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45 Università di Padova, Padova, Italy
46 Sezione INFN di Milano Bicocca, Milano, Italy
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Abstract
The differential cross-section as a function of rapidity has been measured for the
exclusive production of J/ψ and ψ(2S) mesons in proton–proton collisions at√

s = 7 TeV, using data collected by the LHCb experiment, corresponding to an
integrated luminosity of 930 pb−1. The cross-sections times branching fractions
to two muons having pseudorapidities between 2.0 and 4.5 are measured to be

σpp→J/ψ →μ+μ− (2.0 < ημ± < 4.5) = 291 ± 7 ± 19 pb,

σpp→ψ(2S)→μ+μ− (2.0 < ημ± < 4.5) = 6.5 ± 0.9 ± 0.4 pb,

where the first uncertainty is statistical and the second is systematic. The
measurements agree with next-to-leading order QCD predictions as well as
with models that include saturation effects.

Keywords: inclusive production with identified hadrons, quarkonia, QCD,
diffraction, central exclusive production

(Some figures may appear in colour only in the online journal)

1. Introduction

Exclusive J/ψ and ψ(2S) meson production in hadron collisions are diffractive processes
that can be calculated in perturbative quantum chromodynamics (QCD) [1]. At leading order
(LO) they are thought to proceed via the exchange of a photon and a pomeron, which at
sufficiently hard scales can be described by two gluons as shown in figure 1(a). Measurements
of exclusive J/ψ and ψ(2S) production thus provide a test of QCD and shed light on the
pomeron, which plays a critical role in the description of diffraction and soft processes. In
particular, the measurements are sensitive to saturation effects [2, 3]: when performed in the
pseudorapidity range of the LHCb detector they probe x, the fractional momentum of the
parton, down to 5×10−6. Since the theoretical predictions depend on the gluon parton density
function (PDF), the experimental measurements can be used to constrain it [4, 5]. Furthermore,
the measurements are sensitive to the presence of the odderon [6], the odd-parity partner of
the pomeron, which could mediate the reaction in place of the photon in figure 1(a).

Several measurements of exclusive J/ψ production have been reported by the H1 [7, 8]
and ZEUS [9] collaborations at the HERA ep collider, at values of W , the centre-of-mass
energy of the photon–proton system, between 30 and 300 GeV. The first measurement at a
hadron machine, at W ≈ 80 GeV, was made by the CDF collaboration [10] at the Tevatron
pp̄ collider. The first measurement in pp collisions was made by the LHCb collaboration [11]
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Figure 1. Feynman diagrams displaying (a) exclusive J/ψ and (b) inelastic J/ψ
production where a small number of additional particles are produced due to gluon
radiation and (c), (d) proton dissociation. Equivalent diagrams apply for ψ(2S)
production.

using data corresponding to an integrated luminosity of 37 pb−1 collected at
√

s = 7 TeV, and
this extended the W reach up to 1.5 TeV. Measurements in Pb–Pb collisions at the LHC have
been reported by the ALICE collaboration [12]. Measurements of ψ(2S) production have
been made by the H1 collaboration [13] at four W values while both CDF [10] and LHCb [11]
reported results using small samples of ψ(2S) consisting of about 40 candidates each.

The J/ψ photoproduction cross-section has been fit by a power-law function,
σγ p→J/ψ p(W ) = a(W/90 GeV)δ , with the H1 collaboration measuring a = 81 ± 3 pb and
δ = 0.67 ± 0.03 [8]. At LO this follows from the small-x parametrization of the gluon
PDF: g(x, Q2) ∝ xλ at the scale Q2 = M2

J/ψ /4, where MJ/ψ is the mass of the J/ψ meson.
All measurements to date at hadron machines are consistent with this, albeit with rather
large uncertainties. However, higher-order corrections [5] or saturation effects [2, 3] lead
to deviations from a pure power-law behaviour and the measurements presented here have
sufficient precision to probe this effect. The ψ(2S) differential cross-section measurements
from the H1 collaboration are also consistent with a power-law function, although the limited
data sample implies a rather large uncertainty and leads to a value for the exponent of
δ = 0.91 ± 0.17 [13]. Both CDF and LHCb results are consistent with this.

