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We will explore the consequences on the electroweak breaking condition, the mass of supersymmetric
partners and the scale at which supersymmetry breaking is transmitted, for arbitrary values of the
supersymmetric parameters tan β and the stop mixing Xt, which follow from the Higgs discovery with a
mass mH ≃ 126 GeV at the LHC. Within the present uncertainty on the top quark mass we deduce that
radiative breaking requires tan β ≳ 8 for maximal mixing Xt ≃

ffiffiffi
6

p
, and tan β ≳ 20 for small mixing

Xt ≲ 1.8. The scale at which supersymmetry breaking is transmitted M can be of order the unification or
Planck scale only for large values of tan β and negligible mixing Xt ≃ 0. On the other hand for maximal
mixing and large values of tan β supersymmetry should break at scales as low as M≃ 105 GeV. The
uncertainty in those predictions stemming from the uncertainty in the top quark mass, i.e. the top Yukawa
coupling, is small (large) for large (small) values of tan β. In fact for tan β ¼ 1 the uncertainty on the value
of M is several orders of magnitude.
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I. INTRODUCTION AND SUMMARY

After the 7 and 8 TeV runs the Large Hadron Collider
(LHC) has firmly established the existence of a scalar
boson with a mass mH ≃ 126 GeV. In particular the
strengths measured in the WW, ZZ, γγ, bb̄ and ττ decay
channels by the ATLAS and CMS collaborations are
consistent with the Standard Model (SM) Higgs with
a mass mH ¼ 126 � 0.4ðstatÞ � 0.4ðsystÞ GeV [1] and
mH ¼ 125.3 � 0.4ðstatÞ � 0.5ðsystÞ GeV [2], respec-
tively. The Higgs discovery is of the utmost importance
as it is the first direct experimental confirmation of the
mechanism of electroweak (EW) symmetry breaking
(EWSB). In the SM it points toward a quartic coupling
λ ¼ m2

H=v
2, where v ¼ 246 GeV, provided by the Higgs

potential

VSM ¼ −m2jHj2 þ λ

2
jHj4 ð1:1Þ

where m2 ¼ λv2=2, valid at the EW scale QEW ¼ mH.
From the theoretical point of view we know that the

EW minimum is unstable against quantum corrections
(a problem known in the literature as the hierarchy
problem) and has to be stabilized by some beyond the
SM (BSM) physics, the paradigm of which being
supersymmetry and in particular the minimal SM super-
symmetric extension (MSSM). Nonetheless another fea-
ture of the past LHC runs is that no experimental hints
have been found of BSM particles which could stabilize
the EW vacuum, but it is putting bounds on the mass of

supersymmetric particles [3]. Still, and in view of the
forthcoming LHC run at 13–14 TeV, it is interesting to
explore the consequences of the present Higgs mass data
on a possible underlying supersymmetric theory, in
particular on the way supersymmetry triggers EWSB at
low energy and on the value of the scale at which
supersymmetry is broken.
In this paper we will then consider at face value the

present data on the Higgs sector. We will assume that the
SM emerges at some scale Q0 from an underlying MSSM,
and will extract the relevant information on the mechanism
by which the MSSM triggers EWSB and on the scaleM at
which supersymmetry is broken in the hidden sector.
Consistent with present experimental data we will assume
that below the scale Q0 we just have the SM spectrum and
the matching conditions are the ones to enforce EWSB at
the EW scale QEW ¼ mH.
The contents of this paper are as follows. In Sec. II we

impose the condition that the SM and the MSSM merge at
the scaleQ0 and compute it by fixing the Higgs mass in the
SM and with fixed values of tan β and the stop mixing Xt in
the MSSM.We see, not unexpectedly, that for low values of
tan β,Q0 is large and insensitive to the mixing Xt while for
large values of tan β it can be small and sensitive to Xt. In
particular, values of Q0 in the TeV range require both large
values of tan β (tan β ≳ 5) and of the mixing (Xt ≳ 1.8).
Moreover we can translate the condition of EWSB in the
SM to a condition on m2

