon operator. The N3LO expres-

sion of the coefficient function C1 [24–27] in the on-shell scheme and that of Im ΠGG can be

found in Ref. [28]. At NLO the expressions for κsoft and ceff take the well-known form [29]

κNLOsoft = 1 +
αs
π

(
73

4
− 7

6
NF

)
, cNLOeff = 1 +

αs
π

11

4
, (3.20)

where here αs is evaluated at the scale mh and computed for NF = 5 active flavours.

In eHDECAY it is consistently computed up to N3LO. The last line in Eq. (3.15) contains

the additional mass effects at NLO QCD [30] in the top and bottom loops, encoded in

κNLO(τq, τq′), which have been explicitly implemented in HDECAY and taken over in eHDECAY.

While the mass effects for the top quark loops play only a minor role, below the percent
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level, for the bottom loop contribution the mass effects for a 125 GeV Higgs boson amount

to about 8% relative to the approximate NLO result. Hence, formula (3.15) includes the

QCD corrections at N3LO (i.e. at O(α5
s) in the decay rate), and neglects next-to-leading

order terms in the derivative expansion (i.e. terms further suppressed by O(m2
h/M

2)). The

decay width within the MCHM4 and MCHM5 is calculated with the same formula (3.15) by

replacing cq with the values in column 3 and 4 of Table 1 and cgg ≡ 0.

When the SILH Lagrangian (2.2) is selected, on the other hand, eHDECAY computes the

decay rate into gluons by means of the following approximate formula:

Γ(gg)
∣∣
SILH

=
GFα

2
sm

3
h

4
√

2π3

[
1

9

∑
q,q′=t,b,c

(1− c̄H − c̄q − c̄q′)A∗1/2 (τq′)A1/2 (τq) c
2
eff κsoft

+ 2 Re

( ∑
q=t,b,c

1

3
A∗1/2 (τq)

16π c̄g
α2

)
ceff κsoft

+

∣∣∣∣ ∑
q=t,b,c

1

3
A1/2 (τq)

∣∣∣∣2 c2
eff κew κsoft

+
1

9

∑
q,q′=t,b

(1− c̄H − c̄q − c̄q′)A∗1/2 (τq)A1/2 (τq′)κ
NLO(τq, τq′)

]
.

(3.21)

The last line contains the mass effects at NLO QCD for the top and bottom quark loops.

The NLO electroweak corrections [31, 32] are included through the coefficient κew and by

neglecting terms ofO[(α2/4π)(v2/f 2)]. The above formula thus includes the leadingO(v2/f 2)

corrections, as well as mixed O[(αs/4π)5(α2/4π)] ones. Indeed, we assume factorization of

the QCD and EW corrections. Since QCD corrections are dominated by soft gluon radiation,

in which QCD and EW effects completely factorize, this is a good approximation8. It neglects

terms of O[(α2/4π)2] and O(v4/f 4).

3.3 Decay into photons

In the SM the decay of the Higgs boson into a pair of photons is mediated by W and

heavy fermion loops. According to the chiral Lagrangian (2.7), these two contributions

8Bottom loops contribute O(10%) to the SM decay rate and are well approximated by an effective coupling

at the 10%-level thus leading to negligible non-factorizing contributions at the percent level.
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to the total amplitude are rescaled, respectively, by the parameters cW and cψ. Similarly

to h → gg, the contact interaction proportional to cγγ can also contribute significantly.

With cγγ ≈ (αem/4π)(g2
∗v

2/M2), the contribution due to the effective interaction becomes

comparable to the loop induced contributions if (g2
∗v

2/M2) ≈ 1. The partial width for a

Higgs boson decaying into two photons implemented in eHDECAY in the framework of the

non-linear Lagrangian is thus given by

Γ(γγ)
∣∣
NL

=
GFα

2
emm

3
h

128
√

2π3

∣∣∣∣ ∑
q=t,b,c

4

3
cq 3Q2

q A
NLO
1/2 (τq) +

4

3
cτQ

2
τA1/2 (ττ )

+ cWA1 (τW ) +
4π

αem
cγγ

∣∣∣∣2 ,
(3.22)

which is approximate at leading order in the derivative expansion, i.e. it neglects terms

further suppressed by O(m2
h/M

2). By Qq,τ we denote the electric charge of the quarks and

the τ lepton, respectively. Note that αem is the electromagnetic coupling in the Thomson

limit, in order to avoid large logarithms for on-shell photons. We have defined τi = 4m2
i /m

