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Abstract

Measurements of the differential cross sections for the production of exactly four jets
in proton-proton collisions are presented as a function of the transverse momentum
pT and pseudorapidity η, together with the correlations in azimuthal angle and the
pT balance among the jets. The data sample was collected in 2010 at a center-of-
mass energy of 7 TeV with the CMS detector at the LHC, with an integrated luminos-
ity of 36 pb−1. The cross section for exactly 4 jets, with 2 hard jets of pT > 50 GeV
each, together with 2 jets of pT > 20 GeV each, within |η| < 4.7 is measured to be
σ = 330± 5 (stat.)± 45 (syst.) nb. It is found that fixed-order matrix element calcu-
lations including parton showers describe the measured differential cross sections in
some regions of phase space only, and that adding contributions from double parton
scattering brings the Monte Carlo predictions closer to the data.
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1 Introduction
The production of jets with large transverse momenta (pT) in high-energy proton-proton col-
lisions can be described within the theory of strong interactions, quantum chromodynamics
(QCD), by the scattering of partons. The partonic matrix element (ME) is convoluted with the
density functions of partons inside the protons. The inclusive cross section for high-pT jets
has been measured by the ATLAS [1] and Compact Muon Solenoid (CMS) [2] Collaborations
and is in good agreement with predictions obtained at next-to-leading order (NLO) in pertur-
bative QCD. The ATLAS Collaboration has measured high-pT multijet cross sections [3] and
obtained good agreement with NLO calculations [4, 5]. However, the production cross section
of a forward jet in association with a jet in the central region of the detector is not very well
described [6].

In multijet production, correlations between the jets can be studied in detail. The production of
four jets at large pT involves terms of fourth power in the strong coupling, αS, and correlations
between pairs of jets at different pT scales can be investigated. The hard scattering process pro-
duces two or more partons at high-pT, with the initial- and final-state QCD radiation resulting
in additional jets at lower pT. This partonic process, coming from single parton scattering (SPS),
is a crucial test for higher-order QCD calculations, as well as for the description of high-pT jets
within the parton shower (PS) formalism.

Proton-proton collisions at high center-of-mass energy access the region at low proton lon-
gitudinal momentum fractions x, carried by the parton, where the parton densities are large
and where the probability to have more than one partonic interaction becomes non-negligible.
Events where more than one partonic interaction occurs in the same collision, are commonly
referred to as “multiparton interactions” (MPI). In this regime, the pair of hard jets and the
pair of softer jets can also be produced via double parton scattering (DPS) [7], consisting of
two simultaneous hard interactions in the same collision. Double parton scattering has been
observed in Refs. [8–11]. The SPS and DPS processes result in different distributions of angular
correlations, as discussed in Ref. [12]. A final state arising from SPS tends to have a strongly
correlated configuration in azimuthal angle and pT-balance between the two jet systems. In
contrast, DPS events generally have uncorrelated topologies for jet pairs. At large jet trans-
verse momenta, the contribution from DPS is expected to be small, or at least much smaller
than at low pT. Therefore it is essential to perform a differential cross section measurement
over a large region of phase space, and to compare it with theoretical predictions. Only if the
region at large pT is appropriately described, can an extraction of a possible DPS contribution
at smaller pT be performed. The aim of this paper is a measurement of the kinematic variables
for the production of exactly four jets and distributions sensitive to DPS.

Four-jet production is measured in pp collisions at a center-of-mass energy
√

s = 7 TeV us-
ing the data sample collected with the CMS detector at the Large Hadron Collider (LHC) in
2010 for an integrated luminosity of 36 pb−1. The jets are reconstructed with the anti-kT algo-
rithm [13–15], with a distance parameter of 0.5, in the pseudorapidity range |η| < 4.7. The
pseudorapidity is defined as η = − ln[tan(θ/2)], where θ is the polar angle with respect to the
counterclockwise-beam direction. A final state with exactly four jets pp → 4j + X is selected
with the two leading (highest pT) jets each having pT > 50 GeV and two additional jets each
with pT > 20 GeV, where X stands for all jets and particles with pT < 20 GeV in the acceptance
region.

