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The MnAs compound shows a first-order transition at TC ≈ 42 C, and a second-order transition at Tt ≈ 120
C. The first-order transition, with structural (hexagonal-orthorhombic), magnetic (FM-PM) and electrical con-
ductivity changes, is associated to magnetocaloric, magnetoelastic, and magnetoresistance effects. We report
a study in a large temperature range from−196 up to140 C, using theγ − γ perturbed angular correlations
method with the radioactive probe77Br→77Se, produced at the ISOLDE-CERN facility. The electric field
gradients and magnetic hyperfine fields are determined across the first- and second-order phase transitions en-
compassing the pure and mixed phase regimes in cooling and heating cycles. The temperature irreversibility
of the 1st order phase transition is seen locally, at the nanoscopic scale sensitivity of the hyperfine field, by its
hysteresis, detailing and complementing information obtained with macroscopic measurements (magnetization
and X-ray powder diffraction). To interpret the results, hyperfine parameters were obtained with first-principles
spin-polarized density functional calculations using thegeneralized gradient approximation with the full po-
tential (L)APW+lo method (WIEN2K code) by considering the Se probe at both Mn and As sites. A clear
assignment of the probe location at the As site is made and complemented with the calculated densities of states
and local magnetic moments. We model electronic and magnetic properties of the chemically similar MnSb and
MnBi compounds, complementing previous calculations.

PACS numbers: 31.30.Gs,71.15.Mb,75.50.Cc, 76.80.+y

I. INTRODUCTION

The magnetic compound MnAs has been intensively studied, since it exhibits a magnetocaloric effect1, under hydrostatic pres-
sure2, as well as when doped with metals1,3, making it an interesting material for magnetic refrigeration applications. Moreover,
it can be grown as epitaxial films on Si and GaAs substrates4, where applications such as a source for spin injection makeit of
promising use for spintronics5.

In parallel, it is a material with theoretical challenges. In this front some first-principles studies are directed to this compound,
e. g. see refs.6–10. The orthorhombic phase is usually considered paramagnetic, however it does not follow a Curie-Weiss law and
it has also been considered to be antiferromagnetic8. Also of interest is the existing magnetoresistance effectwhich is attempted
to be related to the CMR found in the perovskite manganites11, and a remarkable spin-phonon coupling found crucial to the
magnetostructural transition10. Its particular coupling of magnetism and structure has been the origin of macroscopic models12

for magneto-volume effects.
At low temperatures, MnAs is ferromagnetic and it has a NiAs-type structure. This structure, with space groupP63mmc

(194), has Mn and As atoms at coordinates (0,0,0) and (1/3, 2/3, 1/4), respectively, with two formula units per unit cell. On
heating, at about40 C, it undergoes a first-order phase transition, with a discontinuous distortion to the orthorhombic MnP-
type structure, with a parallel discontinuous change of volume, loss of ferromagnetism, and a metal-insulator transition. The
orthorhombic distortion continuously disappears when heating until about125 C where it undergoes a second-order phase
transition to the NiAs-type structure with a paramagnetic state, now following a Curie-Weiss law.

Thermal hysteresis is measured in this transition: on heating, the hexagonal→orthorhombic phase transformation occurs at
temperatures TC,i ≈ 40.5 − 42.5 C, while on cooling this transformation occurs at TC,d ≈ 33.9 − 37.9 C13–17 (variations
in different studies are probably resulting from small differences in the stoichiometry of samples). Phase coexistence in a
temperature interval of approximately2 C is reported by neutron and X-ray diffraction measurements11,18. The orthorhombic
B31 structure, with the space groupPnma(62), has coordinates for Mn and As atoms of (0.995, 1/4, 0.223) and (0.275, 1/4,
0.918), respectively15.

The lattice constants of the hexagonal phase at room temperature area = 3.722, c = 5.702 Å, and changes toa = 5.72,
b = 3.676 andc = 6.379 Å in the orthorhombic phase (with four f. u. per unit cell) at the first-order transition correspond to a
volume loss of 2%.

We report a study in this compound usingγ − γ time differential Perturbed Angular Correlation (PAC) spectroscopy (see e.

http://arxiv.org/abs/1402.0352v1
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g.19 for details), to our knowledge the first use of this nuclear technique in the compound. Since PAC measures the combined
hyperfine interactions - magnetic hyperfine field (MHF), and electric field gradient (EFG), the sensitivity of its atomic-scale
measurements allows the study of the atomic environments asa function of temperature.

