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ABSTRACT

In recent years, there have been several successful attempts to constrain the equation of state
of neutron star matter using input from low-energy nuclear physics and observational data. We
demonstrate that significant further restrictions can be placed by additionally requiring the pressure
to approach that of deconfined quark matter at high densities. Remarkably, the new constraints turn
out to be highly insensitive to the amount — or even presence — of quark matter inside the stars.
Subject headings: equation of state — dense matter — stars: neutron

1. INTRODUCTION

The equation of state (EoS) of cold and dense strongly
interacting matter, which determines the inner structure
of compact stars (Glendenning 1997), is encoded in its
fundamental theory, Quantum Chromodynamics (QCD).
A full nonperturbative determination of the pressure of
the theory is still out of reach due to the so-called Sign
Problem of lattice QCD (de Forcrand 2010). Neverthe-
less, the methods of chiral effective field theory (EFT)
of nuclear forces (Epelbaum et al 2009) and high-density
perturbative QCD (pQCD) (Kraemmer & Rebhan 2004)
have matured enough to provide reliable predictions for
the EoS in the limits of low density nuclear matter and
dense quark matter, respectively. In particular, by now
both approaches produce results with reliable error es-
timates, implying that it is finally possible to quanti-
tatively estimate our understanding of the neutron star
matter EoS.
During the past couple of years, several articles have

addressed the determination of the neutron star EoS
by combining insights from low-energy chiral EFT with
the requirement that the resulting EoSs support the
most massive stars observed (see e.g. Hebeler et al.
(2013)). In particular, the discovery of neutron stars with
masses around two solar masses (Demorest et al. 2010;
Antoniadis et al. 2013) has recently been seen to lead
to strong constraints on the properties of stellar matter
(Lattimer 2012). While otherwise impressive, these anal-
yses have solely concentrated on the low density regime,
and have typically applied no microphysical constraints
beyond the nuclear saturation density n0. This has re-
sulted in EoSs that behave very differently from that of
deconfined quark matter even at rather high energy den-
sities.
In the present work, our aim is to demonstrate that

the EoS of neutron star matter can be significantly fur-
ther constrained by requiring it to approach the quark
matter one at high density. To do this, we use the state-
of-the-art result of Fraga et al. (2014), where a compact
expression for the three-loop pressure of unpaired quark
matter, taking into account the nonzero value of the
strange quark mass, was derived (see also Kurkela et al.
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Fig. 1.— Known limits of the stellar EoS on a logarithmic scale.
On the horizontal axis we have the quark chemical potential (with
an offset so that the variable acquires the value 0 for pressureless
nuclear matter), and on the vertical axis the pressure. The band
in the region around the question mark corresponds to the inter-
polating polytropic EoS that will be introduced in this work.

(2010a) and Kurkela et al. (2010b) for details of the origi-
nal pQCD calculation). A particularly powerful outcome
of the analysis is that the high density constraint signifi-
cantly reduces the uncertainty band of the stellar matter
EoS even at low densities, well below a possible phase
transition to deconfined quark matter. This implies that
the M -R relations we obtain are more restrictive than
previous ones even for pure neutron stars.
In practice, our calculation proceeds as follows (see

also fig. 1): at densities below 1.1n0, we employ the chi-
ral EFT EoS of Tews et al. (2013), assuming the true
result to lie within the error band given in this reference.
At baryon chemical potentials above 2.6 GeV, where the
relative uncertainty of the quark matter EoS is as large
as the nuclear matter one at n = 1.1n0, we on the other
hand use the result of Fraga et al. (2014) and its re-
spective error estimate. Between these two regions, we
assume that the EoS is well approximated by an interpo-
lating polytrope built from two “monotropes” of the form
P (n)=κnΓ. These functions are first matched together
in a smooth way, but later we also consider the scenario
of a first-order phase transition, allowing the density to
jump at the matching point of the two monotropes.

http://arxiv.org/abs/1402.6618v1
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Fig. 2.— The interpolated pressure of nuclear and quark mat-
ter, normalized by the pressure of a gas of free quarks and shown
together with the pQCD result at high densities. All generated
EoSs lie within the shaded green and turquoise areas, of which
only the green ones support a star of M = 2M⊙. Three represen-
tative EoSs marked with I-III have crosses denoting the maximal
chemical potential reached at the center of the star.