The outline of this paper is as follows. In Section 2, the detector is described and the MC
simulation is discussed in section 3. In Section 4, the event selection, correction procedure,
and systematic uncertainties are discussed. Section 5 covers the results and conclusions are
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presented in Section 6.

2 Detector description
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diame-
ter, providing a magnetic field of 3.8 T. Charged particle trajectories are measured using silicon
pixel and strip trackers [16] that cover the pseudorapidity region |η| < 2.5. An electromag-
netic crystal calorimeter (ECAL) [17] and a brass/scintillator hadron calorimeter (HCAL) [18]
surround the tracking volume and cover |η| < 3.0. A forward quartz-fibre Cherenkov hadron
calorimeter (HF) [19] extends the coverage to |η| = 5.2. Events are collected by using a two-
level trigger system consisting of level-1 and high-level triggers (HLT) [20].

The CMS experiment uses a right-handed coordinate system, with the origin at the nominal
interaction point, the x axis pointing to the center of the LHC ring, the y axis pointing up
(perpendicular to the plane of the LHC ring), and the z axis along the counterclockwise-beam
direction. The polar angle θ is measured from the positive z axis and the azimuthal angle φ is
measured in the x-y plane. A more detailed description of the CMS apparatus can be found in
Ref. [21].

The particle-flow event reconstruction consists in reconstructing and identifying each single
particle with an optimized combination of all subdetector information. The energy of pho-
tons is directly obtained from the ECAL measurement, corrected for zero-suppression effects.
The energy of electrons is determined from a combination of the track momentum at the
main interaction vertex, the corresponding ECAL cluster energy, and the energy sum of all
bremsstrahlung photons attached to the track. The energy of muons is obtained from the corre-
sponding track momentum. The energy of charged hadrons is determined from a combination
of the track momentum and the corresponding ECAL and HCAL energies, corrected for zero-
suppression effects, and calibrated for the nonlinear response of the calorimeters. Finally the
energy of neutral hadrons is obtained from the corresponding calibrated ECAL and HCAL
energies [22, 23].

For each event, hadronic jets are clustered from these reconstructed particles with the infrared
and collinear safe anti-kT algorithm [13–15], operated with a distance parameter of 0.5. The jet
momentum is determined as the vectorial sum of all particle momenta in the jet, and is found in
the simulation to be within 5% to 10% of the true momentum over the whole pT spectrum and
detector acceptance. Jet energy corrections are derived from the simulation, and are confirmed
with in situ measurements of the energy balance of dijet and photon+jet events [24]. Additional
selection criteria are applied to each event to remove spurious jet-like features originating from
isolated noise patterns in certain HCAL regions. The jet energy resolution amounts typically
to 15% at 10 GeV, 8% at 100 GeV, and 4% at 1 TeV, to be compared to about 40%, 12%, and 5%
obtained when the calorimeters alone are used for jet clustering.

Jet transverse momenta are corrected [25] by applying an offset correction to take into account
the extra energy clustered in jets due to additional proton-proton interactions within the same
beam crossing (pileup). This ranged from nearly zero additional collisions during the very
early period of LHC data taking in 2010 to an average of about three near the end of the 2010
running period. Finally, the jet momentum resolution is determined from simulation, as a func-
tion of the jet pT and η. Comparing the pT balance in dijet events between data and simulation,
the jet pT resolution in the simulation is scaled upwards by 10% in the barrel and by 20% in the
endcaps to match the resolution in the data [26].
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3 Monte Carlo Simulation
The measurements are compared to predictions from Monte Carlo (MC) event generators using
O(α2

S) ME improved with PS and MPI and to predictions for dijet production at NLO matched
to PS. Comparisons are also made to predictions based on higher-order αS tree level calcula-
tions that are matched with PS.