Other hyperfine interactions techniques have been used for the study of MnAs and related compounds in previous studies.
Using Mössbauer spectroscopy with the57Fe probe at 0.25 at% concentration, Kirchschlager et al.20 detect a quadrupole splitting,
which they interpret on the basis of motion of the probe atoms, but they do not measure magnetic hyperfine field. Also using
57Fe impurities as probes, in the related MnAs1−xFex compound21, with x = 0.01, 0.03, and0.15, Abdelgadir et al. reported
measurements involving the first-order transition atTC,d = 2 C (for x = 0.01), where they also detect an unusual dependence
of the magnetic hyperfine field. NMR spectroscopy has also been performed at 4K23, and in the range from−190 up to38 C,
with double signals from both Mn and As atoms, where a resonance anomaly was observed at≈ −50 C as due from atoms at
the domain walls22.

Our work studies a temperature range from13 to 140 C and liquid nitrogen temperature (−196 C). Measurements are made in
the first-order phase-transition region and above, passingthe second-order phase transition (section II C). The temperature range
near the first-order transition is studied in more detail (section II D). X-Raw powder diffraction and magnetization measurements
are also performed and its results are compared with PAC results.

The experimental results are complemented with density functional theory calculations of the hyperfine parameters, using the
full potential mixed (linear) augmented plane wave plus local orbitals (L)APW+lo method. In order to improve and complement
other first-principles studies, we also show calculations of other properties, and for the chemically similar manganese pnictides
MnSb and MnBi.

II. EXPERIMENTS

A. Hyperfine Parameters

The two quantities of interest to the physics of MnAs that canbe obtained from the PAC measurements are the electric
field gradient (EFG) and the magnetic hyperfine field (Bhf ). The EFG is measured from the hyperfine interaction betweena
charge distribution with non-spherical symmetry and the nuclear quadrupole moment Q. The measurement of the quadrupole
interaction gives the EFG, depending on the accurate knowledge of the probe’s quadrupolar moment. The EFG is defined as the
symmetric traceless tensor with components taken from the second spatial derivatives of the Coulomb potential at the nuclear
position. In the principal axis frame of reference, the components of interest are Vzz and the axial symmetry parameterη, with
|Vzz | > |Vyy| ≥ |Vxx| andη = (Vxx − Vyy)/Vzz . The observable frequency with PAC depends on the quadrupole nuclear
moment and electric field gradient in the following way:

ωφ =
2π

4I(2I − 1)
νQk, with νQ =

eQVzz

h
, for η = 0, (1)

whereI is the nuclear spin andk = 6 for half-integer spin.νQ is called the “reduced frequency” of the interaction and is
independent ofη andI.

The magnetic hyperfine field, arising from the dipole-dipoleinteraction between the nuclear magnetic moment and the mag-
netic moment of the extranuclear electrons, can be expressed by

Bhf =
ωL~

gµN
, (2)

whereµN is the nuclear magneton,g the g-factor andωL the observable Larmor frequency. For interpretation of thephysical
origin behindBhf , it is usual to decompose it in four terms:

Bhf = BC +Borb +Bspin +Blatt, (3)

whereBC is the Fermi contact interaction, of the electronic spin density at the nucleus with the nuclear magnetic moment,
Borb andBdip are the contributions of the magnetic interaction due to theelectronic orbital momentum and electronic spin
momentum, respectively, andBlatt is a contribution from the other atomic orbitals in the lattice, usually negligible.

The intrinsic inhomogeneities and remaining distributions of point defects lead to the damping of the experimental PAC
spectrum, which is simulated by a Lorentzian function characterized by theδ (width) parameter.

B. Experimental details and sample preparation

A mixture of radioactive isobars of mass77, 77Kr, 77Br and77Se were produced at the ISOLDE isotope separator online
facility at CERN, and implanted at 30 keV to a dose of approximately1016 atoms/m2 in MnAs samples at room temperature.
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After waiting for the decay of77Kr (t1/2 ≈ 74 min.) for 12 h, the PAC experiments have started on the decay of77Br to 77Se,
after annealing, as described.

One test sample was measured as implanted, but the resultingspectrum was highly attenuated due to implantation defects.
Subsequently, a first annealing step at600 C for 200 s was done in vacuum (5× 10−4 mbar), followed by a fast quench to room
temperature for both samples, after which the spectra substantially improved.