2ðQ0Þ (the squared mass of the
Higgs doublet that gives a mass to the top quark) and so we
can scrutinize on the nature of EWSB, i.e. radiative versus
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nonradiative breaking.1 We have found that the nature of
EWSB strongly depends on both parameters, tan β and Xt.
In particular we have found that radiative breaking requires
tan β ≳ 8 for maximal mixing and Xt ≳ 1.8 for tan β ≲ 20.
Another interesting feature we have found, both in the
calculation of the matching scale, i.e. Q0, and the type of
EWSB, i.e. the value of m2

2ðQ0Þ, is that the main uncer-
tainty in the calculation comes from the uncertainty in
the top quark mass and that it affects mainly low values of
tan β (it is mostly insensitive to the actual value of the
mixing Xt). In particular for tan β ¼ 1 and Xt ¼ 0, while
for the central value of the top quark massQ0 ∼ 1011 GeV,
after inserting the 2σ uncertainty it can vary in the range
Q0 ∈ ½109; 1016� GeV and no sharp prediction can be
made. Notice that the results in this section imply precise
values of m1ðQ0Þ and m2ðQ0Þ determined by the EWSB
condition and by the condition of decoupling of the heavy
Higgs at the matching scale Q0.
In Sec. III we computed the scale at which supersym-

metry is transmitted M by imposing the condition that
the MSSM Higgs mass parameters are equal at that scale:
m1ðMÞ ¼ m2ðMÞ. All of our results in this section
are based on this assumption. This one is a natural
assumption in most existing models of supersymmetry
breaking, including those coming from string theories. Of
course, should the condition on m1ðMÞ and m2ðMÞ be
changed our results would correspondingly be modified.
To compute the value of the scale at which supersym-
metry is broken M we have first followed a bottom-up
approach where we assume the ideal conditions that all
supersymmetric particles decouple exactly at the scale Q0

(with no thresholds). In the second, top-down, approach
we have instead assumed that the supersymmetric param-
eters are the ones obtained in various models of super-
symmetry breaking transmission to the observable sector.
In these cases there are different thresholds around the
matching scale Q0 but the results are in all cases
consistent with the first approach. The main result in
the bottom-up approach is (not unexpectedly) that the
value of M depends to a large extent on the super-
symmetric parameters ½tan βðQ0Þ; XtðQ0Þ�. In particular
for Xt ≥ 0 large values of M close to the unification or
Planck scale can only be obtained for large values of
tan β and small mixing. Of course for those small values
of Xt the constraint on the Higgs mass imposes large
values of Q0, say in the 10–100 TeV region for which
the supersymmetric spectrum would be outside the reach
of the LHC. On the contrary for large values of Xt, for
instance for maximal mixing, for which Q0 is in the TeV
range and the supersymmetric spectrum is inside the
reach of the LHC, the scale at which supersymmetry

breaking is transmitted can go down to the low scales
such that gravity mediation mechanisms are precluded.
For negative values of Xt there is room for large grand
unified theory (GUT) or Planckian values of M pro-
vided that Xt is in some intermediate region, e.g. Xt ≃
−1.5 which can accommodate lower values of Q0 for
large values of tan β, e.g. Q0 ¼ OðfewÞ TeV, inside the
LHC reach. Again our predictions are affected by the
top quark mass uncertainty Δm̄tðmtÞ. As it was the case
for the Q0 prediction, the uncertainty affects mainly
small values of tan β and it is rather insensitive to the
value of Xt. In the second, top-down, approach we have
considered two different cases where supersymmetric
parameters unify at the scale M. First we have considered
the case of universal soft parameters, by which all squark
masses (m0), all gaugino masses (m1=2) and all Higgs
mass parameters (mH) unify at the scale M. This is a
general constrained MSSM where we have separated the
Higgs from the sfermion masses and which can appear
in gravity mediated supersymmetry breaking theories.
We have considered two examples with tan β ¼ 10 and
Xt ¼ 0, 2. In agreement with the results of the previous
section the case Xt ¼ 0 is consistent with EWSB and the
Higgs mass mH ¼ 126 GeV for M≃ 1018 GeV, while
the case Xt ¼ 2 requires supersymmetry breaking at low
scale M≃ 106 GeV, hard to reconcile with gravity
mediation. The second case we have considered is the
minimal gauge mediated supersymmetry breaking (GMSB)
where the mass of scalars transforming under a gauge
group Ga, with gauge coupling αa, and the corresponding
gaugino is proportional to αaðMÞ=4π and the trilinear
coupling is AtðMÞ ¼ 0. Below M, At is generated by
the MSSM renormalization group equation (RGE) and
therefore it gets negative values at the scale Q0, giving
then Xt < 0. We have presented two cases with N ¼ 4
messengers, tan β ¼ f15; 8g and values of M ¼ f108;
1011g GeV and Xt ¼ f−1.8;−1.6g which are consistent
with perturbative unification at the MSSM GUT scale.
Finally in Sec. IV we present our conclusions.