This paper presents updated measurements from the LHCb collaboration using 930 pb−1

of data collected in 2011 at
√

s = 7 TeV. Both the J/ψ and ψ(2S) cross-sections are
measured differentially as a function of meson rapidity and compared to various theoretical
models, including those with saturation effects. The analysis technique is essentially that
published previously [11]. The main difference concerns the methodology for determining the
background due to non-exclusive J/ψ and ψ(2S) production where the additional particles
remain undetected.

2. Detector and data samples

The LHCb detector [14] is a single-arm forward spectrometer covering the pseudorapidity
range 2 < η < 5 (forward region), designed for the study of particles containing b or c quarks.
The detector includes a high precision tracking system consisting of a silicon-strip vertex
detector (VELO) surrounding the pp interaction region, a large-area silicon-strip detector (TT)
located upstream of a dipole magnet with a bending power of about 4 Tm, and three stations of
silicon-strip detectors (IT) and straw drift-tubes (OT) [15] placed downstream. The combined
tracking system provides a momentum measurement with relative uncertainty that varies from
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0.4% at 5 GeV/c to 0.6% at 100 GeV/c, and impact parameter resolution of 20 μm for tracks
with large transverse momentum. Different types of charged hadrons are distinguished by
information from two ring-imaging Cherenkov detectors [16]. Photon, electron and hadron
candidates are identified by a calorimeter system consisting of scintillating-pad (SPD) and pre-
shower detectors, an electromagnetic calorimeter and a hadronic calorimeter. The SPD also
provides a measurement of the charged particle multiplicity in an event. Muons are identified
by a system composed of alternating layers of iron and multiwire proportional chambers [17].
The trigger [18] consists of a hardware stage, based on information from the calorimeter
and muon systems, followed by a software stage, which applies a full event reconstruction.
The VELO also has sensitivity to charged particles with momenta above ∼100 MeV/c in the
pseudorapidity range −3.5 < η < −1.5 (backward region), while extending the sensitivity of
the forward region to 1.5 < η < 5.

The J/ψ and ψ(2S) are identified through their decay to two muons. The protons are
only marginally deflected by the peripheral collision and remain undetected inside the beam
pipe. Therefore, the signature for exclusive vector meson production is an event containing
two muons and no other activity. Beam crossings with multiple proton interactions produce
additional activity; in the 2011 data-taking period the average number of visible interactions per
bunch crossing was 1.4. Consequently, requiring an exclusive signature restricts the analysis
to beam crossings with a single pp interaction.

The SUPERCHIC [19] generator is used to produce samples of exclusive J/ψ and ψ(2S)

decays as well as those of the χc meson, which form a background for the J/ψ analysis. These
are passed through a GEANT4 [20] based detector simulation, the trigger emulation and the
event reconstruction chain of the LHCb experiment.

3. Event selection

The hardware trigger used in this analysis requires a single muon track with transverse
momentum pT > 400 MeV/c in coincidence with a low SPD multiplicity (<10 hits). The
software trigger used to select signal events requires two muons with pT > 400 MeV/c.

The analysis is performed in ten equally sized bins of meson rapidity between 2.0 and
4.5. The selection of exclusive events begins with the requirement of two reconstructed muons
in the forward region. The acceptance of LHCb for muons from J/ψ and ψ(2S) decays is not
uniform: muons with low momenta can be swept out of the LHCb acceptance by the magnetic
field, or be absorbed before they reach the muon stations. Consequently, a fiducial region is
defined requiring that each muon has a momentum greater than 6 GeV/c and both tracks are
reconstructed within the muon chamber acceptance. The fiducial acceptance is determined
using simulated events and is shown in figure 2 for both J/ψ and ψ(2S) decays, both of which
are assumed to be transversely polarized due to s-channel helicity conservation. A systematic
uncertainty of 2%, fully correlated between bins, is taken on these values corresponding to the
estimated uncertainty on the description of the tracking in the simulation [21].

It is required that there are no photons reconstructed in the detector and no other tracks
that incorporate VELO information. Unlike the previous analysis [11], a veto is not imposed
on tracks constructed solely from TT and IT/OT detector combinations, as these can arise
from detector signals associated with previous beam interactions (‘spillover’). The absence
of activity apart from the two muons ensures two rapidity gaps which sum to 3.5 units in the
forward region. An additional rapidity gap is obtained by requiring that there are no tracks
in the backward region. The VELO is sensitive to tracks within a certain rapidity region
depending on the z position from which the tracks originate and the event topology. The mean
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Figure 2. Acceptance for (solid) J/ψ and (dotted) ψ(2S) decays as a function of their
rapidity.

size of the backward rapidity gap that can be identified is 1.7 with a root mean square of
about 0.5.