The γ − γ cascade of77Br→77Se is shown in figure 1. The hyperfine interaction is measured in the9.56 ns, 249.8 keV,
I = 5/2 intermediate state of the cascade, with quadrupole momentQ = 1.1(5)b, and magnetic momentµ = 1.12(3)µN

24.
The directional correlation of the decays is perturbed by the hyperfine interactions and the experimental anisotropy ratio

functionR(t), which contains all of the relevant information, is expressed as a function of time,t. R(t) =
∑

AkkGkk(t),
whereAkk are the anisotropy coefficients, depending on the spin and multipolarity of theγ decays, andGkk(t) contains the
information of the hyperfine parameters. Due to the solid angle attenuation of the detection system the anisotropy is reduced,
and the effective experimental anisotropy was found to be A22 ≈ −0.13(1). The long half-life of the parent isotope77Br, 57 h,
and the relatively short half-life of the intermediate state, allowed us to perform several measurements with a very good true to
chance coincidence ratio from a single implantation shot.

The PAC-spectrometer, a high efficiency setup of six BaF2 detectors, provides30 coincidence spectra (6 from 180◦ and24
from 90◦ between detectors25).

C. 1st set of PAC experiments

The obtained PAC experimental functionsR(t) and the respective Fourier analysis are shown in figures 2 and3.
The spectra were fitted using a numerical algorithm that calculates the hamiltonian of the interaction to obtain the magnetic

Bhf and quadrupole EFG parameters26. Figs. 2 and 3 also show the Fourier analysis of theR(t) functions for all temperatures
measured.

Table I shows all fit parameters obtained at the different temperatures, in the chronological order of measurements. Between
the last two measurements, the sample was heated to 100 C, so the 35 C measurement is made on cooling.

The fit procedure can consider several fractions of77Se nuclei interacting with different hyperfine fields due to different local
environments. For the ferromagnetic case the fits mainly reveal nuclei interacting with a magnetic field. Additionally for all
phases, a fraction must be considered of77Se nuclei interacting with a strong (EFG3) distribution, that we attribute to nuclei on
defect regions of MnAs which could not be annealed. This fraction was firstly allowed to vary, but the quality of the fit is not
very sensitive to its value. In the final fits we constrained this value to the average of all previously found values,f3 = 22%.

Upon the transition the magnetic interaction vanishes and aslow frequency, due to the orthorhombic phase EFG is revealed.
The limited time window and low quadrupole moment makes it difficult to measure the EFG2 parameters of the orthorhombic
phase with high precision. Even in the most accurate measurements it can be fitted reasonably in a large range. On the other
hand, the stronger EFG3 of f3 = 22% has a large damping which also makes its accurate determination difficult. Therefore, in
the present experiments, the asymmetry parametersη2, η3 were set to zero, since large variations produce small changes in the
results. On the other hand, this procedure agrees with the fact that the hexagonal and weakly distorted orthorhombic symmetries
produce very small axial asymmetry parameters. The frequencyω02 was also fixed in an average value.

The magnetic phase, characterized by a well defined magnetichyperfine field, could be characterized also by a very small
EFG. The fit program properly handles this problem by resolving the Hamiltonian for the combined interaction. In the results
we present only a pure magnetic interaction, since with a combined interaction the EFG (Vzz) would have to be very small
in this phase and cannot be properly disentangled within theshort analysis time of45 ns. We estimate a majorant forVzz .
1× 1021V/m2, above which the quality of the fit would significantly degrade.

The obtained Vzz attributed to the orthorhombic phase is less than1.1× 1021V/m2 at all temperatures measured.
The frequenciesω and Lorentzian widthsσ are similar for the whole temperature range in this phase. However, we point that

before the experiment performed at 141 C during six hours, EFG2 shows a relevant attenuation ofσ2 ≈ 300 Mrads−1. After
this measurement the attenuation was considerably reducedand the characteristic EFG3 parameters attributed to Se interacting
with defects of MnAs have considerably changed. Both modifications compare well with what is observed in the second set of
PAC experiments immediately after the 600 C annealing step.We think this is evidence for an incomplete annealing that was
compensated during the lenghty six hours measurement at 141C.

The EFG parameters measured at 141 C, above the second-orderphase transition, shows a very low Vzz as expected from the
NiAs-type structure, and there is no hyperfine field since thesample should be paramagnetic, following a Curie-Weiss lawat
this temperature.

The measurement at 35 C shows a lower amplitude of the R(t) function due to the coexistence of hexagonal and orthorhombic
phases. Still, there is a stronger attenuation of the magnetic field that can correlate with the dynamics of the phase coexistence.

The first-order transition reported in the literature when heating is clearly seen in the PAC spectra at approximately42 C with
the disappearing magnetic hyperfine field when measuring at50 C.
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The fact that the spectrum measured at41.5 C (when raising T, fig. 2) and the spectrum measured at41 C (when lowering
T, fig. 3 ) are markedly different, shows that the hysteretic behavior of the macroscopic magnetization usually measuredis also
present at the microscopic-local like hyperfine field.