Simulated event samples for four-jet production are produced with different MC event gener-
ators: PYTHIA 6.426 [27], HERWIG++ (version 2.5.0) [28, 29] and PYTHIA 8.140 [30]. In PYTHIA,
the PS are generated by ordering the parton splittings in pT and the proton momentum frac-
tion x, carried by the parton. The Lund string model [31] is used for hadronization. In con-
trast, HERWIG++ generates PS in an angular-ordered region of phase space and uses a cluster
fragmentation model for hadronization. Multi-parton interactions (MPI) are simulated in both
PYTHIA and HERWIG. The free parameters describing MPI are obtained from tunes [32] to mea-
surements in pp collisions at the LHC. The PYTHIA 6 generator with the tune Z2* [33] uses the
CTEQ6L1 PDF set [34] and applies a new model [35] where MPI are interleaved with parton
showering. The PYTHIA 8 generator is used with the tune 4C [36] based on underlying event
data from the LHC, using the CTEQ6L1 PDF set. It implements a more sophisticated model for
MPI with respect to PYTHIA 6, by introducing color reconnection and rescattering between the
partons [37]. The HERWIG++ generator tuned to LHC data (tune LHC-UE-EE-3 [29, 38]) with
the MRST2008LO** PDF set [39] is also used for comparison.

The data are also compared to perturbative NLO dijet QCD predictions obtained with the
POWHEG package [40, 41]. POWHEG predictions use the CT10 PDF set [42] and are matched
with PYTHIA 6 PS including the MPI simulation. With the inclusion of parton showers, the
NLO dijet calculation can be applied for symmetric pT selections used in this analysis. The
description of inclusive jet cross sections [2] and underlying event measurements [43, 44] has
been verified for different PYTHIA tunes interfaced with the POWHEG BOX [45, 46]. A good rep-
resentation of these data is obtained when the underlying event is provided by PYTHIA 6 tune
Z2*. The agreement improves when the contribution of the parton shower in the tune Z2* is de-
creased (by changing the PYTHIA parameters PARP(67) and PARP(71) to 1.0, from the default
value of 4.0), since a hard emission is already included the POWHEG matrix element. These
parameters regulate the upper scale of the initial- and final-state radiations, respectively. This
modified tune is chosen for the final comparison and it is referred to as Z2’ in the following.
The MADGRAPH 5 event generator [47, 48] with CTEQ6L1 is also used for the comparison. It
produces parton-level events with up to four partons in the final state on the basis of Leading
Order (LO) ME calculations. The ME/PS matching scale is taken to be 10 GeV, within the MLM
scheme [49]. The PS for MADGRAPH is provided by the PYTHIA 6 tune Z2*, including the con-
tribution of MPI. The goodness of this tune has been verified by comparison to the inclusive
jet cross sections and underlying event measurements. A good agreement for the Z2* tune is
obtained. Predictions from the SHERPA 1.4.0 event generator [50] with CTEQ6L1 are also con-
sidered. This event generator produces tree level 2→2 + n ME matched to PS (in this analysis
n = 0 and 1 is used). The MPI are based on the model used in the PYTHIA 6 underlying event,
but with different parameter values [51]. The predictions for the SHERPA generator with these
parameters give a good description of inclusive jet cross section measurements but they are not
able to reproduce the underlying event data, with discrepancies up to 20%. The PYTHIA, HER-
WIG and SHERPA predictions are generated by using a transverse momentum of the outgoing
partons p̂T > 45 GeV. For the MADGRAPH predictions, the pT sum of the four partons, HT, is
required to be HT > 100 GeV, while for the hard process generated with POWHEG, p̂T > 15 GeV.

The differences between the Monte Carlo predictions of PYTHIA, HERWIG, SHERPA and MAD-
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GRAPH lie in the hard subprocess, as well as in the parton showering and MPI description.
PYTHIA and HERWIG use a 2→2 O(α2

S) ME, SHERPA uses up to 2→3 and MADGRAPH uses
up to 2→4 MEs. POWHEG is a NLO prediction for dijets, using 2→2 and 2→3 MEs, but the
selection of four-jet final states requires at least one jet originating from the parton shower. In
MADGRAPH, the four jets can originate from the matrix element, while in all the other simu-
lations at least one jet must come from the parton shower or MPI. Since exactly four jets are
required in the selection (and a veto is applied on additional jets), only calculations that simu-
late jets beyond the four selected jets can be used for comparison with our data.

The detector response is simulated in detail by using the GEANT4 package [52]. All simulated
samples are processed and reconstructed in the same manner as done for collision data.