II. THE MATCHING AND ELECTROWEAK
BREAKING

The quadratic terms in the MSSM potential can be
written as

V2 ¼ m2
1jH1j2 þm2

2jH2j2 þm2
3ðH1 ·H2 þ H:c:Þ ð2:1Þ

with H1 ·H2 ≡Ha
1εabH

b
2 (ε12 ¼ −1) and we are defining

m2
1 ¼ m2

H1
þ μ2 and m2

2 ¼ m2
H2

þ μ2, where mHi
is the soft

breaking mass forHi and μ is the supersymmetric Higgsino
mass. They can also be written as

V2 ¼ ðH†
1; ~H

†
2Þ
�
m2

1 m2
3

m2
3 m2

2

��
H1

~H2

�
ð2:2Þ

1We will conventionally dub radiative breaking the situation
where m2ðQ0Þ ≤ 0 although electroweak breaking is triggered in
all cases by radiative corrections.
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where ~H2 ≡ εH�
2. The diagonalization of the mass matrix

M2
0 ¼

�
m2

1 m2
3

m2
3 m2

2

�
ð2:3Þ

then yields the mass eigenvalues

m2∓ ¼ m2
1 þm2

2

2
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m2

1 −m2
2

2

�
2

þm4
3

s
: ð2:4Þ

A. The matching scale

We wish to match the MSSM with the SM at the
(common) scale Q0 ≡m0 of supersymmetric masses. In
particular we will rotate the MSSM Higgs sector ðH1; ~H2Þ
into the basis ðH;HÞ whereH is the SM Higgs doublet and
H its heavy orthogonal combination. We then identify the
mass squared of the (light) SM Higgs H with the tachyonic
mass m2

− ¼ −m2ðQ0Þ and consequently the mass squared
of its (heavy) orthogonal combination H with m2þ≡
m2

H ¼ m2
1 þm2

2 þm2. This can be done by the fixing

m4
3 ¼ ðm2

1 þm2Þðm2
2 þm2Þ ð2:5Þ

leading to the mixing angle β given by

tan2β ¼ m2
1 þm2

m2
2 þm2

i:e: m2 ¼ m2
1 −m2

2tan
2β

tan2β − 1
ð2:6Þ

where all quantities are evaluated at the matching scale
Q ¼ Q0, which rotates the Higgs basis ðH1; ~H2Þ into the
mass eigenstates ðH;HÞ as

H ¼ cos βH1 − sin β ~H2;

H ¼ sin βH1 þ cos β ~H2: ð2:7Þ

The potential for the SM Higgs then reads as

VSM ¼ −m2ðQ0ÞjHj2 þ λðQ0Þ
2

jHj4 þ � � � : ð2:8Þ

In order to make a precise calculation of the Higgs mass
we have to first match the SM quartic coupling λ and the
supersymmetric parameters at the scale Q0. We will
improve over the tree-level (l ¼ 0) matching by consid-
ering the one-loop ðl ¼ 1Þ and leading two-loop (l ¼ 2)
threshold effects as given by [4]

