CERN Accelerating science

Article
Report number arXiv:1401.0925
Title Importance of nuclear triaxiality for electromagnetic strength, level density and neutron capture cross sections in heavy nuclei
Author(s) Grosse, Eckart (Dresden, Tech. U.) ; Junghans, Arnd R (HZDR, Dresden) ; Massarczyk, Ralph (HZDR, Dresden ; Dresden, Tech. U.)
Publication 2014
Imprint 05 Jan 2014
Number of pages 10
Note Comments: Contribution to the proceedings of the ERINDA workshop held at CERN in October 2013
In: European Research Infrastructures for Nuclear Data Applications (ERINDA) workshop, CERN, Geneva, Switzerland, 1 - 3 Oct 2013, pp.135-144
Subject category Nuclear Physics - Experiment
Abstract Cross sections for neutron capture in the range of unresolved resonances are predicted simultaneously to level distances at the neutron threshold for more than 100 spin-0 target nuclei with A >70. Assuming triaxiality in nearly all these nuclei a combined parameterization for both, level density and photon strength is presented. The strength functions used are based on a global fit to IVGDR shapes by the sum of three Lorentzians adding up to the TRK sum rule and theory-based predictions for the A-dependence of pole energies and spreading widths. For the small spins reached by capture level densities are well described by only one free global parameter; a significant collective enhancement due to the deviation from axial symmetry is observed. Reliable predictions for compound nuclear reactions also outside the valley of stability as expected from the derived global parameterization are important for nuclear astrophysics and for the transmutation of nuclear waste.

Corresponding record in: Inspire


 レコード 生成: 2014-01-07, 最終変更: 2014-12-18


Published version from CERN:
Download fulltextPDF
External link:
Download fulltextPreprint