2
h

(i = q, τ,W ) and the form factor

A1 (τ) = − [2 + 3τ + 3τ (2− τ) f (τ)] (3.23)

normalized to A1(∞) = −7. The top, bottom and charm quark loops receive NLO QCD

corrections, while the effective contact interaction does not. The NLO QCD corrected quark

form factor is denoted in Eq. (3.22) by

ANLO1/2 (τq) = A1/2(τq)(1 + κQCD) , (3.24)

where κQCD encodes the O(αs/4π) QCD corrections [30, 33, 34] and A1/2(τ) is given in

Eq. (3.16). In the MCHM4 and MCHM5 we use the same formula for the decay width with

cq and cV replaced appropriately and cγγ ≡ 0.

In order to improve the perturbative behaviour of the QCD-corrected quark loop contri-

butions, they are expressed in terms of the running quark masses mQ(µ2
Q) [30, 33]. These

are related to the pole masses MQ through

mQ(µ2
Q) = MQ

[
αs(µ

2
Q)

αs(M2
Q)

]12/(33−2NF ) (
1 +O(α2

s)
)

(3.25)
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at the mass renormalization point µQ with NF = 5 active flavours. Their scale is identified

with µQ = MH/2. This ensures a proper definition of the QQ̄ thresholds MH = 2MQ without

artificial displacements due to finite shifts between the pole and the running quark masses,

as is the case for the running MS masses. Note, that the same running quark mass mQ(µ2
Q),

at the renormalization scale µQ = MH/2, enters in the lowest order amplitude ALO1/2, which

is used in the SILH parametrization hereafter. 9

In the case of the SILH parametrization, the EW corrections have been incorporated as

well. It is useful to define the SM amplitude at leading order (LO) and NLO QCD level as

ASMX (γγ) =
∑
q=t,b,c

4

3
3Q2

q A
X
1/2 (τq) +

4

3
Q2
τ A1/2 (ττ ) + A1 (τW ) , X = LO,NLO , (3.26)

and the deviation from the SM amplitude as

∆A(γγ) =−
∑
q=t,b,c

4

3

( c̄H
2

+ c̄q

)
3Q2

q A
NLO
1/2 (τq)−

( c̄H
2

+ c̄τ

) 4

3
Q2
τ A1/2 (ττ )

−
( c̄H

2
− 2c̄W

)
A1 (τW ) .

(3.27)

The decay width implemented in eHDECAY in the SILH case is thus the following

Γ(γγ)
∣∣
SILH

=
GFα

2
emm

3
h

128
√

2π3

{
|ASMNLO(γγ)|2 + 2 Re

(
ASM∗LO (γγ)ASMew (γγ)

)
+ 2 Re

[
ASM∗NLO(γγ)

(
∆A(γγ) +

32π sin2θW c̄γ
αem

)]}
,

(3.28)

where ASMew (γγ) denotes the SM amplitude which comprises the NLO electroweak correc-

tions [31, 35]. Equation (3.28) includes the leading O(v2/f 2) and O(m2
h/M

2) corrections,

while it neglects terms of order O(v4/f 4). The electroweak corrections are implemented up

to NLO, neglecting corrections of O[(α2/4π)(v2/f 2)] and of O[(α2/4π)2]. Finally, the QCD

corrections are included up to NLO, and mixed terms of O[(α2/4π)(αs/4π)] are neglected.

3.4 Decay into Zγ

In the SM the Higgs boson decay into a Z boson and a photon is mediated by W boson

and heavy fermion loops. Adopting the parametrization of the non-linear Lagrangian, the

9For a Higgs mass value of MH = 125 GeV the running top, bottom and charm quark masses are given

by mt = 188.03 GeV, mb = 3.44 GeV and mc = 0.76 GeV. They differ from the running MS masses.
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correction from the effective interaction due to the coupling cZγ has to be considered, too,

and it can become as important as the loop contributions for (g2
∗v

2/M2) ≈ 1. The decay

width is therefore given by (here also αem ≡ αem(0)):