λðQ0Þ ¼
X
l≥0

ΔðlÞλ ð2:9Þ

where

Δð0Þλ ¼ 1

4
ðg2 þ g02Þc22β

16π2Δð1Þλ ¼ 6y4t s4βX
2
t

�
1 −

X2
t

12

�
−
1

2
y4bs

4
βðμ=Q0Þ2

þ 3

4
y2t s2βðg2 þ g02ÞX2

t c2β

þ
�
1

6
c22β −

3

4

�
g4 −

1

2
g2g02 −

1

4
g04

−
1

16
ðg2 þ g02Þ2s24β

ð16π2Þ2Δð2Þλ ¼ 16y4t s4βg
2
3

�
−2Xt þ

1

3
X3
t −

1

12
X4
t

�
þOðh6t s4β; g4; g2g02; g04Þ ð2:10Þ

and we are using the notation Xt ¼ ðAtðQ0Þ − μðQ0Þ=
tan βÞ=Q0, and sβ ≡ sin β and so on. For the numerical
calculation we are also taking into account the Oðy6t s4β;…Þ
two-loop threshold corrections whose explicit expression
can be found in Ref. [4]. We are neglecting the corrections
proportional to y4τ as we are not envisaging values of the
parameter tan β such that yτ is relevant.
The couplings yt and yb are the top and bottom Yukawa

couplings in the MSSM. They are related to the corre-
sponding SM couplings ht and hb by [4,5]

ht ¼ ytsβ

�
1 −

1

6π2
g23Q

2
0XtIðm~t1 ; m~t2 ;Q0Þ

þOðy2b; g2; g02Þ
�
;

hb ¼ ybcβ

�
1 −

1

6π2
g23Q

2
0XbIðm ~b1

; m ~b2
;Q0Þ

þ 1

16π2
y2t tβQ2

0XtIðm~t1 ; m~t2 ;Q0Þ þ � � �
�

ð2:11Þ

where Xb ¼ ðAtðQ0Þ − μðQ0Þ tan βÞ=Q0, we are assuming
nearly degenerate spectrum at Q0, and only the leading
one-loop QCD and top Yukawa coupling corrections are
kept. The function Iðx; y; zÞ can be found in Refs. [4,5].
The parameters of the potential (2.8) have to be run with

the SM RGE down to the scale QEW ¼ mH, where
minimizing the SM potential should lead to m2ðmHÞ ¼
1
2
m2

H, m
2
H ¼ 2λðmHÞv2. For a similar analysis see Ref. [6]

and especially [7] where the relation between the mass
of the Higgs and the scale of supersymmetry breaking
was first analyzed. Here in agreement with the used
threshold corrections we are using the two-loop RGE as
given in [8].
Finally going from the running Higgs mass mH to the

pole Higgs mass MH requires the calculation of the
Higgs boson self-energy Πðp2Þ as M2

H ¼ m2
H þ ΔΠ where

ΔΠ ¼ Πðp2 ¼ M2
HÞ − Πðp2 ¼ 0Þ. Here we keep only the
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leading correction to ΔΠ coming from the top quark loop
exchange given by [9]

ΔΠtt ¼
3h2t M2

t

4π2
½2 − ZðM2

t =M2
HÞ�;

ZðxÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4x − 1

p
arctan ð1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4x − 1

p
Þ; x > 1=4:

ð2:12Þ

For the actual values of Mt ≃ m̄ðmtÞ þ 10 GeV [10] (the
pole top quark mass) andMH, the correction in (2.12) is of
the order of the experimental error in the Higgs mass. Any
uncertainty coming from neglected higher order corrections
will therefore be much smaller than those from the
experimental errors in α3, Mt and MH, which can be
estimated to �2 GeV at 2σ [5].
Notice that, for fixed values of the supersymmetric

parameters tan β and Xt, Q0 is a function of the Higgs
mass mH. This prediction comes from the intersection of
the function λðQÞ, which is determined mainly by the value
of the Higgs mass [with some dependence on the actual
values of htðmHÞ and α3ðmHÞ], with the value λðQ0Þ given
by Eq. (2.10). So given that the Higgs mass is fixed to
mH ¼ 126 GeV, we can predictQ0 ¼ Q0ðtan β; XtÞ as it is
shown in the left panel plot of Fig. 1. We have used as an
input the running top mass in the MS scheme evaluated at
the top mass m̄tðmtÞ ¼ 163.5 GeV. We can see that for
small values of tan β the values of Q0 are large and
insensitive to the values of the mixing Xt. This is due to
the fact that the threshold effect is proportional to h2t ðQ0Þ
and the Standard Model RGE leads to small values of
htðQ0Þ for large values of the scale Q0. On the other hand
for large values of tan β the values of Q0 are smaller and