Muon pairs are combined to form meson candidates whose transverse momentum squared
must satisfy p2

T < 0.8 GeV2/c2, and whose invariant masses must lie within 65 MeV/c2 of the
known J/ψ or ψ(2S) mass values [22]. With these requirements, 55 985 J/ψ candidates and
1565 ψ(2S) candidates are found.

Three background components are considered: non-resonant background due primarily
to the QED process that produces two muons; feed down from exclusive production of other
mesons (e.g. χc); and inelastic production of mesons where one or both protons disassociate.

3.1. Non-resonant background determination

The invariant mass distributions for J/ψ and ψ(2S) candidates are shown in figure 3 and are
fitted with Crystal Ball functions [23] to describe the resonant contributions and an exponential
function for the non-resonant background. Within the range of ±65 MeV/c2 about the known
meson masses, the non-resonant background is estimated to account for (0.8 ± 0.1)% and
(17.0 ± 0.3)% of the J/ψ and ψ(2S) candidates, respectively.

3.2. Feed-down background determination

Exclusively produced χc or ψ(2S) mesons can feed down to mimic an exclusive J/ψ decay
when the particles produced in association with the J/ψ remain undetected or go outside the
detector acceptance. Their contribution is estimated using simulated events normalized to an
enriched background sample in the data. Exclusive χc candidate events are identified in the
data as those containing a J/ψ and a single photon [24]. The background from χc feed down
is then estimated by scaling the number of observed χc candidates by the ratio of simulated χc

mesons passing the J/ψ selection requirements compared to those identified as χc candidate
events. The feed down from χc decays is estimated to account for (7.6 ± 0.9)% of the exclusive
J/ψ candidates, where the uncertainty includes a contribution from the fitted proportions of
χc0, χc1, χc2 as well as the photon reconstruction efficiency in simulation. Feed down from
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Figure 3. Invariant mass distribution of muon pairs after the selection requirements. The
horizontally hatched regions show the J/ψ (left) signal and (right) side-band regions.
The diagonally hatched regions show the ψ(2S) (left) signal and (right) side-band
regions. The data are fitted (solid curve) with crystal ball functions for the signals
and an exponential function for the non-resonant background; the latter contribution is
shown by the dashed curve.

ψ(2S) decays is estimated by scaling the ψ(2S) yields in the resonant peak (figure 3) by the
ratio of simulated ψ(2S) mesons passing the J/ψ selection requirements compared to those
passing the ψ(2S) selection requirements. The feed down from ψ(2S) decays is estimated to
account for (2.5 ± 0.2)% of the exclusive J/ψ candidates.

Feed down into the ψ(2S) selection is expected to be very small, e.g. due to χc(2P) or
X (3872) decays [25, 26]. Relaxing the requirement on the number of photons in the selection,
an additional 2% of ψ(2S) candidates is selected, from which a feed down of (2.0 ± 2.0)% is
estimated.

3.3. Inelastic background determination

The largest background is due to diffractive J/ψ and ψ(2S) meson production with additional
gluon radiation or proton dissociation (see figures 1(b)–(d)) where the particles produced go
outside the LHCb acceptance and, in particular, close to the beam-line. Proton dissociation is
more likely to occur when the transverse momentum of the meson is higher, while additional
gluon radiation also increases the average pT. Thus the inelastic background has a higher pT

than the signal.
In Regge theory, it is assumed that for elastic J/ψ and ψ(2S) meson production

dσ/dt ∝ exp(bst), where t ≈ −p2
Tc2 is the four-momentum transfer squared at the proton–

pomeron vertex. The H1 and ZEUS collaborations confirmed this dependence and measured
bs = 4.88 ± 0.15 GeV−2 [8] and bs = 4.15 ± 0.05+0.30

−0.18 GeV−2 [9], respectively, for J/ψ
production, while H1 measured bs = 4.3 ± 0.6 GeV−2 [13] for ψ(2S) production. In contrast,
the proton-dissociative production of J/ψ or ψ(2S) for |t| < 1.2 GeV2 is observed to

11



J. Phys. G: Nucl. Part. Phys. 41 (2014) 055002 R Aaij et al

]2/c2 [GeV2
T

p
0 0.5 1 1.5 2

2
/c2

E
ve

nt
s 

pe
r 

0.
02

 G
eV

0

500

1000

1500

2000

2500

3000

3500

4000

4500

LHCb Signal

Inelastic bkg

Feed-down bkg

(a)