D. 2nd set of PAC experiments - First-Order Transition

A detailed study of the first-order transition has been done according the following order, on a second sample: 21.1, 40.8,
41.3, 42.3, 43.5, 124.5 (raising temperature); 41.4, 39.5,37.5, 36.6, 33.3, 32.5, 29.9, 13.3, -196 C (lowering temperature).

The first five PAC measurements, done when heating the sample,from room temperature, to above the first-order transition,
are shown in figure 4.

The five measurements, done when cooling the sample, from 36.6 to 13.3 C, also passing the transition, are shown in figure 5.
The measurements done when cooling the sample above the phase transition (41.1, 39.5, 37.5, 36.5 C), coming from a high

temperature (124.5 C), are not included, since those spectra are similar to the first spectrum in figure 5, at 36.6 C.
A last measurement performed with the sample at liquid nitrogen temperature is shown in figure 6.
In a similar way to the preceding section, the fits were done considering a magnetic hyperfine field and low EFG, which

are characteristic of each phase. For the reasons already detailed the asymmetry parameter is set to zero for all EFGs, and the
fraction attributed to defect and orthorhombic frequencies are fixed in average values. Also, an additional EFG characterized by
a quadrupole interaction ofω0 ≈ 176 Mrad.s−1, Vzz ≈ 6.4× 1021 V/m2, is found that accounts for 30% of the probe nuclei in
perturbed environments of the sample, still remaining after annealing.

The values of all fitted parameters can be found in table II.
As can be seen by the changes in the spectra, the transformations occur nearTC,i ≈ 42.3− 43.5C andTC,d = 30 − 32.6 C.

Therefore we estimate the thermal irreversibility to be between 10-13.5 C. This hysteresis is somewhat larger than thatreported
in other works by X-ray and magnetization measurements (10 C) 13–17.

Figure 7 shows magnetization measurements on the same samples with a vibrating sample magnetometer withB = 0.01 T,
showing TC,i = 45 C and TC,d = 30.7 C. The abrupt change over 2 C, at≈ 44 C, when heating (see fig. 7), is in agreement
with the hyperfine field changes measured above43.5 C.

As in the first set of PAC measurements, there is a hyperfine field of 24 T just before the transition. Then the magnetic phase
disappears in a small temperature interval, as shown in the spectra of figure 4 at42.5 and44.6 C. This shows no continuous
decrease of the hyperfine field to zero before the transition.Note that this conclusion cannot be learned from macroscopic
magnetization measurements only (see figure 7), where the magnetization can be seen to decrease to zero, since just before the
ferromagnetic to paramagnetic phase transition and withinthe temperature difference of 1 C, only a very small variation of
the hyperfine field is observed. This clearly shows that the magnetization changes are mainly the result of changes in phase
fractions, instead of thermal disorder.

Figure 8 shows the hyperfine fields obtained, where the agreement for both experiments can clearly be seen.
Notice that the attenuation of the hyperfine fields in the ferromagnetic phase increases towards the phase transition temper-

ature. When cooling from high temperature the same behavioris observed and at liquid nitrogen temperature (- 196 C), no
attenuation is observed. These observations hint at dynamic processes due to spin fluctuations.

At 42 C the amplitude of the magnetic part of the R(t) functions is smaller than at lower temperatures, showing a reduced
fraction of the ferromagnetic phase still present. A fraction of 60% for the77Se atoms at the ferromagnetic phase while other
10% show a small quadrupole frequency. This third fraction has Vzz = 1.08 (η was fixed to zero), corresponding to the value
found for the other fits in the orthorhombic phase. We can say that the phase coexistence only occurs in a width of 2.2 C or less,
since the measurement below and at (41.3 C) and above and at (43.5 C) show only the ferromagnetic and paramagnetic phases,
respectively. This width is in agreement with previous measurements of approximately2 C11,18.

The 1st order structure transformation was also probed withtemperature dependent X-ray powder diffraction studies ina
Philips diffractometer. We performed detailed measurements as a function of temperature, in three selected diffraction angle re-
gions, were changes in the transition are easily seen. Three2θ intervals were selected, 31.4-32.6, 41.8-43.1, and 48.6-50 degrees,
where one peak characteristic of the hexagonal phase disappears in the transition with the appearence of peaks characteristic of
the orthorhombic phase. In the 31.4-32.62θ interval the (101) peak disappears with the appeareance of (102) and (111) peaks
almost at the same angle. The same situations occur when the (102) peak disappears and (202), (211) peaks appears in the
orthorhombic phase for 41.8-43.1 degrees. For 48.6-50 degrees, the (110) hexagonal peak transforms into (013), (020),(212)
and (301) peaks in the orthorhombic phase. The fit of the peakswas done simply with gaussian functions, one gaussian for the
hexagonal peak and another gaussian for the two or more highly overlapped orthorhombic peaks. The areas of each peak should
correspond approximately to the fraction of each phase.