Varying the polytropic parameters and the transition
density over ranges limited only by causality, we obtain
a band of EoSs that can be further constrained by the
requirement that the EoS support a two solar mass star.
This results in EoS and M -R bands that are significantly
narrower than ones obtained without the high density
constraint (see Fig. 10). An important check of the ro-
bustness of our construction is that the obtained band
is largely unaffected by the nature of the assumed phase
transition or by the introduction of a third interpolating
monotrope.
Clearly, both our setup and results bear some resem-

blance to those of Hebeler et al. (2013). An important
difference between these two calculations is, however,
that while the authors of the latter paper imposed a set
of somewhat ad hoc constraints on their polytropic pa-
rameters, for us this is not necessary, as the high density
constraint automatically restricts these numbers. In this
vein, one can in fact argue that our calculation gives an
a posteriori justification for many of the choices made
in Hebeler et al. (2013). At the same time, it is also im-
portant to note that the ease with which we are able to
perform the matching between the low and high density
EoSs — and the high maximum masses we obtain for the
stars — is in stark contrast with many earlier attempts
to directly match nuclear and quark matter EoSs onto
each other (cf. e.g. Fraga et al. (2002) and Alford et al.
(2005)).
Our paper is organized as follows. In section 2, we first

explain the details of our calculation, i.e. introduce the
low and high density EoSs used as well as the specific
parametrization of our interpolating polytropes. After
this, we proceed to display and analyze our results in
section 3, covering both the EoSs, M -R relations, and
various correlations between the parameters appearing
in our calculation. In section 4, we finally draw our con-
clusions.

2. METHODOLOGY

2.1. Low-density EoS from chiral EFT

Outside the dense inner core of a compact star, one
expects to find somewhat more dilute nuclear mat-
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Fig. 3.— Two M −R clouds composed of the EoSs displayed in
Fig. 2. The color coding is the same as there, as is our notation
for the three representative EoSs I-III.

ter. The composition of this medium ranges from a
gas of nuclei (inside an electron sea) in the outer stel-
lar crust to increasingly neutron-rich matter in the in-
ner crust and outer core of the star. The EoS of
the latter type of matter has traditionally been esti-
mated through many-body calculations employing phe-
nomenological potentials, typically accounting for two-
and three-nucleon interactions (see e.g. Akmal et al.
(1998)). More recently, developments in chiral effec-
tive theory (EFT) have, however, significantly system-
atized this procedure and in particular provided a for-
mal basis for the hierarchy amongst contributions com-
ing from different types of interactions (Coraggio et al.
2013; Gandolfi et al. 2012; Hebeler & Schwenk 2010;
Holt et al. 2013; Sammarruca et al. 2012; Tews et al.
2013).
At the moment, calculations within chiral EFT

(Epelbaum et al 2009) have reached a state, where un-
certainties related to the details of many-body simula-
tions are negligible, and nearly the entire remaining error
in the EoS originates from the determination of various
coupling constants of the EFT itself. The magnitude
of these uncertainties grows rapidly with density, such
that at nuclear saturation density the pressure of neu-
tron star matter is currently known to roughly ±20%
accuracy (Tews et al. 2013). In the near future, it is
expected that these uncertainties will further decrease
through the emergence of more precise constraints for
the low-energy couplings of the chiral EFT and the incor-
poration of higher-order interactions in the theory. See
e.g. Hebeler et al. (2013) for a more systematic analysis
of these issues.
The current state of the art in the determination of the

nuclear matter EoS can be found in Tews et al. (2013),
the results of which are heavily based on the earlier work
of Hebeler & Schwenk (2010). In Hebeler et al. (2013),
these EoSs are given in a tabulated form for densities
n ∈ [0.6, 1.1]n0, with n0 the nuclear saturation density.
In our calculations, we use both the maximally soft and
stiff variations of this nuclear EoS, corresponding to the
lower and upper limit of the pressure at a given number
density. For these two results, also the dependence of the
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Fig. 4.— The internal structure of the maximally massive stars
corresponding to the three EoSs I-III of Table 1. The energy den-
sities are all continuous due to the smoothness of the matching
procedure (no first order phase transition) in these cases.

baryon chemical potential on the density is somewhat
different. For densities below 0.6n0, we in addition need
the crust EoS, which can be found e.g. from Baym et al.
(1971); Negele & Vautherin (1973); Ruster et al. (2006).