]2/c2 [GeV2
T

p
0 0.5 1 1.5 2

2
/c2

E
ve

nt
s 

pe
r 

0.
1 

G
eV

0

50

100

150

200

250

300

350

400

450
LHCb Signal

Inelastic bkg

Feed-down bkg

(b)

Figure 4. Transverse momentum squared distributions for (a) J/ψ and (b) ψ(2S)
candidates, where the non-resonant background contribution has been subtracted using
side-bands. The points are data, the solid curve is the total fit while the different
contributions are as described.

follow an exponential dependence, exp (bpdt), with bpd = 1.07 ± 0.11 GeV−2 for J/ψ and
bpd = 0.59 ± 0.17 GeV−2 for ψ(2S) [27]. For larger values of |t| a power law is required [8].

The values of b measured at HERA can be extrapolated to LHC energies using Regge
theory: b(W ) = b0 + 4α′ log(W/W0), with W0 = 90 GeV and α′ = 0.164 ± 0.041 GeV−2 [7]
for the elastic process while α′ = −0.014 ± 0.009 GeV−2 [27] for proton dissociation. This
predicts bs ≈ 6 GeV−2 and bpd ≈ 1 GeV−2 in the LHCb kinematic region.

After the non-resonant contribution has been subtracted using the side-bands indicated in
figure 3, and with the requirement of p2

T < 0.8 GeV2/c2 for the J/ψ and ψ(2S) removed, the
data are fitted to the function

fs

N1
exp

( − bs p2
Tc2

) + fpd

N2
exp

( − bpd p2
Tc2

) + ffd

N3
Ffd

(
p2

T

)
,

where fs and fpd are the fractions of elastic and proton-dissociative production, respectively,
and ffd is the fraction of feed down fixed to that obtained in section 3.2. The shape of the
distribution for the feed-down contribution, Ffd, is taken from the data using χc → J/ψ γ

and ψ(2S) → J/ψ ππ candidates. The numbers N1, N2 and N3 normalize each of the three
functions to unity in the region p2

T < 0.8 GeV2/c2, while bs and bpd are free parameters.
The result of the fit for the J/ψ sample is shown in figure 4(a). The χ2/ndf of the fit is

115/96 and returns values of bs = 5.70 ± 0.11 GeV−2 and bpd = 0.97 ± 0.04 GeV−2. Below
p2

T = 0.8 GeV2/c2, the signal fraction is 0.597 ± 0.012 and correcting for the non-resonant
contribution gives an overall purity for the J/ψ sample of 0.592 ± 0.012. The result of the fit
for the ψ(2S) sample is shown in figure 4(b). The χ2/ndf of the fit is 11/16 and returns values
of bs = 5.1 ± 0.7 GeV−2 and bpd = 0.8 ± 0.2 GeV−2. Below p2

T = 0.8 GeV2/c2, the signal
fraction is 0.62 ± 0.08 and correcting for the non-resonant contribution gives an overall purity
for the ψ(2S) sample of 0.52 ± 0.07. In both cases, the values obtained for bs and bpd are in
agreement with the extrapolations of HERA results using Regge theory.

A systematic uncertainty is assigned due to the choice of the fit range and the shape
of the parametrization describing the inelastic background. Doubling the range of the fit for
the ψ(2S) candidates changes the signal fraction by 3%. Doubling the range of the fit for
the J/ψ candidates leads to a poor quality fit; a single exponential function does not
describe the background well. For large values of p2

T, the H1 collaboration introduced a
function of the form (1 + bpd p2

T/n)−n which interpolates between an exponential at low p2
T

and a power law at high p2
T [8]. Using this functional form and holding n = 3.58, as determined
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by H1, gives an acceptable fit with the signal fraction changing by 5%. This value is used as a
systematic uncertainty on the purity determination for both the J/ψ and ψ(2S) analyses.

The calculated fraction of feed down is found to have a negligible effect on the fraction of
signal events as the shapes are similar to the fitted shape for the proton dissociation. The purity
of the sample is also calculated in bins of rapidity. No trends are observed and all values are
consistent within statistical uncertainties. Consequently a single value for the purity of each
sample is assumed, independent of the rapidity of the meson.