4 Event selection and analysis
The differential cross sections are measured for the production of exactly four jets pp→ 4j + X
with the two leading (highest pT) jets each having pT > 50 GeV and two additional jets each
with pT > 20 GeV, where X stands for all jets and particles with pT < 20 GeV in the acceptance
region. The cross section as a function of transverse momentum and pseudorapidity of the
four jets is measured. In addition, the normalized differential cross sections are measured as a
function of correlation variables defined from the hard and soft pair of jets as follows:

• the azimuthal angular differences between the jets belonging to the soft pair

∆φsoft = |φ(jsoft1)− φ(jsoft2)|; (1)

• the balance in transverse momentum of the two soft jets

∆rel
soft pT =

|~pT(jsoft1) + ~pT(jsoft2)|
|~pT(jsoft1)|+ |~pT(jsoft2)| ; (2)

• the azimuthal angle ∆S between the two dijet pairs, defined as:

∆S = arccos
(

~pT(jhard1 , jhard2) · ~pT(jsoft1 , jsoft2)

|~pT(jhard1 , jhard2)| · |~pT(jsoft1 , jsoft2)|

)
, (3)

where jsoft1 (jsoft2) and jhard1 (jhard2) stand for the leading (subleading) soft and hard jet pairs,
respectively. The systematic uncertainties for the correlation observables are smaller than those
for the cross section measurements.

The data, recorded with the CMS detector in 2010 at
√

s = 7 TeV, correspond to an integrated
luminosity of approximately 36 pb−1 with low-pileup conditions. The mean value of overlap-
ping pp interactions ranges between 1.5 and 3. The MC samples include simulated pileup
interactions with a distribution matching that in data. For this study, two HLT trigger sets are
analyzed: a trigger with jet threshold of 30 GeV is used for leading jets with 50 < pT < 140 GeV,
while for jets with pT > 140 GeV, a trigger with threshold of 50 GeV is applied. In the region
of transverse momenta between 50 and 80 GeV, where the trigger is not fully efficient, a pT and
η dependent trigger efficiency correction is applied. The trigger efficiency varies between 91%
and 96%.

Events with at least one good primary vertex and exactly four jets in the region |η| < 4.7 are
selected: two of them with pT > 50 GeV and two with pT > 20 GeV. A primary vertex is
defined as the vertex to which the charged particle with the largest pT is associated. The two
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jets with highest pT are labelled as “hard-jet pair”, while the other two jets form the “soft-jet
pair”.

The kinematic distributions of the selected jets are in agreement with MC predictions and are
described to a 20% accuracy by PYTHIA 6 and HERWIG++ at detector level, except in the for-
ward region of the detector. The pseudorapidity distribution is reasonably described by the
simulation in the central region of the detector, while differences (20–80%) are observed be-
tween data and simulation for |η| > 3 for the leading and subleading jets. However, sizable
jet energy scale uncertainties up to 60% are associated with those jets in the forward region [6].
In addition, the predicted cross sections for |η| > 3 are different by up to 30% depending on
whether PYTHIA or HERWIG generator is used. The PDF uncertainties and effects discussed in
Ref. [53] might also be relevant for jets in the forward region. The difference between SHERPA

and MADGRAPH predictions is similar in magnitude. Discrepancies of the same order have
also been observed at detector level for inclusive and dijet samples with pT > 50 GeV. The pT
distributions are reproduced by PYTHIA 6 and HERWIG++ at detector level for all the selected
jets. The differences with respect to the observed measurements are less than 20% in the whole
selected pT range.

The pT and η distributions, and the correlation observables are corrected for selection efficien-
cies and detector effects. The data are corrected to stable-particle level (cτ > 10 mm) by apply-
ing an iterative unfolding [54] as implemented in ROOUNFOLD [55]. In addition, a bin-to-bin
correction has been performed and found to be in agreement with the iterative unfolding. The
response matrix is obtained with PYTHIA 6. A closure test shows that stable results, within
5% with respect to the true distributions, are obtained when HERWIG++ is unfolded with the
PYTHIA 6 response matrix. The final correction is performed by taking the average of the un-
folded results obtained with PYTHIA 6 and HERWIG++. The deviation from the average value is
taken as a systematic uncertainty due to the model dependence, and is applied to the unfolded
result. The unfolding to stable-particle level includes corrections for pileup effects.