2.2. High-density EoS from pQCD

The EoS of cold quark matter is accessible through
perturbative QCD at high densities, and has indeed
been determined to order α2

s in the strong coupling
constant. This calculation was first carried out at
vanishing quark masses in Freedman & McLerran
(1976); Baluni (1977) (cf. also Blaizot et al. (2001);
Fraga et al. (2001); Andersen & Strickland (2002);
Vuorinen (2003)), and later generalized to systemati-
cally include the effects of a nonzero strange quark mass
at two (Fraga & Romatschke 2004) and three loops
(Kurkela et al. 2010a).
Like all perturbative results evaluated to a finite order

in the coupling, also the quark matter EoS is a function
of an unphysical parameter, the scale of the chosen renor-
malization scheme (here modified minimal subtraction)
Λ̄. This dependence, which diminishes order by order in
perturbation theory, offers a convenient way to estimate
the contribution of the remaining, undetermined orders,
and thus serves as quantitative measure of the inherent
uncertainty in the result.
In a recent study of Fraga et al. (2014), it was demon-

strated that the complicated numerical EoS derived in
Kurkela et al. (2010a) can be cast in the form of a sim-
ple fitting function for the pressure in terms of the baryon
chemical potential µB. Fixing the strong coupling con-
stant and the strange quark mass at arbitrary reference
scales (using lattice and experimental data), the EoS of
quark matter in β-equilibrium assumes the form

PQCD(µB) = PSB(µB)

(

c1 −
a(X)

(µB/GeV)− b(X)

)

, (1)

a(X) = d1X
−ν1 , b(X) = d2X

−ν2 , (2)

where we have denoted the pressure of three massless
noninteracting quark flavors by

PSB =
3

4π2
(µB/3)

4. (3)
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Fig. 5.— The maximal star mass and µc as functions of the
polytropic indices γ1 and γ2. The red bands corresponding to
M = 2, 2.2 and 2.4M⊙ denote the ranges of γs, for which stars
of these masses can be obtained, while the widths of the bands
reflect the uncertainties in the low and high density EoSs. The
white region in the lower right hand corner is excluded due to
superluminality (which can occur at a density higher than reached
at the center of the star). The upper left hand corner would on the
other hand require X to be larger than 4, and is thus disallowed by
our pQCD EoS. The gray dots finally represent our 3500 randomly
generated EoSs.

The parameters of the above EoS can be shown to ac-
quire the optimal values (see Fraga et al. (2014) for de-
tails)

c1 = 0.9008 d1 = 0.5034 d2 = 1.452 (4)

ν1= 0.3553 ν2= 0.9101, (5)

while the dependence of the result on the renormalization
scale is encoded in the functions a(X) and b(X). They in
turn depend on a dimensionless parameter proportional
to Λ̄, X ≡ 3Λ̄/µB, the value of which is let to vary
from 1 to 4. The resulting expression can be seen to
correctly reproduce the full three-loop pressure, quark
number density and speed of sound to per cent accuracy
for baryon chemical potentials smaller than 6 GeV.

2.3. Polytropes and their matching

At a baryon density nbegin ≡ 1.1n0, the chiral EFT pre-
diction for the EoS of neutron-rich nuclear matter has an
uncertainty of ±24% — an accuracy matched by the per-
turbative quark matter pressure at µend

B ≡ 2.6 GeV. To
parameterize the (unknown) behavior of the EoS between
these two limits, a natural choice is to employ one or more
monotropes of the form Pi(n) = κin