4. Cross-section calculation

The cross-section times branching fraction to two muons with pseudorapidities between 2.0
and 4.5 is calculated in ten bins of meson rapidity, y, via(

dσ

dy

)
i

= ρNi

Aiεiy(εsingleL)
, (1)

where: Ni is the number of events in bin i; ρ is the purity of the sample as described in the
previous section; Ai is the acceptance of the fiducial region as shown in figure 2; εi is the
efficiency to select a signal event; y is the bin width; L is the luminosity, which has been
determined with an uncertainty of 3.5% [28]; and εsingle is the efficiency for selecting single
interaction events, which accounts for the fact that the selection requirements reject signal
events that are accompanied by a visible proton–proton interaction in the same beam crossing.

The number of visible proton–proton interactions per beam crossing, n, is assumed to
follow a Poisson distribution, P(n) = μn exp(−μ)/n!, where μ is the average number of
visible interactions, defined as interactions with one or more tracks having VELO information.
The probability that a signal event is not rejected due to the presence of another visible
interaction is given by P(0) and therefore, εsingle = exp(−μ). This has been calculated
throughout the data-taking period in roughly hour-long intervals; variations in μ during this
interval have been studied and found to have a negligible effect. The spread in the value
of μ for different crossing bunch-pairs is small and its effect is neglected. Spillover from
previous beam crossings does not affect the VELO, and detector noise is typically at the level
of a few uncorrelated hits, which do not form a track. Averaged over the data-taking period,
εsingle = 0.241 ± 0.003, where the uncertainty has been calculated with the assumption that at
least one track in a visible interaction may be spurious.

For events with two tracks inside the fiducial region, the efficiency to select a meson can
be expressed as the product ε

ψ

id × ε
ψ

trig × εsel, where ε
ψ

id is the efficiency for both tracks from

the meson to be identified as muons, ε
ψ

trig is the efficiency for an event with two reconstructed
muons to fire the triggers, and εsel is the efficiency for a triggered event to pass the selection
criteria. Most of these quantities are calculated directly from the data.

For muons coming from J/ψ decays, a tag-and-probe technique is used to find the
efficiency to identify a single muon, ε

μ

id(φ, η), as a function of the azimuthal angle, φ, and
pseudorapidity, η. The tag is an identified muon that fires the trigger. The probe is the other
track in events with precisely two tracks, which gives the J/ψ invariant mass when combined
with the tag-track. The fraction of probes identified as muons determines ε

μ

id(φ, η) from which
ε

ψ

id (y) is found using the simulation to relate the rapidity of the meson to the azimuthal angles
and pseudorapidities of the two muons. A scaling factor (typically 1%), found using simulated
events, is applied to get the corresponding quantity for muons from ψ(2S) decays, which have
a slightly different momentum spectrum due to the higher mass of the ψ(2S) meson.

In a similar way, the tag-and-probe technique is used to find the efficiency for a single
muon to fire the hardware trigger, from which is derived the corresponding J/ψ efficiency.
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Table 1. Quantities entering the cross-section calculations as a function of meson
rapidity.

y range (J/ψ ) [2.00, 2.25] [2.25,2.50] [2.50,2.75] [2.75,3.00] [3.00,3.25]

# Events 798 3911 6632 8600 9987
Acceptance 0.467 ± 0.009 0.653 ± 0.013 0.719 ± 0.014 0.718 ± 0.014 0.713 ± 0.014
ε

ψ

id × ε
ψ

trig 0.71 ± 0.03 0.78 ± 0.02 0.81 ± 0.01 0.84 ± 0.01 0.85 ± 0.01
Purity 0.592 ± 0.012 ± 0.030

y range (J/ψ ) [3.25, 3.50] [3.50,3.75] [3.75,4.00] [4.00,4.25] [4.25,4.50]

# Events 9877 7907 5181 2496 596
Acceptance 0.739 ± 0.015 0.734 ± 0.015 0.674 ± 0.014 0.566 ± 0.011 0.401 ± 0.008
ε

ψ

id × ε
ψ

trig 0.87 ± 0.01 0.88 ± 0.01 0.87 ± 0.01 0.83 ± 0.02 0.81 ± 0.03
Purity 0.592 ± 0.012 ± 0.030

y range (ψ(2S)) [2.00, 2.25] [2.25,2.50] [2.50,2.75] [2.75,3.00] [3.00,3.25]