Figure 9 shows the fraction of the hexagonal phase obtained this way for the 3 angular intervals. The hysteresis produces
here a difference of approximately 12 C. Magnetization measurements show a somewhat higher thermal hysteresis difference at
half height, 14 C, which might indicate that the magnetic coupling is disturbed before the hysteresis is completed. The thermal
hysteresis interval obtained from PAC has a large uncertainty (10-13.5 C) but is in agreement with both measurements.



5

III. FIRST-PRINCIPLES CALCULATIONS

Knowing the lattice location of the PAC probe is of fundamental importance to understand the values obtained. After the
decay of77Br, it is expected that the77Se PAC probe may be substitutional at the As site, since As hasa similar atomic radius
and a neighbor atomic number. In order to check this assumption and to see the differences in the hyperfine parameters actually
measured at the probe site, we have used ab-initio density functional calculations.

Despite the existence of some published works reporting ab-initio simulations in this system, the hyperfine parametersare
usually not reported. The work of Ravindran et al.9, presents the calculation of the hyperfine parameters and magneto-optical
properties, using density functional calculations, of three manganese pnictides MnX (with X=As, Sb and Bi). Their calculations
used the FLAPW method and the electric field gradient and magnetic hyperfine field were presented. However, as suggested by
A. Svane28, the calculated structures of9 are incorrect, since the positions of Mn and the pnictide were exchanged with respect
to the the stable NiAs-type structure. Recently, calculations of the hyperfine parameters in bulk and surfaces of MnAs were also
reported, and the correct values were obtained29.

Here we also calculate the hyperfine parameters with the similar full potential (L)APW+lo method, as implemented in the
WIEN2K code30. In this method the space is divided in spheres, centered at the atoms, where the valence states are described by
atomic-like functions, and the interstitial space, where plane waves are used.

The Mn and As atomic spheres used have both a radius of2.5 a.u. . We checked convergency of the hyperfine parameters and
total energy as a function of the number of k-points used for integration in the Brillouin zone and the number of plane waves in
the basis. The calculations are spin-polarized and consider a ferromagnetic arrangement of Mn moments. For the calculations of
hyperfine parameters, spin-orbit coupling is included, forthe other properties no spin-orbit coupling is included, with a scalar-
relativistic basis for the valence electrons, while for thecore electrons the treatment is always fully-relativistic. For Mn core
states are 1s, 2s, 2p, and 3s, and valence states are 3p, 3d, and 4s, while for As 1s, 2s, 2p, 3s, and 3p are core states and 3d, 4s,
and 4p are valence states. The PBE Generalized Gradient Approximation31 exchange-correlation functional is used, since the
LSDA is known to give poor results in this compound32.

The calculated EFG of the MnAs sites in the hexagonal phase isshown in the table III. Due to the hexagonal symmetryη is
zero, and the direction of the principal axis of the EFG tensor is parallel to the c-axis. The EFG inside the spheres, whichis
almost equal to the total EFG, can be separated in different contributions, since the the states are described in combinations of
spherical harmonics, with different angular momentum components. In this case the p-p and d-d contributions of the density are
the dominant terms, with Vppzz ∝ 〈1/r3〉p[1/2(px + py) − pz] and Vddzz ∝ 〈1/r3〉d[(dxy + dx2

−y2) − 1/2(dxz + dyz) − dz2 ].
For Mn, Vpp

zz = −1.45 and Vddzz = −1.70 ×1021V/m2, states with both p and d character contribute to the total EFG. For the As
atoms, the states of p character are the dominant contribution with Vpp

zz = 1.27 and Vddzz = 0.06× 1021 V/m2. Cutting the 3d10

states out of the density calculation the Vzz at As remains almost the same, confirming that the contribution from the As filled d
electrons is negligible.

In order to improve the results of the previously mentioned work, we also calculated the EFG at MnSb and MnBi. We discuss
them in section IV, along with other quantities.