γi , matched together
at a set of intermediate chemical potentials. As using a
single monotrope is seen to lead to an overconstrained
system, and the use of more than two monotropes has
only a minor effect on the results, in most of our forth-
coming analysis our interpolating EoS is composed of ex-
actly two monotropes. In the beginning we assume that
the matching of the two monotropes is smooth, and that
there is no jump in the number density at the matching
point. This assumption is, however, relaxed later, when
we study the scenario of a first-order phase transition
between the nuclear and quark matter phases.
Concretely, our calculation proceeds as follows. In

both intermediate intervals (to be specified later), we



4

1 1.2 1.4 1.6 1.8 2 2.2
Critical chem. pot. µ

c
 [GeV]

1

1.2

1.4

1.6

1.8

2

2.2
C

he
m

. p
ot

. i
n 

ce
nt

er
 µ

ce
nt

er
 [

G
eV

]

No quark matter in NS

Quark matter in NS

∆Q=(250MeV)
4

∆Q=0

Allowed by
mass constraint

Disallowed by
mass constraint

∆Q=(175MeV)
4
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define

Pi(n)=κin
γi , i = 1, 2, (6)

or equivalently

Pi(µB)=κi

(

nγi−1
i +

γi − 1

κiγi
(µB − µB,i)

)

γi
γi−1

, (7)

where µB,i and ni stand for the baryon chemical poten-
tial and baryon density at the lower edge of the interval.
The matching procedure then consists of the following
sequential steps:

1. Below nbegin, we employ either the soft or stiff nu-
clear matter EoS of Tews et al. (2013). This pro-
vides us with the corresponding values for µB and
P at this point (for the soft and stiff EoS, respec-
tively),

µB = 0.9775GeV P = 3.542MeV/fm3, (8)

µB = 0.9657GeV P = 2.163MeV/fm3, (9)

as well as the parameters µB,1, n1 and κ1 for the
first monotrope.

2. Choosing a (positive) value for γ1, we evolve the
first monotrope until the matching point µc. Here,
we then use this function to obtain the initial data
n2 and κ2 for the second one (recalling also that
µB,2 = µc). If we wish to have a first-order phase
transition at this point, we furthermore add an or-
der O(Λ4

QCD/µB) contribution to n2.

3. We evolve the second monotrope until µB = µend
B ,

evaluate the values of p and n there, and try to
find an X ∈ [1, 4], for which smooth matching to
the quark matter EoS is possible. If no such value
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Fig. 7.— The change in the EoS cloud (without a mass con-
straint) when allowing for a third interpolating monotrope between
the low and high density regimes.

is found, the EoS is discarded; otherwise the corre-
sponding quark matter EoS takes over beyond this
point.

4. Finally, we evaluate the speed of sound cs of our
EoS over the entire interval from n = nbegin to
µB = µend

B , and locate its maximum there. Should
this value exceed 1, the EoS is again discarded as
superluminal.

3. RESULTS

3.1. Bitropic interpolation

The outcome of the matching and interpolation pro-
cedure explained in the previous section is displayed in
Fig. 2 for the case of two smoothly matched monotropes.
Here, the two bands (together) correspond to a set of
3500 physical EoSs that were constructed from flat prob-
ability distributions in both µc ∈ [1.05, 2.4] GeV andX ∈
[1, 4]. The corresponding polytropic indices are seen to
vary over the intervals γ1 ∈ [2.23, 9.2] and γ2 ∈ [1.0, 1.5],
while the matching point µc resides between 1.08 and
2.05 GeV; the tight constraint for γ2 clearly originates
from the matching to the pQCD pressure. Alongside
with the bands, we also show a selected set of represen-
tative EoSs, listed in Table 1, of which three are marked
in bold and tabulated in Tables 2–4. The typical struc-
ture of the EoSs is such that the maximal stiffness (or
c2s) is reached just below µc.
In Fig. 3, we next display two clouds of M −R curves