# Events 31 111 208 1287 268
Acceptance 0.678 ± 0.013 0.800 ± 0.016 0.834 ± 0.017 0.787 ± 0.016 0.755 ± 0.015
ε

ψ

id × ε
ψ

trig 0.80 ± 0.03 0.83 ± 0.02 0.86 ± 0.01 0.88 ± 0.01 0.88 ± 0.01
Purity (ψ(2S)) 0.52 ± 0.07 ± 0.03

y range(ψ(2S)) [3.25, 3.50] [3.50,3.75] [3.75,4.00] [4.00,4.25] [4.25,4.50]

# Events 282 201 105 61 11
Acceptance 0.748 ± 0.015 0.702 ± 0.014 0.628 ± 0.013 0.524 ± 0.010 0.384 ± 0.008
ε

ψ

id × ε
ψ

trig 0.90 ± 0.01 0.89 ± 0.01 0.87 ± 0.01 0.84 ± 0.02 0.77 ± 0.03
Purity (ψ(2S)) 0.52 ± 0.07 ± 0.03

y range (J/ψ and ψ(2S)) [2.00, 4.50]

εsel 0.87 ± 0.01
εsingle 0.241 ± 0.003
L ( pb−1) 929 ± 33

The software trigger requires the presence of two muons. Its efficiency is determined using an
independent pre-scaled software trigger that fires on a single muon. Combining these factors
together gives a data-driven estimate of ε

ψ

trig for J/ψ decays. A correction of typically 3%,
found using simulated events, is applied to get the corresponding quantity for ψ(2S) decays.
The values determined for ε

ψ

id × ε
ψ

trig as a function of rapidity are given in table 1.
The selection efficiency, εsel, is determined using simulation and data. From simulation

the requirement of having no additional tracks in the event has an efficiency of 0.997 ± 0.001,
and the requirement that p2

T < 0.8 GeV2/c2 has an efficiency of 0.979 ± 0.003, where the
uncertainty corresponds to a change of 5% in the value of bs used in the simulation. The
simulation, calibrated using a sample of J/ψ + γ candidates in data, determines the efficiency
for having no identified photons in the event to be 0.972 ± 0.005. The requirement that the
meson mass lies within 65 MeV of the known value is found from the fit in figure 3 and gives
an efficiency of 0.96 ± 0.01. The global requirement, imposed by the hardware trigger, that
there be fewer than ten SPD hits introduces a small inefficiency due to spillover from previous
beam crossings. The efficiency of the SPD requirement is measured to be 0.96 ± 0.01 using
an independent trigger that has no constraint on the number of SPD hits. Combining these
together, it is estimated that εsel = 0.87 ± 0.01 for the J/ψ selection and the same value is
taken for the ψ(2S) analysis.

The numbers entering the cross-section calculation are summarized in table 1. Applying
equation (1) leads to differential cross-section times branching fraction values for mesons
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Table 2. Differential cross-section times branching ratio, in units of pb, for mesons
decaying to two muons, both with 2.0 < η < 4.5, in bins of meson rapidity.
Only the uncorrelated statistical uncertainties are quoted with the central values. The
uncertainties, correlated between bins, are tabulated in the lower table. Those with an
asterisk enter into the systematic uncertainty.

y range [2.00, 2.25] [2.25,2.50] [2.50,2.75] [2.75,3.00] [3.00,3.25]

dσ

dy J/ψ 29.3 ± 1.7 92.5 ± 2.4 137.8 ± 2.4 173.1 ± 2.6 198.0 ± 2.7
dσ

dy ψ(2S) 0.56 ± 0.11 1.75 ± 0.17 3.06 ± 0.22 4.41 ± 0.26 4.24 ± 0.26

y range [3.25, 3.50] [3.50,3.75] [3.75,4.00] [4.00,4.25] [4.25,4.50]
dσ

dy J/ψ 187.6 ± 2.6 148.9 ± 2.4 107.4 ± 2.1 65.3 ± 2.0 21.9 ± 1.3
dσ

dy ψ(2S) 4.51 ± 0.27 3.43 ± 0.25 2.05 ± 0.20 1.47 ± 0.19 0.36 ± 0.11

Correlated uncertainties expressed as a percentage of the final result

εsel 1.4%

Purity determination 2.0%
(J/ψ )
Purity determination 13.0%
(ψ(2S))
∗εsingle 1.0%
∗Acceptance 2.0%
∗Shape of the inelastic 5.0%
background
∗Luminosity 3.5%
Total correlated statistical 2.4%
uncertainty (J/ψ )

Total correlated statistical 13.0%
uncertainty (ψ(2S))
Total correlated systematic 6.5%
uncertainty

with both muons inside 2.0 < ημ± < 4.5, which are reported in table 2. The uncorrelated
statistical uncertainties are combined in quadrature and are reported in the top half of the table.
The statistical uncertainties on εsel and the purity are correlated between bins and are quoted
in the lower half of the table. The systematic uncertainties on the fraction of single interaction
beam crossings, the acceptance, the shape of the inelastic background and the luminosity are
also correlated between bins and are indicated separately.