Various systematic effects are investigated and the corresponding uncertainty is calculated for
each of the distributions. The total uncertainties are obtained by summing in quadrature the
individual contributions.

The following systematic uncertainties are considered:

• Model dependence: The unfolded cross sections obtained with the two different MC
generators PYTHIA 6 and HERWIG++ are averaged and the difference of the unfolded
results is used as a systematic uncertainty. The resulting uncertainty ranges from 3 to
5% for the absolute cross sections and from 3 to 4% for the normalized cross sections.
For jets in the region |η| > 3, this uncertainty increases up to 10% for the absolute
cross sections. This reflects the difference in the response matrix obtained from the
two generators.

• Jet Energy Scale (JES): The momentum of the jets is varied within the uncertainty
associated to the reconstructed pT. This leads to an uncertainty of 15–18% in the
absolute cross sections, which is the dominant contribution. For jets in the forward
region of the detector, at |η| > 3, this uncertainty increases to 25–30%. For the
normalized cross sections, the JES uncertainty is about 3%, i.e. of the same size as
the other contributions, and changes the shape of the distributions.

• Jet Energy Resolution (JER): The JER differs between data and simulation by 6–19%
depending on the pseudorapidity range, which introduces a systematic uncertainty
of about 1–4% for both cross section measurements and normalized cross sections,
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increasing up to 5% for jets at |η| > 3.

• Pileup: An uncertainty due to pileup modeling in the simulation is evaluated and
found to be negligible (<0.1%) for both cross section measurements and normalized
cross sections.

• Luminosity: The systematic uncertainty on the luminosity for 2010 data adds an
additional uncertainty of 4% [56] to the cross section.

A summary of the systematic uncertainties is given in Table 1. The systematic uncertainties are
added in quadrature.

Table 1: Total systematic uncertainties affecting the differential cross sections for pT, and η, and
the normalized differential cross sections for ∆φsoft, ∆rel

soft pT, and ∆S. In the last column, the total
uncertainty for each observable is listed. The 4% uncertainty from the luminosity measurement
is included in the total uncertainty. This is obtained by summing the individual uncertainties
in quadrature.

Measured Model Jet Energy Jet Energy Total
observable Scale Resolution
Hard jet pT 2% 13% 1% 15%
Soft jet pT 3% 13% 1% 15%
Jet |η| ≤ 3 2% 13% 1% 15%
Jet |η| > 3 10% 27% 5% 30%

∆φsoft 3% 3% 2% 5%
∆rel

soft pT 3% 3% 2% 5%
∆S 4% 3% 3% 5%

5 Results
The cross sections for the production of exactly four jets for |η| < 4.7 and pT > 50 (20)GeV for
the hard (soft) jet pairs are shown in Fig. 1 and Fig. 2.

The measured value of the cross section for the exactly four-jet final state is 330± 5 (stat.)±
45 (syst.) nb. This value is compared with various theoretical predictions in Table 2. While
PYTHIA 8, tune 4C, gives a value for the cross section higher than that measured, HERWIG++
is in good agreement with it. The MADGRAPH generator, interfaced with PYTHIA 6, tune Z2*,
predicts a lower value, while SHERPA is in good agreement with the measured cross section.
It has been verified at stable particle level with the distributions investigated here that the
differences between the predictions obtained with MADGRAPH and SHERPA are due to the
different contributions coming from MPI, while the predictions agree with each other if MPI
are switched off. The NLO dijet prediction of POWHEG, interfaced with PYTHIA 6, tune Z2’,
including MPI, is compatible with the measurement. The scales of parton distribution functions
for the theory predictions have not been varied, since this would require completely new tunes.
However, an estimate of factorization and renormalization scale variations based on tree level
calculations without parton showers would overestimate the uncertainty and has thus not been
pursued.

The cross sections as a function of pT and η of each of the four jets are presented in Fig. 1. The
cross sections fall rapidly with increasing pT for all the jets in the final state. For the highest
pT jets, the cross section decreases by two orders of magnitude for pT between 50 and 200 GeV.
For the softer jets, the cross section decreases over 5 orders of magnitude for the same pT range.
The shape of the cross section as a function of η (Fig. 1 right) is different for the hard and soft
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Table 2: Cross sections for MC predictions and measured data for pp → 4j + X: the jets are
selected within |η| < 4.7, and with pT > 50 GeV for the two leading jets and pT > 20 GeV for
the other jets.