corresponding to all of our generated EoSs. The maxi-
mal masses of the stars fall inside the interval Mmax ∈
[1.4, 2.5]M⊙, while their radii lie in the range R ∈ [8, 14]
km. At the same time, the maximal chemical potentials
encountered at the center of the star satisfy µcenter ∈
[1.33, 1.84] GeV, corresponding to maximal central den-
sities of n ∈ [3.7, 14.3]n0. This falls right in the middle
of the interval between the nucleonic and pQCD regions,
where the EoS is equally constrained by its low and high
density limits. In addition, we show here a number of
individual M -R curves, corresponding to the 20 EoSs
listed in Table 1, and mark the maximal chemical po-
tentials of the three special EoSs of Fig. 2 (I, II and III)
with crosses. For these three cases, Fig. 4 additionally
displays the internal structure of the maximally massive
stars; here, the softening of the EoS when approaching
the perturbative densities is seen as a faster growth of
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the energy density near the center of the star.
The stellar matter EoS can of course be further con-

strained by demanding that it is able to support the ob-
served two solar mass star. The effects of this constraint
on the EoS and M − R clouds of Figs. 2 and 3 are vis-
ible as the dark green areas. In particular, we find that
remarkably with the additional mass constraint the rela-
tive uncertainty in the EoS is reduced to less than ±30%
at all densities. For these EoSs, the maximal chemical
potentials are bound from above by µcenter < 1.77 GeV,
and the central densities by n < 8.0n0.
From Fig. 3, one can in addition read that for 1.4M⊙

neutron stars, our allowed radii range between 11 and
14.5 km, while for 2M⊙ pulsars, R ∈ [10, 15] km. It is also
worth noting that within the bitrope approach, we find
no configurations with masses above 2.5M⊙. In compar-
ison with the findings of Hebeler et al. (2013), our upper
and lower limits for the radii are consistently larger by
about 1 km, while our most massive configurations are
lighter by about 0.5M⊙.
Moving on to an analysis of the polytropic indices γ1

and γ2, we display in Fig. 5 a contour plot of the maximal
star mass as a function of these parameters. As larger γ1
translates into a stiffer equation of state below µc, it is
natural that requiring the reaching of a given mass sets
a lower bound for γ1. In particular, reaching a two solar
mass star translates to the condition γ1 > 2.86, while
M > 2.4M⊙ translates to γ1 > 3.5.
Polytropic EoSs with the index γ larger than 2 become

eventually superluminal, implying that the larger γ1 is,
the smaller the value of µc has to be in order for the
EoS to stay subluminal. The blue bands in Fig. 5, which
stand for constant values of µc, demonstrate this fact:
for γ1 = 7.35, we must require µc < 1.125, while for
γ1 = 5.9 we get µc < 1.2 GeV, and for γ1 = 3.65 simply
µc < 1.5 GeV. As the second segment of the polytrope
is typically significantly softer than the first, the stars
quickly become unstable once their center reaches µc.
The maximal µB’s are thus typically only slightly larger
than the corresponding µc’s, as one can see from Fig. 6.
As stiffer EoSs produce heavier stars, the maximal

speed of sound predicted by a given EoS is naturally cor-
related with the corresponding maximal mass. We find
that in order to be able to fulfill the 2M⊙ constraint,
this maximal value has to satisfy c2s > 0.55. We suspect,
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Fig. 9.— The M -R clouds corresponding to tritropic and first-
order phase transition EoSs, shown together with our original result
from Fig. 3.

however, that this constraint may be overly restrictive,
as our interpolating polytropes typically predict a dis-
continuous c2s that is peaked around µ = µc.

3.2. Robustness of the results

In deriving the results presented above we made two
in principle ad hoc assumptions, whose effect on the ob-
tained EoS andM−R relations we now proceed to study.
First, one can naturally extend the number of interpo-
lating monotropes to three (or more), allowing for fur-
ther freedom in the behavior of the EoS between the
low and high density regimes. Second, the assumption
of a smooth matching of the two monotropes can (and
should) be relaxed by allowing for a jump in the number
density at the matching point, corresponding to a first-
order phase transition between the nuclear and quark
matter phases.
Starting with the number of monotropes, we gener-

ated a large set of tritropic EoSs with randomly chosen
matching points and polytropic indices, which fulfill the
smoothness and subluminality constraints. Fig. 7 depicts
the effect of this extra freedom on the EoS: we observe
that, as expected, the addition of a third segment some-
what increases the region of allowed EoSs, but the effect
is small in comparison with the other uncertainties of the
calculation. From here, we conclude that using bitropic
EoSs should suffice for our purposes.
To investigate the effect of a first-order phase tran-