consequently the RGE running is small and Q0 becomes
sensitive to the mixing Xt. In particular values of Q0 in the
TeV region require large values of tan β (tan β ≳ 5) and
large values of Xt (Xt ≳ 1.8).
As for the error in m̄tðmtÞ it is safe to consider the

experimental range of the running top mass to be given
by Δm̄t ¼ �2 GeV at 2σ [10,11]. In order to see the
relevance of the error in m̄tðmtÞ we plot, in the left panel
of Fig. 2, Q0 as a function of tan β for various values of
Xt, and in the right panel of Fig. 2, Q0 as a function of
Xt for different values of tan β. In fact the upper border
of each band corresponds to Δm̄t ¼ −2 GeV and the
lower border to Δm̄t ¼ þ2 GeV. We can see from both
panels of Fig. 2 that the error in the determination of Q0,
ΔQ0 arising from the error in m̄tðmtÞ is large (small) for
small (large) values of tan β. The reason for this behavior
is that the error m̄tðmtÞ is amplified by the RGE running
and it is consequently large (small) for large (small)
running, which means small (large) values of tan β. In the
same way, as we can see from the right panel of Fig. 2,
the error ΔQ0 is uncorrelated with Xt as it has little
influence on the RGE running. This translates into a big
overlapping in the left panel of Fig. 2 for small values of
tan β and different values of Xt. In fact notice that for the
limiting case tan β ¼ 1 and Xt ¼ 0 we have that λðQ0Þ ≲
0 and the Standard Model potential is unstable. This
corresponds, for the central value of the quark top mass,
to Q0 ∼ 1011 GeV. However for the lowest allowed value
of the top quark mass the instability scale can go to
Planckian values in agreement with various calculations
in the literature [12,13]. In this case it has been shown
that the Veltman condition [14] (or absence of quadratic
divergences) can also be satisfied [15].
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FIG. 1 (color online). Left panel: Contour lines of log10½Q0=GeV� (for the values specified in the plot) in the plane ðtan β; XtÞ. Right
panel: Contour line of m2

2ðQ0Þ ¼ 0, as given by Eq. (2.13), in the plane ðtan β; XtÞ. The inner region corresponds to radiative
electroweak breaking.
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B. Electroweak breaking

As we have noticed Eq. (2.6) actually implies the
existence of the electroweak minimum in the SM effective
theory and indeed it is reminiscent of the minimum
equation in the MSSM.2 In fact Eq. (2.6) can be traded
by the SM minimum equation. It can be written as

m2
2ðQ0Þ ¼

m2
HðQ0Þ −m2ðQ0Þtan2β

tan2β þ 1
ð2:13Þ

where we identify m2
HðQ0Þ≡Q2

0 and the value obtained
for m2

2ðQ0Þ characterizes the type of electroweak breaking,
e.g. radiative versus nonradiative symmetry breaking,3

provided that after the SM RGE running we get
m2ðQEWÞ ¼ m2

H=2. For instance in the limit tan β → ∞
[or more precisely for tan2β ≫ m2

HðQ0Þ=m2ðQ0Þ] we get
the conditions for radiative breaking, m2

2ðQ0Þ≃
−m2ðQ0Þ < 0, while for small values of tan β we get the

conditions for nonradiative breakingm2
2ðQ0Þ≃ m2

HðQ0Þ
tan2βþ1

> 0.

In particular we show in the right panel of Fig. 1 the contour
plot corresponding to m2

2ðQ0Þ ¼ 0 for the central value of
m̄tðmtÞ (thick solid line) and for the 2σ values correspond-
ing to �Δm̄tðmtÞ (thin solid lines). The inner area
corresponds to the region where there is radiative electro-
weak symmetry breaking m2

2ðQ0Þ < 0 while in the outer
region the breaking is not radiative and m2

2ðQ0Þ > 0. Of
course the values ofm2

2ðQ0Þ should depend to a large extent
on the values of tan β and Xt.