Sample PDF Cross section (nb)
PYTHIA 8, tune 4C [36] CTEQ6L1 [34] 423
HERWIG++, tune UE-EE-3 [29, 38] MRST2008LO** [39] 343
MADGRAPH + PYTHIA 6, tune Z2* [33] CTEQ6L1 [34] 234
SHERPA tune [50] CTEQ6L1 [34] 293
POWHEG + PYTHIA 6, tune Z2’ CT10 [42] 378
Data — 330± 5 (stat.)± 45 (syst.)
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Figure 1: Differential cross sections as a function of the jet transverse momenta pT (left) and
pseudorapidity η (right) compared to predictions of POWHEG, MADGRAPH, SHERPA, and
PYTHIA 8. Scale factors of 106, 104 and 102 are applied to the measurement of the leading,
subleading and third jet, respectively. The yellow band represents the total uncertainty, includ-
ing the statistical and systematic components added in quadrature.
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Figure 2: Ratios of predictions of POWHEG, MADGRAPH, SHERPA, PYTHIA 8 and HERWIG++
to data as a function of the jet transverse momenta pT (left) and pseudorapidity η (right) for
each specific jet. The yellow band represents the total uncertainty, including the statistical and
systematic components added in quadrature.

jets. Specifically, the cross section for hard jets drops very rapidly for |η| ∼ 4. Conversely, the
distributions of the soft jets are flatter, with the cross section dropping by only about a factor
10 between |η| ∼ 0 and the forward region (|η| ∼ 4.7).

The measured cross sections are also compared to predictions. Ratios between the predictions
and the observed measurements are presented in Fig. 2. All predictions, except HERWIG++,
are in agreement with the measurement for the leading and subleading jets at large transverse
momenta pT & 300 GeV (Fig. 2 left). However, differences appear at smaller pT: POWHEG and
SHERPA are in agreement with the measurement for the leading and subleading jets, while
PYTHIA 8 and MADGRAPH deviate significantly from the data. The soft jets are not very well
described: POWHEG and PYTHIA 8 are significantly above the measurement, while the SHERPA

and MADGRAPH predictions are outside the systematic uncertainties for some bins. HERWIG++
is similar in shape to PYTHIA 8 but has a different cross section (Tab. 2), which leads to a better
agreement at small pT and a worse description at large pT.

The differential cross sections as a function of η are described reasonably well by SHERPA and
HERWIG++. The distribution of the leading and subleading jets are described by SHERPA, HER-
WIG++ and MADGRAPH within the systematic uncertainties, taking into account the differ-
ences in the total cross section (Tab. 2), while POWHEG and PYTHIA 8 tend to be below the
measurement at large η. The distributions of the soft jets are described only by SHERPA and
HERWIG++ for both absolute normalization and shape, while all other predictions are signifi-
cantly off for |η| > 3.

In summary, the description of the differential cross section as a function of pT and η for
pp → 4j + X in |η| < 4.7 is not trivial. While the description of the cross section at large
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transverse momenta is reasonable, significant differences arise at smaller pT values, especially
for the subleading and soft jets.

The correlation between hard and soft jet pairs can provide additional information on the pro-
duction process and help to disentangle the contributions of SPS and DPS diagrams. The nor-
malized differential cross section is measured as a function of the correlation observables, de-
fined in Section 4. The normalized differential cross section as a function of ∆φsoft is shown
in Fig. 3 (left). The distribution has a maximum at ∆φ ∼ π and falls by less than an order of
magnitude towards very small ∆φ. At small ∆φ the jets are uncorrelated. A local maximum is
visible at values around ∆φ ∼0.5–0.8 because the anti-kT jet algorithm merges jets originating
from collinear parton emissions with an angular separation less than the distance parameter of
0.5.

In Fig. 3 (center), the balance in transverse momentum between the soft jets, ∆rel
soft pT, is shown.

It covers an order of magnitude and has its largest value around unity, indicating that the soft
jets are predominantly not balanced in pT. This would be expected if they come from radiation
of the initial- or final-state of the hard pair of jets.