The total cross-section times branching fraction to two muons is obtained by integrating
the cross-sections in table 2. The uncorrelated statistical uncertainties are added in quadrature
and combined with the correlated ones to give the total statistical uncertainty. The correlated
systematic uncertainties, indicated in the lower part of table 2 by asterisks, are combined to
give the total systematic uncertainty. This leads to the following results for the cross-section
times branching fraction to two muons having pseudorapidities between 2.0 and 4.5:

σpp→J/ψ →μ+μ− (2.0 < ημ± < 4.5) = 291 ± 7 ± 19 pb,

σpp→ψ(2S)→μ+μ− (2.0 < ημ± < 4.5) = 6.5 ± 0.9 ± 0.4 pb,
(2)

where the first uncertainty is statistical and the second is systematic.
The differential cross-section results reported in table 2 correspond to muons that enter

the LHCb detector fiducial volume. Differential cross-section results as a function of meson
rapidity are obtained by dividing by the known meson branching fraction to two muons [22] and
by the fraction of decays with 2.0 < ημ± < 4.5. The former introduces an additional systematic
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Figure 5. Differential cross-section for (a) J/ψ and (b) ψ(2S) production compared to
LO and NLO predictions of [5]. The band indicates the total uncertainty, most of which
is correlated between bins.

Table 3. Fraction of events in a given meson rapidity range where both muons have
2.0 < η < 4.5.

y range [2.00, 2.25] [2.25,2.50] [2.50,2.75] [2.75,3.00] [3.00,3.25]
Acceptance 0.093 0.289 0.455 0.617 0.735

y range [3.25, 3.50] [3.50,3.75] [3.75,4.00] [4.00,4.25] [4.25,4.50]

Acceptance 0.738 0.624 0.470 0.286 0.103

Table 4. Comparison of this result to various theoretical predictions.

J/ψ (pb) ψ(2S) (pb)

Gonçalves and Machado [29] 275
JMRT [5] 282 8.3
Motyka and Watt [2] 334
Schäfer and Szczurek [30] 317
Starlight [31] 292 6.1
SUPERCHIC [19] 317 7.0
LHCb measured value 291 ± 7 ± 19 6.5 ± 0.9 ± 0.4

uncertainty of 10% for the ψ(2S) measurement. The latter depends on the kinematics of the
decay, is calculated using SUPERCHIC assuming that the J/ψ and ψ(2S) mesons are transversely
polarized, and is given in table 3.

5. Discussion

The integrated cross-section measurements for J/ψ and ψ(2S) mesons decaying to muons with
2.0 < ημ± < 4.5 are compared to various theoretical predictions in table 4. Good agreement
is found in each case.

The differential distribution for J/ψ production is presented in figure 5(a), where the
extent of the error bars indicates the uncorrelated statistical uncertainties and the band is
the total uncertainty. Jones, Martin, Ryskin and Teubner (JMRT) [5] have obtained LO and
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Figure 6. Photoproduction cross-section as a function of the centre-of-mass of the
photon–proton system with the power-law fit from [8] superimposed. The LHCb data
points forW+(W−) are derived assuming the power-law fit forW−(W+). The uncertainties
are correlated between bins. Fixed target results are from the E401 [33], E516 [34] and
E687 [35] collaborations.

next-to-LO89 (NLO) predictions from a fit to HERA and LHCb 2010 data, which are dominated
by the HERA data; thus these curves can be considered as LO and NLO extrapolations from
HERA energies. The LO result is essentially the power-law photoproduction result from
HERA, combined with a photon flux function and a gap survival factor [32]. Better agreement
is obtained between data and the NLO prediction than between data and the LO prediction.