In Fig. 3 we plot the absolute value ofm2, jm2ðQ0Þj, as a
function of tan β for different values of Xt (left panel) and as
a function of Xt for different values of tan β (right panel).
Notice that points where electroweak breaking becomes
radiative are characterized by the fact that jm2j ¼ 0 and for
larger values of tan β (left panel of Fig. 3) or larger values of
Xt (right panel of Fig. 3), m2

2 becomes negative and thus
jm2j takes on positive values. Again we can see that, as for
the results in Fig. 2, the effects of the error Δm̄tðmtÞ are
amplified for small values of tan β while they stay small for
large values of tan β. We can also see that radiative breaking
only occurs for large values of tan β, tan β ≳ 8, and/or large
values of the mixing Xt ≳ 1.8 in the range tan β ≲ 20.

III. Supersymmetry breaking scale

In the previous section we have computed, using the
measured value of the Higgs mass, the value of the scaleQ0

at which the MSSM matches with the Standard Model and
the value of the parameter m2

2ðQ0Þ which guarantees a
correct electroweak Standard Model breaking at the scale
QEW ¼ mH. We are here making the conservative
assumption (alas, consistent with present experimental
data) that only the SM states survive below the matching
scaleQ0. For large values ofQ0 this amounts to assuming a
high-scale MSSM beyond Q0, in contradistinction with
other possibilities, as those dubbed as split (or minisplit)
supersymmetry. Using these tools we will now get infor-
mation on the scale at which supersymmetry breaking is
transmitted M.
As we have seen both Q0 and m2

2ðQ0Þ are (for fixed
values of the Standard Model parameters) functions of the
MSSM parameters tan β and Xt defined at the scale Q0:
Q0 ≡ f0ðtan β; XtÞ andm2

2ðQ0Þ≡ f2ðtan β; XtÞ. Now from
the EWSB condition (2.6) one can also computem2

1ðQ0Þ≡
f1ðtan β; XtÞ as

m2
1ðQ0Þ ¼ m2

2ðQ0Þtan2β þm2ðQ0Þðtan2β − 1Þ ð3:1Þ
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FIG. 2 (color online). Left panel: Plot of Q0 as a function of tan β for Xt ¼ 0 (upper band) and Xt ¼
ffiffiffi
6

p
(lower band). The width of

bands corresponds to the experimental error Δm̄t ¼ �2 GeV. Right panel: Plot ofQ0 as a function of Xt for tan β ¼ 2 (upper band) and
15 (lower band).

2Were we neglecting the Standard Model RGE running both
equations would be equivalent upon identification of m2

H↔m2
Z.3Although EW breaking is in all cases driven by the MSSM

RGE running from M to Q0, we will be conventionally dubbing
radiative breaking the case where m2

2ðQ0Þ ≤ 0 so that the EW
breaking proceeds by a tachyonic mass as in the SM.
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so that both squared mass parameters m2
1 and m2

2 are fixed
at the scaleQ0 for fixed values of tan β and Xt. We will now
define the scale at which supersymmetry is transmitted M
as the scale at which

m2
1ðMÞ ¼ m2

2ðMÞ; ð3:2Þ

where we are running the MSSM parameters from the scale
Q ¼ Q0 to the scale Q ¼ M by using the two-loop RGE
[16]. Notice that this condition is rather generic in most
models of supersymmetry breaking, as models based on
gravity mediation or minimal gauge mediation, as well as in
string constructions [17–19].
As we are assuming that the effective theory belowQ0 is

just the Standard Model we are implicitly assuming that, at
the matching scale the heavy Higgs H decouples, so that
mHðQ0Þ ¼ Q0. On the other hand the scale at which
supersymmetry breaking is transmitted, given by (3.2),
does have little dependence on the spreading on boundary
conditions imposed for the rest of the supersymmetric
spectrum. Actually any moderate splitting among the
different superpartners will have little impact in the value
of M, as its dependence is logarithmic, and the corre-
sponding results fall inside the bands defined by the
experimental errors inMt and α3ðMZÞ, as we have checked
in all cases studied in Sec. III B. Thus we will next consider
two generic situations.