sition at µc, we next relaxed the smoothness condi-
tion in our matching of the two monotropes. Keeping
the pressure continuous but allowing for a ‘latent heat’
∆Q ≡ µc∆n of the order of the QCD scale, we first
fixed ∆Q = (250MeV)4 and proceeded to find solu-
tions for γ1 and γ2 that would lead to a consistent EoS.
This led to the rather restricted values γ1 ∈ [2.23, 4.03]
and γ2 ∈ [1, 1.5], for which the transition point was al-
ways found to lie within the interval µc ∈ [1.4, 2.1]GeV.
The corresponding region of allowed EoSs, depicted in
Fig. 8, was found to be somewhat smaller than in the
case with smooth matching. From this (as well as sim-
ilar calculations performed for ∆Q = (175MeV)4 and
∆Q = (225MeV)4), we conclude that the assumption
of smooth matching made in the previous section was
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in fact justified when searching for the least restrictive
bounds for the EoS.
For EoSs displaying a phase transition, one can also

estimate the amount of quark matter in the cores of the
stars. This is seen from Fig. 6, which shows the relation
between the maximal chemical potential reached at the
center of a maximally massive star µcenter and the critical
(matching) chemical potential µc. We see that all EoSs
that fulfill the mass constraint lie above the µcenter > µc

line, and are therefore able to support stars with quark
matter cores. However, the stronger the transition is,
the smaller the window for quark matter: for ∆Q =
(250GeV)4, there is practically no quark matter left in
the cores of the stars.
In Fig. 9, we finally show the effect of the third

monotrope and a nonzero latent heat on the obtained
M − R clouds. In particular, we see from here that
allowing for a tritropic interpolation does not have a
large impact on the M − R plot: the most important
change is simply the shift of the maximal mass star
to {Mmax, R} = {2.75M⊙, 14.6km}. A more complete
analysis of the case of a first-order phase transition has
been recently performed by Alford et al. (2013). In this
reference, the authors in particular consider all possi-
ble branching cases, including twin star configurations,
which we have completely omitted in our work.

4. CONCLUSIONS AND SUMMARY

In the paper at hand, we have constructed a novel
scheme for determining the EoS of compact star mat-
ter that involves an interpolation between the regimes of
low-energy chiral effective theory and high-density per-
turbative QCD. These two limiting results are truly ro-
bust within their ranges of applicability, as they represent
controlled calculations in the fundamental theory of the
strong interactions. Our work on the other hand con-
stitutes the first ever attempt to take constraints from
both sides on equal footing when determining the EoS
between these limits. We have demonstrated that this
leads to important new constraints on the properties of
compact star matter on a wide density range, and thus
even for stars containing only hadronic matter.
The strictness of the constraints placed on the stellar

EoS by its high-density limit can be understood through
the tension between the softness of the perturbative EoS
and the stiffness required by the confirmed existence of a
two solar mass compact star. For the two interpolating
monotropes we employ in our calculation, this translates
into a significant difference between the respective poly-
tropic indices: While the first one needs to be rather stiff,
with γ1 > 2.86, the latter must be considerably softer,
1 < γ2 < 1.5. Although the polytropes themselves of
course do not carry information about the underlying
microphysics, such a strong shift in the polytropic index
might be interpreted as a sign of the effective degrees of
freedom of the system changing from hadronic to den-
confined ones.
The effect of the high density constraint is perhaps best

illustrated in Fig. 10, which displays our EoS band in the
form of energy density vs. pressure, plotted together with
the previous prediction of Hebeler et al. (2013), dubbed
HLPS. The latter work applied the same low-density EoS
we did and took into account the two solar mass con-
straint, but did not require the result to approach the
pQCD EoS at large densities. As expected, the main
difference between the two results is seen in the HLPS
cloud containing somewhat softer EoSs at low density
and stiffer ones at high density.
The rather narrow EoS band that results from our in-