The Fermi contact hyperfine field at the nucleus is calculated, with the electron density averaged at a sphere with the Thomson
radius,rT = Ze2/mc2, according to the formulation of Blügel et al.33 in which

−→
BC = 8π

3
µB

−→mav, i. e. the contact hyperfine
field is parallel to the average spin density. The contributions of the contact hyperfine field due to core and valence electron
density contributions are discriminated in the tables. We remark the fact that while in As the hyperfine field is determined
almost exclusively by its valence contribution, caused by the polarization by Mn atoms, the core and valence contributions of
Mn cancel in a large amount. This is due to the core polarization mechanism34, where the core hyperfine field in Mn has a
negative sign due to the polarization of cores electrons by thed shell: the majority electrons are attracted to the polarizing d
electrons while the minority electrons are repelled, resulting in an excess minority charge at the nucleus. The on-siteorbital and
spin dipolar contributions are also calculated. These contributions are small when compared with the contact hyperfinefield. In
order to see the change due to different lattice parameters in the hyperfine fields, we calculated also with the low temperature
lattice constants35, and the obtained values are almost equal (tables IV and V). This simply shows that the collinear spin density
functional theory calculations cannot reproduce temperature related changes based only on the lattice constants.

The previously obtained hyperfine parameters are in reasonable agreement with the GGA calculations of Jamal et al.29. Some
differences are expected, since while their calculations consider the full theoretical lattice optimization, we onlyminimized the
atomic forces keeping the lattice parameters fixed at the experimental values. Relative to their results, for the Vzz at Mn and As,
small differences of 5% (1.53 against 1.46) and 4% (-3.63 against -3.78) are obtained, respectively. For the hyperfine fields the
differences are -9 (present work) compared with 1 T at the As site (small absolute difference) , and 24.7 (present work) compared
with 31.8 T at the Mn and As sites.

To compare with the PAC results using the implanted probe, the presence of a highly diluted (ppm) Se probe must be accounted
for in supercell calculations. The EFG and hyperfine field were calculated for hypothetical situations where the Se is substituted
at As and at Mn sites using Mn15/16Se1/16As and MnSe1/16As15/16) supercells.

The results for supercells with Se concentration of1/16 are shown in the table VI. The atomic forces were not high, and
were minimized by moving the free atomic coordinates. The small changes in this type of system due to the lattice constants
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(tables IV and V) motivated us to keep using the MnAs room temperature lattice constants. The hyperfine field calculated with
the Se atom substitutional at the As or Mn sites would be exactonly at 0K (disregarding zero-point effects, which should be
small36). Our closest measured value is at liquid nitrogen.

There is a good agreement of the measured 49 T at 77K when compared with the calculated 54.3 T at the As site. In contrast,
for the case in which Se is substitutional at the Mn site,|Bhf | is too low when compared to the experiment, even near the
transition, and the very high Vzz = 17.4 × 1021 V/m2 immediately discards the possibility that the probe is located there,
whereas the EFG is very small for As-site substitutional Se,in agreement with experiment. The calculation of the formation
energies∆Hf for the two substitutions also indicates this assignment,

∆Hf = Esup
imp − 8× EMnAs − µSe + µAs/Mn (4)

whereEsup
imp is the total energy of the2 × 2 × 2 supercell with a Se impurity,EMnAs is the energy calculated for the pure

compound, andµSe is taken as the total energy of nonmagnetichcp Se. The chemical potential of As or Mn (according to the
substituted site) is set as the energies of fcc antiferromagnetic Mn and nonmagnetic rhombohedral As. The formation energy
obtained for substitution at the As site is 0.03 eV, while forthe Mn substitution it has a higher value of 2.84 eV, confirming the
hyperfine calculation. However, since Br is the implanted atom , if there is no time for relocation between the Br→Se decay and
the PAC measurement, the formation energy of Br should be a better indication. Therefore, we also calculate these formation
energies, using the energies of supercells of the same size for the same substitutions, with Br, and the energy of nonmagnetic
solid Br2 asµBr, instead ofµSe, in the previous formula. The obtained results are 0.94 eV for the Br at As substitution, and
3.95 eV at the Mn site, again confirming the As substitution.

IV. MANGANESE PNICTIDES

Full potential calculations of the hyperfine parameters andother properties of manganese pnictides were performed by Ravin-
dran et al.9, but with the anti-NiAs structure. Here we report the same properties as calculated with the FLAPW method, i. e.
the spin magnetic moments, the density of states and the hyperfine parameters, with the NiAs-type structure.

The hyperfine parameters are especially sensitive to the type of structure. For the atoms of Mn and As, in the true structure
Vzz = −3.7 and1.4× 1021V/m2, respectively, while in the anti-MnAs structure Vzz = 0.4 and11.8× 1021V/m2.

Table VII shows the EFG of the three manganese pnictides. Theasymmetry parameter and Vzz direction are omitted, since
they are always 0 and (0,0,1). The EFG of the pnictide site increases with increasing atomic number (As, Sb, Bi), which
coincidentally also happens in the work of Ravindran et al.9. For the EFG of Mn the situation is reversed, in our calculations its
absolute value increases, while their results with the inverted structure have a slight decrease ascribed to volume effects, which
cannot be true now.