Γ(Zγ)
∣∣
NL

=
G2
Fαemm

2
Wm

3
h

64π4

(
1− m2

Z

m2
h

)3

×

∣∣∣∣∣∑
ψ

cψNcQψv̂ψ
cos θW

AZγ1/2 (τψ, λψ) + cW AZγ1 (τW , λW )− 4π
√
αemα2

cZγ

∣∣∣∣∣
2

,

(3.29)

with τi = 4m2
i /m

2
h, λi = 4m2

i /m
2
Z and v̂ψ = 2I3

ψ − 4Qψ sin2 θW (ψ = t, b, c, τ) in terms of the

third component of the weak isospin I3
ψ and the electric charge Qψ. The form factors are

defined by [36]

AZγ1/2 (τ, λ) = [I1 (τ, λ)− I2 (τ, λ)] ,

AZγ1 (τ, λ) = cos θW

{
4
(
3− tan2 θW

)
I2

(
τ, λ
)

+
[(

1 +
2

τ

)
tan2 θW −

(
5 +

2

τ

)]
I1

(
τ, λ
)}

.

(3.30)

The functions I1 and I2 can be cast into the form

I1 (τ, λ) =
τλ

2 (τ − λ)
+

τ 2λ2

2 (τ − λ)2 [f (τ)− f (λ)] +
τ 2λ

(τ − λ)2 [g (τ)− g (λ)]

I2 (τ, λ) = − τλ

2 (τ − λ)
[f (τ)− f (λ)] ,

(3.31)

where f(τ) is defined in Eq. (3.17) and g(τ) reads

g (τ) =


√
τ − 1 arcsin

1√
τ

τ ≥ 1

√
1− τ
2

[
ln

1 +
√

1− τ
1−
√

1− τ
− iπ

]
τ < 1 .

(3.32)

The QCD radiative corrections [37] are small and thus have been neglected, while the NLO

EW corrections are unknown. Because of the smallness of the QCD corrections, there is

no relevant issue arising from the intrinsic uncertainty due to the unknown higher-order

corrections, so that the choice of the scheme in which the quark masses are calculated does

not play any role. In eHDECAY we use the pole masses for the quarks. Finally, Eq. (3.29)

neglects terms further suppressed by O(m2
h/M

2), which are of higher-order in the derivative
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expansion. The decay width for the MCHM4 and MCHM5 is obtained by replacing cψ and

cW with the coupling values of column 3 and 4 of Table 1 and setting cZγ ≡ 0.

In the SILH parametrization the decay width is computed by eHDECAY according to the

formula

Γ(Zγ)
∣∣
SILH

=
G2
Fαemm

2
Wm

3
h

64π4

(
1− m2

Z

m2
h

)3

×

{∣∣ASM(Zγ)
∣∣2 + 2 Re

(
ASM∗(Zγ) ∆A(Zγ)

)
+ 2 Re

[
−4π tan θW√

αemα2

(c̄HB − c̄HW − 8c̄γ sin2 θW )ASM∗(Zγ)

]}
,

(3.33)

where we have defined the LO SM amplitude

ASM(Zγ) =
∑
ψ

NcQψv̂ψ
cos θW

AZγ1/2 (τψ, λψ) + AZγ1 (τW , λW ) (3.34)

and the deviation from the SM amplitude

∆A(Zγ) = −
∑
ψ

( c̄H
2

+ c̄ψ

) NcQψv̂ψ
cos θW

AZγ1/2 (τψ, λψ)−
( c̄H

2
− 2c̄W

)
AZγ1 (τW , λW ) . (3.35)

Equation (3.33) includes corrections of O(v2/f 2) and O(m2
h/M

2). The EW corrections are

unknown, and small QCD radiative corrections have been neglected.

3.5 Decays into WW and ZZ boson pairs

The Higgs boson decay into a pair of massive vector bosons is important not only above the

threshold, but also below. For example, in the SM with mh = 125 GeV the branching ratio of

h→ WW is about 20%. In HDECAY various options are present to compute the partial decay

widths with on-shell or off-shell bosons, controlled by the ON-SH-WZ input parameter. In

eHDECAY we have implemented the case ON-SH-WZ=0, which includes the double off-shell

decays h → W ∗W ∗, Z∗Z∗. For this case, which is obviously the most complete as it takes

into account both on-shell and off-shell contributions, the partial decay width h → V ∗V ∗

(V = W,Z) can be written in the following compact form [38]:

Γ(V ∗V ∗) =
1

π2

∫ m2
h

0

dQ2
1 mV ΓV

(Q2
1 −m2

V )
2

+m2
V Γ2

V

∫ (mh−Q1)2

0

dQ2
2 mV ΓV

(Q2
2 −m2

V )
2

+m2
V Γ2

V

Γ(V V ) , (3.36)
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where Q2
1, Q2