Exclusive production of J/ψ in pp collisions is related to photoproduction through

dσ

dy pp→pJ/ψ p
= r+k+

dn

dk+
σγ p→J/ψ p(W+) + r−k−

dn

dk−
σγ p→J/ψ p(W−) (3)

where dn/dk± are photon fluxes for photons of energy k± ≈ (MJ/ψ /2) exp(±|y|),(W±)2 =
2k±

√
s, and r± are absorptive corrections as given, for example, in [5, 30]. The LHCb results

cannot unambiguously determine the photoproduction cross-section due to contributions from
both W+ and W−, corresponding to the photon being either an emitter or a target, respectively.
However, a comparison can be made to the HERA photoproduction results using the power-law
relationship, σγ p→J/ψ p(W ) = 81(W/90 GeV)0.67nb, determined by the H1 collaboration [8].
A model-dependent measurement of σγ p→J/ψ p(W+) is obtained from the LHCb differential
cross-section measurement by applying equation (3) and assuming the power-law result
for σγ p→J/ψ p(W−), while σγ p→J/ψ p(W−) is obtained by assuming the power-law result for
σγ p→J/ψ p(W+). The result of this procedure is shown in figure 6, which compares the modified
LHCb data with HERA and fixed target photoproduction results: note that there are two
correlated points plotted for each LHCb measurement, corresponding to the W+ and W−
solutions. It was shown in our previous publication [11] that the LHCb data were consistent,

89 Only the dominant NLO corrections have been considered: see [5] for details.
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Figure 7. Differential distribution for (a) J/ψ and (b) ψ(2S) compared to the predictions
of Gay Ducatiet al [3] and Motyka and Watt [2], which include saturation effects. The
points are data where the error bars indicate the uncorrelated uncertainties. The band
indicates the total uncertainty, most of which is correlated between bins.

within large statistical uncertainties, with a simple power-law extrapolation of HERA J/ψ
photoproduction results to LHC energies. With increased statistics, an extrapolation of the
power-law obtained in [8] appears to be insufficient to describe the LHCb data.

The differential distribution for ψ(2S) production is presented in figure 5(b) and is
compared to both LO and NLO predictions90 from JMRT [36] using the formalism described
in [5] with the gluon PDF taken from their J/ψ analysis. Once again, better agreement is found
between data and the NLO prediction than between data and the LO prediction.

In addition to higher order effects being capable of explaining the deviation from a
pure power-law behaviour, saturation effects may be important. Figure 7(a) compares the
J/ψ differential distribution to predictions by Motyka and Watt [2] and Gay Ducati et al
[3], that both include saturation effects and have a precision of 10–15%. A rapidity gap
survival factor of r(y) = 0.85 − 0.1|y|/3 has been applied to the former while the latter
assumes r(y) = 0.8. Both predictions use a Weizsäcker–Williams approximation to describe
the photon flux. The agreement with the LHCb data is good. Figure 7(b) compares the ψ(2S)

differential distribution to the prediction of Gay Ducatiet al. Good agreement with the data is
again observed.

6. Conclusions

The differential and integrated cross-section times branching fraction for J/ψ and ψ(2S)

mesons decaying to two muons, both with 2.0 < η < 4.5, have been measured. The results
of this analysis are consistent with the previously published LHCb analysis, which used data
taken in 2010, but have a significantly improved precision, as well as a more extensive use
of data-driven techniques to estimate systematic sources. An increase in luminosity, lower
pile-up running conditions, as well as improvements in the trigger lead to roughly 40 times as
many events in the 2011 data-taking period. The integrated cross-section measurements have
an overall uncertainty that is a factor 2 better; they are limited by the theoretical modelling of
the inelastic background for the J/ψ analysis and by the statistical precision with which the
background is determined for the ψ(2S) analysis. The cross-section is presented differentially

90 These predictions were made by replacing the J/ψ mass and electronic width by those of the ψ(2S) neglecting
possible relativistic corrections, which may be important for the heavier meson.
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for the ψ(2S) for the first time. Although the total uncertainty for the J/ψ differential
distribution is 7% per rapidity bin, most of this is correlated bin-to-bin; the uncorrelated
uncertainty is typically 1.5%. Thus the overall shape of the differential distribution is rather
well determined and this improves the ability of the data to distinguish between different
theoretical models.

The integrated cross-sections are in good agreement with several theoretical estimates.
The differential J/ψ and ψ(2S) cross-section both agree better with the NLO rather than LO
predictions of [5]. The result has also been compared to two models that include saturation
effects [2, 3]; in both cases, good agreement is observed. It is also worth noting that the
t-dependence for LHCb and HERA results are in agreement with Regge theory.
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