The spin moments for each atom, calculated inside the LAPW spheres, are presented in table VIII. Experimental values and
values obtained from other band-structure calculations are also presented. With our calculation, the values obtained, in µN per
formula unit, are now in a better agreement with experiment.Similar calculations (references in table VIII), which have used
the NiAs-structure, get values which are in accordance to our results. consistently lower than experiment.

The spin projected density of states (DOS) for the three manganese pnictides is shown in figure 10, with energy reference
equal to the Fermi energy. The band structure has been obtained before for these compounds by several authors. Although the
DOS obtained by9 is different, coincidentally most of the qualitative features apply also. Mainly Mn d and pnictide p states
hybridize decreasing the free value5µB . In both our study and theirs there are large peaks at the up states, below the Fermi
energy, largely due to Mn d states, at approximately -2.5 eV.The Mn d-states for the down spin are shifted to the conduction
band. This can be seen in figure 11, where the important statesof each atom are discriminated in their s, p and d character. The
As s states are nearly isolated between 13 and 10.5 eV below the Fermi energy. The total number of states at the Fermi level
is 2.51 for MnAs, 2.22 for MnSb, and 1.95 for MnBi. In comparison, with the anti structure the values are higher, respectively
3.46, 2.78, 2.059, which suggests that the structure is not so stable, as expected . The experimental value of2.4 ± 0.4 states for
MnSb estimated from specific heat measurements37 is also in agreement.

The magnetic hyperfine field increases greatly from MnSb to MnBi, due to the larger polarization from thes electrons at the
nuclear position, which largely increases due to the additional s-orbitals of higher principal atomic number, and the fact that Mn
in MnBi has the larger magnetic moment, so that it polarizes the Bi valence electrons. The magnetic moment of the pnictogen
site is very small, so that the core contribution of the hyperfine field is also small. For MnSb, previous NMR measurements
have determined a frequency of260 MHz at low temperatures, attributed to domain wall edge resonances38, correspondig to a
hyperfine fieldBhf = 3.93 T, equal to our calculated value for the bulk. The hyperfine field has been measured in MnBi, at the
Bi atoms by nuclear orientation39, Bhf = 94 T, comparing reasonably with our value of 81.8 T.
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V. CONCLUSION

We have measured the hyperfine parameters with the perturbedangular correlation method in MnAs. The hysteresis at the
hexagonal-orthorhombic 1st order phase transition is clearly seen from a microscopic point of view, complementing theX-ray
and magnetization measurements. The hyperfine magnetic field is the same at a given temperature, irrespective of cooling
or heating the sample even in the phase coexistence region. This local probe study shows that the magnetization changes
observed are mostly due to a change of phase fractions, whichcan be related to XRD studies. We provide a clear demonstration
of the nature of the first-order phase transition, by microscopic observation of phase separation at the hyperfine interactions
range (sentitive to approximately less than10 Å), much shorter than the range of diffraction techniques. We measured phase
coexistence in a small interval of temperature (2 C), comparable with previous measurements. In contrast, inother cases, PAC
measurements were able to find very small coexistent regionsof two competing phases, in a much broader temperature range
than that given by x-ray diffraction52.

Ab-initio calculations are used to complement the experiment. Realistic simulations of the diluted probe with supercell
calculations show that the77Se probe, if substitutional, is located at the As site. This information is taken from the comparison
of calculated and measured hyperfine parameters, and it is verified by the calculated formation energies. Our results reproduce
the hyperfine field at low temperature with good quantitativeagreement.

It may be interesting to try an experiment with a probe of highquadrupole moment, since in this case the EFG is very small
and has an overlying high amplitude magnetic hyperfine field,which makes its accurate determination difficult. Improvedresults
for the compounds MnSb and MnBi, of hyperfine parameters, magnetic moments and density of states were also presented and
discussed.
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TABLE II: Fit parameters, with temperatures in chronological order, for the 2nd sample. Fraction (%) of the measured interactions, quadrupolar
frequencyω0 (Mrad.s−1), Larmor frequencyωL (Mrad.s−1), and width of Lorentzian function used in the fitting procedureσ (Mrad.s−1). The
magnetic frequencies have an estimated upper limit for the error of 15 Mrad.s−1. f3 and corresponding frequency were fixed at an average
value, as wasω02. H = hexagonal ferromagnetic, O = orthorhombic.