terpolation naturally corresponds to a well defined re-
gion in the mass-radius diagram of compact stars. For a
1.4M⊙ neutron star, the radii we obtain range between
11 and 14.5 km, while the radius of a 2M⊙ pulsar lies
within R ≈ 10−15 km. Interestingly, we do not find con-
figurations with masses above 2.75M⊙ (for bitropic inter-
polation the maximal mass is 2.5M⊙). This conclusion
is in contrast with what has been found before without
the high-density constraint; see e.g. Hebeler et al. (2013),
where stars with masses up to 3M⊙ were discovered.
For the convenience of the reader, we finally provide

three representative EoSs in a tabulated form at the end
of this paper. These EoSs are all subluminal, able to
sustain a two solar mass star, and maximally different
from each other. Of them, EoS I gives the minimal ra-
dius, EoS II the maximal mass and EoS III the maximal
radius for our compact stars.
In conclusion, we find it remarkable, how the proper-

ties of quark matter at asymptotically high densities can
be seen to have such a strong impact on the structure of
compact stars at much lower energies. As we have high-
lighted in Fig. 1, this fact appears to make it possible
to largely bridge the gap between the respective EoSs of
low-density nuclear matter and high-density (perturba-
tive) quark matter.
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# Nucl. µc X γ1 γ2 Mmax µmax

I s 1.65 1.2 3.192 1.024 2.03 1.78
II h 1.35 1.2 4.021 1.195 2.44 1.54
III h 1.125 1.9 7.368 1.415 2.24 1.36

4 h 1.125 4.0 4.585 1.483 1.95 1.36
5 h 1.35 1.4 3.440 1.258 2.20 1.54
6 h 1.35 4.0 2.698 1.407 1.75 1.53
7 h 1.65 1.2 2.865 1.051 2.01 1.77
8 h 1.65 2.0 2.494 1.206 1.67 1.74
9 h 1.65 4.0 2.370 1.280 1.54 1.72
10 h 1.95 2.0 2.335 1.102 1.50 1.76
11 h 1.95 4.0 2.253 1.109 1.41 1.71
12 s 1.125 4.0 5.322 1.474 1.97 1.36
13 s 1.125 2.1 7.439 1.422 2.19 1.36
14 s 1.35 1.3 4.136 1.215 2.31 1.56
15 s 1.35 1.6 3.606 1.278 2.08 1.54
16 s 1.35 4.0 3.043 1.382 1.76 1.54
17 s 1.65 2.0 2.771 1.167 1.69 1.77
18 s 1.65 4.0 2.630 1.234 1.56 1.76
19 s 1.95 2.8 2.517 1.001 1.45 1.87
20 s 1.95 4.0 2.481 1.028 1.41 1.86

TABLE 1
Parameter values for a representative set of EoSs resulting from bitropic interpolation. The letters s (soft) and h

(hard) in the column “Nucl.” refer to the use of Eqs. (8) and (9) at n = nbegin, respectively. The chemical potentials are
given in GeV and the maximal masses in solar masses.

n/n0 P E µB c2s R M/M⊙

1.1 2.163 167.8 0.9657 0.041 22.2 0.144
1.3 3.687 198.8 0.9736 0.058 18.1 0.168
1.5 5.822 230.1 0.9831 0.079 14.3 0.231
1.7 8.681 261.8 0.9943 0.10 12.6 0.322
1.9 12.38 293.8 1.007 0.13 12.0 0.415
2.1 17.04 326.2 1.022 0.16 11.6 0.526
2.3 22.79 359.2 1.038 0.19 11.5 0.652
2.5 29.74 392.7 1.056 0.22 11.4 0.768
2.7 38.02 426.8 1.076 0.26 11.4 0.875
2.9 47.76 461.6 1.098 0.30 11.4 0.989
3.1 59.09 497.1 1.121 0.34 11.3 1.11
3.3 72.14 533.3 1.147 0.38 11.3 1.22
3.5 87.05 570.5 1.174 0.42 11.3 1.32
3.7 103.9 608.5 1.203 0.47 11.3 1.42
3.9 123.0 647.5 1.235 0.51 11.2 1.50
4.1 144.3 687.6 1.268 0.55 11.2 1.58
4.3 167.9 728.7 1.303 0.60 11.1 1.66
4.5 194.2 771.0 1.341 0.64 11.0 1.72
4.7 223.1 814.5 1.380 0.69 10.9 1.78
4.9 254.8 859.3 1.421 0.73 10.9 1.83
5.1 289.5 905.5 1.464 0.77 10.8 1.88
5.3 327.4 953.1 1.510 0.82 10.7 1.92
5.5 368.5 1002. 1.558 0.86 10.6 1.95
5.7 413.0 1053. 1.607 0.90 10.5 1.98