2 are the squared invariant masses of the virtual gauge bosons and mV and ΓV

their masses and total decay widths. In the parametrization of Eq. (2.7), by defining

aV V = cV V
m2
h

m2
V

, aV ∂V =
cV ∂V

2

m2
h

m2
V

, (3.37)

the squared matrix element Γ(V V ) reads

Γ(V V )
∣∣
NL

= ΓSM(V V )×

{
c2
V − 2cV

[
aV V

2

(
1− Q2

1 +Q2
2

m2
h

)
+ aV ∂V

Q2
1 +Q2

2

m2
h

]

+ cV aV V
λ (Q2

1, Q
2
2,m

2
h) (1− (Q2

1 +Q2
2)/m2

h)

λ (Q2
1, Q

2
2,m

2
h) + 12Q2

1Q
2
2/m

4
h

}
,

(3.38)

with [38]

ΓSM(V V ) =
δVGFm

3
h

16
√

2π

√
λ (Q2

1, Q
2
2,m

2
h)

(
λ
(
Q2

1, Q
2
2,m

2
h

)
+

12Q2
1Q

2
2

m4
h

)
, (3.39)

where δV = 2(1) for V = W (Z) and λ(x, y, z) ≡ (1 − x/z − y/z)2 − 4xy/z2. The second

and third term in Eq. (3.38) represent the interference between the tree-level contribution

and the one from the derivative operators. They are of order O(m2
h/M

2), hence next-to-

leading in the chiral expansion compared to the tree-level contribution; we have consistently

neglected terms quadratic in aV V and aV ∂V , since they are of O(m4
h/M

4), which is beyond

the accuracy of the effective Lagrangian (2.7). Setting aV V = aV ∂V = 0 and cV =
√

1− ξ we

obtain the decay formula for the MCHM4 and MCHM5.

In the SILH parametrization the squared matrix element Γ(V V ) implemented in eHDECAY

reads

Γ(V V )
∣∣
SILH

= ΓSILH(V V ) + ΓSM(V V )
2

|ASM0 |2
Re
(
A∗SM0 ASMew

)
, (3.40)

where ASM0 denotes the SM LO amplitude and ASMew is the SM amplitude which comprises

the NLO EW corrections [39] (the same remark as in footnote 7 applies). Furthermore,

ΓSILH(V V ) = ΓSM(V V )×

{
1− c̄H − 2c̄T δV Z − 2

[
āV V

2

(
1− Q2

1 +Q2
2

m2
h

)
+ āV ∂V

Q2
1 +Q2

2

m2
h

]

+ āV V
λ (Q2

1, Q
2
2,m

2
h) (1− (Q2

1 +Q2
2)/m2

h)

λ (Q2
1, Q

2
2,m

2
h) + 12Q2

1Q
2
2/m

4
h

}
,

(3.41)
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with δV Z = 0(1) for V = W (Z) and where we have defined,

āWW = −2
m2
h

m2
W

c̄HW

āW∂W = −2
m2
h

2m2
W

(c̄W + c̄HW )

(3.42)

āZZ = −2
m2
h

m2
Z

(
c̄HW + c̄HB tan2θW − 4c̄γ tan2θW sin2θW

)
āZ∂Z = −2

m2
h

2m2
Z

(
c̄W + c̄HW + (c̄B + c̄HB) tan2θW

) (3.43)

The decay width (3.40) includes terms of O(v2/f 2), O(m2
h/M

2) and O(α2/4π), while it

neglects contributions of O(v4/f 4) and O[(α2/4π)2]. The corrections of O[(α2/4π)(v2/f 2)]

are only partly included through the terms proportional to c̄HW and c̄HB, cf. [1].