A. Bottom-up approach

The most precise (and ideal) way by which the Standard
Model will emerge as the low energy effective theory below
the matching scaleQ0 is when all supersymmetric particles
are (approximately) degenerate at the decoupling scale.4 So
we will here assume for all sfermions ( ~f), Higgsinos (with

mass μ) and gauginos a degenerate mass at the matching
scale Q0

m ~fðQ0Þ ¼ MiðQ0Þ ¼ μðQ0Þ ¼ Q0 ði ¼ 1; 2; 3Þ: ð3:3Þ

We will leave XtðQ0Þ [and consequently the mixing
AtðQ0Þ] and tan βðQ0Þ as free parameters in the plots.
Note that by imposing the matching scheme in Eq. (3.3)

the merging between the SM and the MSSM happens at the
scaleQ0 and the running from the low-scaleQ0 to the high-
scale M can be done straightforwardly using the two-loop
MSSM RGE and the boundary conditions (3.3). This is
shown in the left panel (right panel) of Fig. 4 where we plot
contour lines of constant log10ðM=GeVÞ in the ðtan β; XtÞ
plane for the central value of the top quark mass and
positive (negative) values of the parameter Xt.
We can see from the left panel of Fig. 4 that having

supersymmetry breaking transmission at high scale
requires both large values of tan β and small and positive
values of the mixing Xt. For example for values of M of
the order of the unification scale M≃ 1016 GeV one
requires tan β ≳ 3 and Xt ≲ 0.3. Moreover for large values
of tan β the value of M depends almost uniquely on the
mixing Xt. For example even for tan β≃ 20 the scale at
which supersymmetry is broken can go down to values as
low asM ∼ 105–106 GeV for values of the mixing Xt ≃ 2.
On the other hand for low values of tan β and large values of
Xt there is small dependence on the mixing. As we can see
from the left panel of Fig. 4 for values Xt ≃ 0 we can get
values of M as large as MP. For negative values of Xt the
value of M grows quickly to trans-Planckian values and
rapidly disappears as there is no solution to Eq. (3.2).
A solution appears again for values Xt ≃ −1.5 for which
we have again values of M≃MP, and again the values of
M decrease when we increase the absolute value of Xt as
we have shown in the right panel of Fig. 4.
Of course, as it was the case of the matching scale Q0,

the scale at which supersymmetry is transmitted M is
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FIG. 3 (color online). Left panel: Plot of jm2ðQ0Þj as a function of tan β for Xt ¼ 0 (upper band) and Xt ¼
ffiffiffi
6

p
(lower band). The width

of bands corresponds to the experimental error Δm̄t ¼ �2 GeV. Right panel: Plot of jm2ðQ0Þj as a function of Xt for tan β ¼ 2 (upper
band) and 15 (lower band).

4Of course in practice there should be some spreading of
supersymmetric masses over the scale Q0, a (more realistic)
situation which will be studied in the next section.
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affected by the experimental error in the determination of
the top quark mass Δm̄t. This effect is shown numerically
in Fig. 5. We plot in the left panel of Fig. 5 log10ðM=GeVÞ
as a function of tan β for different values of the mixing
Xt ¼ 0, 0.5, and

ffiffiffi
6

p
for the values of the MS top quark

mass m̄tðmtÞ ¼ 163.5� 2 GeV. This effect is mainly
inherited from the uncertainty in the determination of
the matching scale Q0, which explains why the effect is
larger for tan β ¼ 1. Similarly the plot of log10ðM=GeVÞ as
a function of Xt for fixed values of tan β ¼ 2 and 15 is
shown in the right panel of Fig. 5 where we can also see that
the uncertainty in the determination of M decreases with
increasing values of tan β.