The cross section as a function of the azimuthal angle between the planes of the two dijet sys-
tems, ∆S, is shown in Fig. 3 (right). The distribution falls over almost two orders of magnitude
over the entire phase space. At low ∆S values, the dijet systems are not correlated.

The normalized differential cross section as a function of ∆φsoft is well described by all predic-
tions, but shows very little sensitivity to contributions from DPS, as illustrated by the POWHEG

prediction without MPI. The normalized differential cross section as a function of ∆rel
soft pT is

reasonably described by all predictions for ∆rel
soft pT & 0.4 but significant differences show up at

smaller values. The prediction of POWHEG without MPI shows clearly the need of additional
contributions in this region. The normalized differential cross section as a function of ∆S is not
well described by any of the predictions. In the range ∆S < 2.5, SHERPA is above the data while
all other predictions are significantly below the measurement. The prediction from POWHEG

without MPI is several standard deviations away from the measurement at small ∆S.

6 Conclusions
Measurements of observables for the production of exactly four jets have been performed based
on data collected with the CMS experiment in 2010 with an integrated luminosity of 36 pb−1.
The cross section for a final state with a pair of hard jets with pT > 50 GeV and another pair with
pT > 20 GeV within |η| < 4.7 is measured to be σ(pp→ 4j + X) = 330± 5 (stat.)± 45 (syst.) nb.
The differential cross sections as a function of pT and η of each of the four jets together with the
normalized differential cross sections, as a function of correlation variables ∆φsoft, ∆rel

soft pT, and
∆S, are compared to several theoretical predictions.

The models considered are able to describe the differential cross sections only in some regions
of the phase space. Although the predictions of the differential cross sections at large transverse
momenta are reasonable, significant differences arise at smaller pT especially for the subleading
and soft jets.

The comparison of the normalized differential cross sections as a function of ∆φsoft, ∆rel
soft pT, and

∆S for pp → 4j+X, with 2 hard jets of pT > 50 GeV each, together with 2 jets of pT > 20 GeV
each, within |η| < 4.7, shows that the present calculations based on 2→2 , 2→3 and 2→4
matrix elements matched with parton showers and including a simulation of MPI agree within
uncertainties only in some regions of the phase space. The contributions from SPS can be
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Figure 3: Normalized differential cross sections as a function of the difference in azimuthal
angle ∆φsoft (left), ∆rel

soft pT (middle), and ∆S (right) compared to the predictions of POWHEG,
MADGRAPH, SHERPA, PYTHIA 8 and HERWIG++. A comparison with the POWHEG predictions
interfaced with the parton shower PYTHIA 6 tune Z2’ without MPI is also shown. The lower
panel shows the ratios of the predictions to the data. The yellow band represents the total un-
certainty, including the statistical and systematic components added in quadrature. Systematic
uncertanties in the normalized cross sections are smaller than the ones in the absolute cross
sections, since they are not affected by the migration effects from outside the selected phase
space.
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improved by higher order calculations. The predictions including MPI need to be validated
with underlying event measurements before a direct extraction of the DPS contribution can
be performed. In particular, the ∆S distribution leaves room for additional contributions from
SPS at larger values of ∆S. However, the measurements of ∆rel

soft pT, and ∆S may be taken as an
indication for the need of DPS in the investigated models.

Acknowledgments
We congratulate our colleagues in the CERN accelerator departments for the excellent perfor-
mance of the LHC and thank the technical and administrative staffs at CERN and at other CMS
institutes for their contributions to the success of the CMS effort. In addition, we gratefully ac-
knowledge the computing centres and personnel of the Worldwide LHC Computing Grid for
delivering so effectively the computing infrastructure essential to our analyses. Finally, we ac-
knowledge the enduring support for the construction and operation of the LHC and the CMS
detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and
FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS,
MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus);
MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA
and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH
(Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU
(Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mex-
ico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR
(Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain);
Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST, STAR and NSTDA
(Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE
and NSF (USA).

Individuals have received support from the Marie-Curie programme and the European
Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan
Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy
Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture
(FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie
(IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the
Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); the
HOMING PLUS programme of Foundation for Polish Science, cofinanced by EU, Regional
Development Fund; and the Thalis and Aristeia programmes cofinanced by EU-ESF and the
Greek NSRF.