T (◦C) f1 ωL1 σ1 f2 ω02 σ2 f3 ω03 σ3

21.1 70 619 3 - - - 30 176 23

40.8 70 510 9 - - - 30 176 22 H

41.3 70 499 12 - - - 30 176 18

42.3 40 495 10 30 28 20 30 176 10 H+O

43.5 - - - 70 28 24 30 176 9

124.5 - - - 70 28 26 30 176 27

41.4 - - - 70 28 36 30 176 17

39.5 - - - 70 28 46 30 176 24 O

37.5 - - - 70 28 47 30 176 22

34.5 - - - 70 28 29 30 176 14

33.3 - - - 70 28 197 30 176 73

32.5 - - - 70 28 20 30 176 11

29.9 70 571 9 - - - 30 176 48

13.6 70 648 4 - - - 30 176 98 H

-196 70 1050 0 - - - 30 57 29

TABLE III: Calculated electric field gradient of MnAs, at thehexagonal phase, with room temperature lattice constants:a=3.722Å, c=5.702
Å.

Atom Vzz(1021V/m2) η Vzz dir.

Mn -3.63 0 (0,0,1)

As 1.53 0 (0,0,1)

TABLE IV: Calculated hyperfine Fields of MnAs (T): room temperature lattice constants: a=3.722Å, c=5.702Å, hexagonal phase.

Atom BC core valenceBorb Bdip

Mn -6.5 -39.3 32.8 0.5 -3.0

As 25.0 0.4 24.5 -0.1 -0.2

TABLE V: Calculated contact hyperfine field of MnAs (T): low temperature lattice constants: a=3.732Å, c=5.678Å, hexagonal phase.

Atom BC core valence

Mn -6.1 -38.7 32.5

As 25.5 0.4 35.1
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Se at As site

Vzz(1021V/m2) η Vzz dir.

-0.27 0 (0,0,1)

BC core valenceBorb Bdip ——Bhf total (T)

56.6 0.4 56.2 -2.1 -0.2 54.3

Se at Mn site

Vzz(1021V/m2) η Vzz dir.

17.80 0 (0,0,1)

BC core valenceBorb Bdip —— Bhf total (T)

-23.1 -22.9 -0.2 3.4 -1.8 -21.5

TABLE VI: Hyperfine parameters with Se probe substitutionalat the As or Mn sites in MnAs.

TABLE VII: Electric field gradient of MnAs, MnSb and MnBi, p-pand d-d contributions in the atomic spheres.

Compound Atom Vzz(1021V/m2) Vp−p
zz Vd−d

zz

MnAs Mn -3.63 -1.45 -1.70

As 1.53 1.27 0.06

MnSb Mn -3.92 -1.40 -1.97

Sb 4.67 3.97 0.10

MnBi Mn -4.43 -1.91 -2.49

Bi 9.46 9.44 0.21

TABLE VIII: Total magnetic moment for MnX (X=P, As, Sb, Bi) inthe cell and magnetic moments inside the Mn and X LAPW spheres, in
units ofµB /formula unit. Previous experiments and calculations are compared with our results.

1021V/m2 Compound Mns Xs MnXt

MnAs(present work) 3.29 -0.14 3.17

MnAs(exp.) -0.2340 3.4040

MnAs(theory) 3.1041

3.14 -0.08 3.0642

3.18 -0.13 3.1429

MnSb(present work) 3.44 -0.14 3.34

MnSb(exp.) -0.3040 3.5543; 3.5044

MnSb(theory) 3.34 -0.07 3.2741

3.35 -0.032 3.3245

3.30 -0.06 3.2446

3.5 -0.17 3.3147

MnBi(present work) 3.49 -0.11 3.42

MnBi(exp.) 3.8248; 3.8449; 3.950

MnBi(theory) 3.71 -0.10 3.6142

3.50 -0.02 3.5651
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TABLE IX: Fermi contact hyperfine Fields of MnAs, MnSb, and MnBi, core and valence contributions, orbital and dipolar hyperfine fields
(T ).

Atom BC core valenceBorb Bdip

Mn -6.5 -39.3 32.8 0.5 -3.0

As 25.0 0.4 24.6 -0.1 -0.2

Mn -8.5 -41.5 33.0 1.2 -2.8

Sb 30.6 -2.0 30.8 0.1 -0.5

Mn -5.8 -42.1 36.3 3.6 -2.8

Bi 82.6 -1.2 83.8 0.2 -1.0

FIG. 1: Diagram of theγ − γ decay cascade of77Se, with the properties of the relevant intermediate isotope, and of the decay from the parent
isotope77Br by processes of electron capture and positron emission.
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red lines.
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FIG. 3: (Color online) PAC spectra and Fourier Transforms ofthe last five measurents, in chronological order. Between 21.2 and 25 C the
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