5.9 455.3 1105. 1.653 0.30 10.5 2.01
6.1 471.1 1158. 1.669 0.30 10.4 2.01
6.3 486.9 1212. 1.685 0.29 10.4 2.02
6.5 502.8 1266. 1.701 0.29 10.4 2.02
6.7 518.6 1321. 1.716 0.29 10.4 2.03
6.9 534.5 1376. 1.730 0.29 10.3 2.03
7.1 550.3 1431. 1.744 0.28 10.3 2.03
7.3 566.2 1487. 1.758 0.28 10.3 2.03
7.5 582.1 1544. 1.772 0.28 10.3 2.03

TABLE 2
The representative equation of state I. The baryon number density n is given in units of the saturation density

n0 = 0.16 fm3, while the pressure P and the energy density E are given in MeV/fm3. R (in km) and M (in solar masses)
stand for the radius and mass of a star with central density n, while the solid horizontal line indicates the transition

between the two monotropes.
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n/n0 P E µ c2s R M/M⊙

1.1 3.542 168.5 0.9775 0.083 15.7 0.259
1.3 6.934 200.0 0.9951 0.13 13.9 0.369
1.5 12.33 232.3 1.019 0.20 13.2 0.590
1.7 20.39 265.3 1.051 0.29 13.1 0.880
1.9 31.89 299.6 1.090 0.39 13.3 1.18
2.1 47.70 335.2 1.140 0.50 13.5 1.50
2.3 68.76 372.6 1.199 0.63 13.6 1.79
2.5 96.16 412.1 1.271 0.76 13.6 2.06

2.7 129.7 454.1 1.351 0.27 13.6 2.28
2.9 141.2 497.7 1.377 0.26 13.6 2.33
3.1 153.0 542.2 1.402 0.26 13.6 2.37
3.3 164.8 587.4 1.425 0.26 13.5 2.40
3.5 176.8 633.4 1.447 0.26 13.5 2.42
3.7 189.0 680.0 1.468 0.26 13.4 2.43
3.9 201.2 727.3 1.488 0.26 13.4 2.44
4.1 213.6 775.2 1.507 0.26 13.3 2.45
4.3 226.1 823.8 1.526 0.26 13.3 2.45
4.5 238.7 872.9 1.544 0.26 13.2 2.45

TABLE 3
The representative equation of state II, with conventions as explained in Table 2.

n/n0 P E µ c2s R M

1.1 3.542 168.5 0.9775 0.15 15.7 0.259
1.3 12.13 200.4 1.022 0.42 13.4 0.670
1.5 34.81 234.5 1.122 0.95 14.7 1.66
1.7 42.24 270.9 1.151 0.19 14.9 1.85
1.9 49.44 308.1 1.176 0.20 15.0 1.99
2.1 56.96 346.2 1.200 0.20 15.0 2.08
2.3 64.79 384.9 1.222 0.20 15.0 2.13
2.5 72.90 424.4 1.243 0.21 14.9 2.17
2.7 81.29 464.5 1.263 0.21 14.9 2.20
2.9 89.94 505.2 1.283 0.21 14.8 2.22
3.1 98.84 546.5 1.301 0.22 14.7 2.23
3.3 108.0 588.5 1.319 0.22 14.6 2.24
3.5 117.4 631.0 1.336 0.22 14.5 2.24
3.7 127.0 674.0 1.353 0.22 14.4 2.24
3.9 136.8 717.5 1.369 0.23 14.3 2.24

TABLE 4
The representative equation of state III, with conventions as explained in Table 2.
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