References
[1] ATLAS Collaboration, “Measurement of inclusive jet and dijet production in pp

collisions at
√

s = 7 TeV using the ATLAS detector”, Phys. Rev. D 86 (2012) 014022,
doi:10.1103/PhysRevD.86.014022, arXiv:1112.6297.

[2] CMS Collaboration, “Measurements of differential jet cross sections in proton-proton
collisions at

√
s = 7 TeV with the CMS detector”, Phys. Rev. D 87 (2013) 112002,

doi:10.1103/PhysRevD.87.112002, arXiv:1212.6660.

http://dx.doi.org/10.1103/PhysRevD.86.014022
http://www.arXiv.org/abs/1112.6297
http://dx.doi.org/10.1103/PhysRevD.87.112002
http://www.arXiv.org/abs/1212.6660


12 References

[3] ATLAS Collaboration, “Measurement of multi-jet cross sections in proton-proton
collisions at a 7 TeV center-of-mass energy”, Eur. Phys. J. C 71 (2011) 1763,
doi:10.1140/epjc/s10052-011-1763-6, arXiv:1107.2092.

[4] S. Badger, B. Biedermann, P. Uwer, and V. Yundin, “Next-to-leading order QCD
corrections to five jet production at the LHC”, (09, 2013). arXiv:1309.6585.

[5] Z. Bern et al., “Four-Jet Production at the Large Hadron Collider at Next-to-Leading
Order in QCD”, (12, 2011). arXiv:1112.3940.

[6] CMS Collaboration, “Measurement of the inclusive production cross sections for forward
jets and for dijet events with one forward and one central jet in pp collisions at

√
s = 7

TeV”, JHEP 06 (2012) 036, doi:10.1007/JHEP06(2012)036, arXiv:1202.0704.
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[27] T. Sjöstrand, S. Mrenna, and P. Skands, “PYTHIA 6.4 physics and manual”, JHEP 05
(2006) 026, doi:10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175.
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C. De Oliveira Martins, S. Fonseca De Souza, H. Malbouisson, M. Malek, D. Matos Figueiredo,
L. Mundim, H. Nogima, W.L. Prado Da Silva, J. Santaolalla, A. Santoro, A. Sznajder, E.J. Tonelli
Manganote6, A. Vilela Pereira

Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil
C.A. Bernardesb, F.A. Diasa,7, T.R. Fernandez Perez Tomeia, E.M. Gregoresb, C. Laganaa,
P.G. Mercadanteb, S.F. Novaesa, Sandra S. Padulaa



18 A The CMS Collaboration

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
V. Genchev2, P. Iaydjiev2, A. Marinov, S. Piperov, M. Rodozov, G. Sultanov, M. Vutova

University of Sofia, Sofia, Bulgaria
A. Dimitrov, I. Glushkov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China
J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, R. Du, C.H. Jiang, D. Liang, S. Liang, X. Meng,
R. Plestina8, J. Tao, X. Wang, Z. Wang

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, Y. Guo, Q. Li, W. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, L. Zhang,
W. Zou

Universidad de Los Andes, Bogota, Colombia
C. Avila, C.A. Carrillo Montoya, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno,
J.C. Sanabria

Technical University of Split, Split, Croatia
N. Godinovic, D. Lelas, D. Polic, I. Puljak

University of Split, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, K. Kadija, J. Luetic, D. Mekterovic, S. Morovic, L. Tikvica

University of Cyprus, Nicosia, Cyprus
A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian
Network of High Energy Physics, Cairo, Egypt
A.A. Abdelalim9, Y. Assran10, S. Elgammal9, A. Ellithi Kamel11, M.A. Mahmoud12, A. Radi13,14

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
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INFN Sezione di Pisa a, Università di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy
K. Androsova,29, P. Azzurria, G. Bagliesia, J. Bernardinia, T. Boccalia, G. Broccoloa,c, R. Castaldia,
M.A. Cioccia,29, R. Dell’Orsoa, F. Fioria,c, L. Foàa ,c, A. Giassia, M.T. Grippoa ,29, A. Kraana,
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