4 Numerical formulas for the decay rates in the SILH

Lagrangian

We display here numerically approximated formulas of the Higgs decay rates valid at linear

order in the effective coefficients c̄i of the SILH Lagrangian (2.2) for mh = 125 GeV. All the

ratios Γ/ΓSM have been computed by switching off the EW corrections, since their effect on

the numerical prefactors appearing in front of the coefficients c̄i is of order (v2/f 2)(α2/4π)

and thus beyond the accuracy of the formulas implemented in eHDECAY. Conversely, we have

fully included the QCD corrections, as they multiply both the SM and the NP terms. The

numerical results are thus the following:

Γ(ψ̄ψ)

Γ(ψ̄ψ)SM
' 1− c̄H − 2 c̄ψ , for ψ = leptons, top-quark . (4.44)

The QCD corrections to the decays decays into charm, strange or bottom quark pairs involve

two-loop diagrams with top quarks loops that are rescaled differently [20]. Taking this into
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account, we have the numerical results

Γ(c̄c)

Γ(c̄c)SM
' 1− c̄H − 1.985 c̄c − 0.015 c̄t , (4.45)

Γ(s̄s)

Γ(s̄s)SM
' 1− c̄H − 1.971 c̄s − 0.029 c̄t , (4.46)

Γ(b̄b)

Γ(b̄b)SM
' 1− c̄H − 1.992 c̄b − 0.0085 c̄t . (4.47)

Furthermore,

Γ(h→ W (∗)W ∗)

Γ(h→ W (∗)W ∗)SM
' 1− c̄H + 2.2 c̄W + 3.7 c̄HW , (4.48)

Γ(h→ Z(∗)Z∗)

Γ(h→ Z(∗)Z∗)SM
' 1− c̄H − 2c̄T + 2.0

(
c̄W + tan2θW c̄B

)
+ 3.0

(
c̄HW + tan2θW c̄HB

)
− 0.26 c̄γ ,

(4.49)

Γ(h→ Zγ)

Γ(h→ Zγ)SM
' 1− c̄H + 0.12 c̄t − 5 · 10−4 c̄c − 0.003 c̄b − 9 · 10−5 c̄τ

+ 4.2 c̄W + 0.19
(
c̄HW − c̄HB + 8 c̄γ sin2θW

) 4π
√
α2αem

,

(4.50)

Γ(h→ γγ)

Γ(h→ γγ)SM
' 1− c̄H + 0.54 c̄t − 0.003 c̄c − 0.007 c̄b − 0.007 c̄τ

+ 5.04 c̄W − 0.54 c̄γ
4π

αem
,

(4.51)

Γ(h→ gg)

Γ(h→ gg)SM
' 1− c̄H − 2.12 c̄t + 0.024 c̄c + 0.1 c̄b + 22.2 c̄g

4π

α2

. (4.52)

5 How to run eHDECAY: Input/Output Files

The program eHDECAY is self-contained, like the original code HDECAY on which it is based.

All the new features related to the Lagrangian parametrizations proposed in this paper are

encoded in the main source file, ehdecay.f, while other linked routines are taken over from the

original version. Of course eHDECAY, besides calculating Higgs branching ratios and decay
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widths according to the non-linear, SILH or MCHM4/5 Lagrangians, also calculates the SM

and MSSM ones, exactly as HDECAY 5.10 does. The choice can be done through the flags

HIGGS and COUPVAR set in the input file. The input file for eHDECAY has been called

ehdecay.in and is based on the file hdecay.in of the official version 5.10, supplemented by

further input values. Thus, with the flag LAGPARAM the user can choose between the

general SILH parametrization Eq. (2.2), the model-specific parametrizations MCHM4 and

MCHM5 and the general non-linear Lagrangian parametrization Eq. (2.7). Furthermore, the

various related couplings can be set. The input values are explained in the following:

COUPVAR, HIGGS: If HIGGS=0 and COUPVAR=1, then the Higgs decay widths and

branching ratios are calculated within the parametrization chosen by:

LAGPARAM:

0: Non-linear Lagrangian parametrization Eq. (2.7)

1: SILH parametrization Eq. (2.2)

2: MCHM4/5 parametrization (cf. Table 1)

IELW: Turn off (0) or on (1) the electroweak corrections for the SILH parametrization. 10

For the non-linear Lagrangian the following parameters have to be set for the couplings of

the various vertices:11

10Note, that this parameter IELW has nothing to do with the parameter ELWK in the input file of HDECAY,

where the meaning of this flag is different.
11We explain them here all, although they are in part already present in the input file for HDECAY 5.10.

20



CV: hV V vertex, (V=W, Z) Ctau: hττ vertex Cmu: hµµ vertex

Ct: htt̄ vertex Cb: hbb̄ vertex Cc: hcc̄ vertex

Cs: hss̄ vertex Cgaga: coupling cγγ Cgg: coupling cgg

CZga: coupling cZγ CWW: coupling cWW CZZ: coupling cZZ

CWdW: coupling cW∂W CZdZ: coupling cZ∂Z

In case of the SILH parametrization the input values to be set in order to calculate the

various couplings are:

CHbar: c̄H CTbar: c̄T Ctaubar: c̄τ Cmubar: c̄µ Ctbar: c̄t

Cbbar: c̄b Ccbar: c̄c Csbar: c̄s CWbar: c̄W CBbar: c̄B

CHWbar: c̄HW CHBbar: c̄HB Cgambar: c̄γ Cgbar: c̄g

In the MCHM4/5 parametrization we have the input values:

FERMREPR:

1: MCHM4

2: MCHM5

XI: the value for ξ

For example:

COUPVAR = 1

HIGGS = 0
...

************** LAGRANGIAN 0 - chiral 1 - SILH 2 - MCHM4/5 **************

LAGPARAM = 0

**** Turn off (0) or on (1) the elw corrections for LAGPARAM = 1 or 2 ****

IELW = 1
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******************* VARIATION OF HIGGS COUPLINGS*************************

CW = 1.D0

CZ = 1.D0

Ctau = 0.95D0

Cmu = 0.95D0

Ct = 0.95D0

Cb = 0.95D0

Cc = 0.95D0

Cs = 0.95D0

Cgaga = 0.005D0

Cgg = 0.001D0

CZga = 0.D0

CWW = 0.D0

CZZ = 0.D0

CWdW = 0.D0

CZdZ = 0.D0
...

computes the branching ratios for cV = 1, cψ = 0.95 (ψ = t, b, c, s, τ, µ), cγγ = 0.005,

cgg = 0.001 and cZγ = cWW = cZZ = cW∂W = cZ∂Z = 0 in the general parametrization

Eq. (2.7). The output is written into the files br.eff1 and br.eff2, where the Higgs mass,

branching ratios and total width are reported. For the previous example, at mh = 125 GeV

and for all the other parameters set at their standard values, the output reads

MHSM BB TAU TAU MU MU SS CC TT

_______________________________________________________________________________

125.000 0.5895 0.5654E-01 0.2002E-03 0.2161E-03 0.2569E-01 0.000
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MHSM GG GAM GAM Z GAM WW ZZ WIDTH

_______________________________________________________________________________

125.000 0.9611E-01 0.1932E-03 0.1526E-02 0.2045 0.2554E-01 0.4129E-02

All the input parameters of the corresponding run are printed out in the file br.input. Other-

wise, setting COUPVAR=0, the program produces the usual output files with SM or MSSM

results according to the HDECAY 5.10 version.

6 Conclusions

We have described the Fortran code eHDECAY, which calculates the partial widths and the

branching fractions of the decays of the Higgs boson in the Standard Model and its extension

by the dimension-6 operators of the SILH Lagrangian (2.2). The program also implements

the more general non-linear effective Lagrangian (2.7), which does not rely on assuming the

Higgs boson to be part of an SU(2)L doublet. In the SM, all decay modes are included as

in the original version of HDECAY. The corrections due to the effective operators have been

included consistently with the multiple perturbative expansion in the number of derivatives,

fields and SM couplings. The level of approximation of the formulas implemented in eHDECAY

has been discussed in detail for each decay final state. The QCD corrections to the hadronic

decays as well as the possibility of virtual intermediate states have been incorporated ac-

cording to the present state of the art. The QCD corrections are assumed to factorize also

in the presence of higher-dimension operators, so that they are included in factorized form

in all extensions of the SM. For the SILH case we have added the electroweak corrections

to the SM part only and left the dimension-6 contributions at LO in the context of elec-

troweak corrections, since deviations from the SM case are assumed to be small. In the case

of the non-linear Lagrangian however, deviations can be large so that the non-factorizing

electroweak corrections to the SM part are subleading and thus have not been taken into

account for consistency.

The program is fast and can be used easily. The basic SM and SILH/non-linear input

parameters can be chosen from an input file. Examples of output files for the decay branching
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ratios have been given.

Since electroweak corrections involving the novel operators have not been calculated

yet, the treatment of this type of corrections is not complete. During the coming years

one may expect that these electroweak corrections will be determined so that the existing

code eHDECAY can be extended to incorporate them. For the moment the present version

of eHDECAY provides the state-of-the art for the partial Higgs decay widths and branching

ratios in extensions of the SM by a SILH or a non-linear effective Lagrangian.
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