B. Top-down approach

In the previous section we have assumed that all super-
symmetric particles exactly decouple at the matching scale

Q0, by which we were assuming a degenerate spectrum at
this scale. Of course this is not the generic case in (realistic)
models of supersymmetry breaking which provide some
pattern of masses at the scale M. These masses run, with
the MSSM RGE, from the scale M to Q0 and thus they
decouple at the scale ∼Q0 with different thresholds.
In this section we will consider different supersymmetric

spectra, for which the scale at which supersymmetry
breaking is transmitted and the matching scale with the
Standard Model satisfies the general values which have
been obtained in the previous section: in particular they are
consistent with electroweak symmetry breaking with a
Higgs mass of 126 GeV. We will not commit ourselves to
any particular mechanism of supersymmetry breaking but
instead will consider a generic pattern of supersymmetric
spectra at the scale where supersymmetry breaking is
transmitted, which can arise from different mechanisms.
In particular we will consider two classes of models, which
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5 10 15 20

5

10

15

tan

lo
g 1

0
M

G
eV

0.0 0.5 1.0 1.5 2.0

5

10

15

Xt

lo
g 1

0
M

G
eV
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of Xt for tan β ¼ 2 (wider band) and 15 (narrower band).
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are simply particular examples while many others can be
easily found and studied:

(i) Models with universal soft parameters, typical of
gravity mediatedlike models, although not neces-
sarily arising from gravity mediation.

(ii) Gauge mediated models, where the values of super-
symmetric parameters satisfy, at the scaleM, typical
ratios provided by gauge mediation.

1. Universal soft parameters

In this section we are going to consider some universal
soft breaking parameters at the scale at which supersym-
metry breaking is transmitted M. In particular we will
assume the rather general pattern

m ~Q3
ðMÞ ¼ m ~Uc

3
ðMÞ ¼ m ~Dc

3
ðMÞ≡m0;

MiðMÞ≡m1=2; m1ðMÞ ¼ m2ðMÞ ð3:4Þ

by which all third generation squarks5 are degenerate at the
scale M, as well as the three gauginos and the two MSSM
Higgs doublets. We have then considered the common
masses m0 and m1=2 as free parameters only subject to the
constraint of getting a correct electroweak symmetry
breaking.
We have considered in Fig. 6 two generic models which

correspond to tan β ¼ 10, and Xt ¼ 0 (left panel) and Xt ¼
2 (right panel). As for the case of Xt ¼ 0 a quick glance at
the left panel of Fig. 1 shows that the matching scale is
Q0 ∼ 100TeV while from Fig. 4 the scale where super-
symmetry breaks is M ∼ 2 × 1018 GeV. Also from the
right panel of Fig. 1 (Xt ¼ 0 does not appear in the plot as it
is well below the area where radiative breaking exists) we
see that the breaking is not radiative in the sense that
m2

2ðQ0Þ > 0 and indeed from Fig. 3 we can see that,

according with the correct electroweak symmetry breaking,
m2ðQ0Þ≃ 3 TeV. As we can see from the left panel of
Fig. 6 the values for the common squark and gaugino
masses which fit these conditions are m0 ≃m1=2≃
30 TeV. Also the value of Xt ¼ 0 at the matching scale
Q0 translates into the mixing AtðMÞ≃ 1.7m0. Notice that,
as the value of M is around the Planck scale, this scenario
could arise in models where supersymmetry breaking is
transmitted by gravitational interactions.
If we now increase the value of Xt, as in the right panel of

Fig. 6, in which Xt ¼ 2, then looking again at Fig. 1 we see
that the matching scale is Q0 ∼ 1 TeV and the electroweak
breaking is (almost) radiative as m2ðQ0Þ ∼ 100 GeV.
Likewise, from Fig. 4, the scale at which supersymmetry
is broken is M ∼ 5 × 105 GeV. Here we can see a general
phenomenon by which the scale where supersymmetry
breaking is transmitted (i.e. the scale of unification of m1

and m2) strongly goes down when the mixing increases if
we fix the correct conditions for electroweak breaking. The
reason is the contribution of the mixing to the RGE as

βm2
2
¼ 3h2t

4π2
A2
t þ � � � : ð3:5Þ

To prevent electroweak breaking at high scale (Q ≫ Q0)
we then let the scale M go down. For the same reason we
need gauginos heavier than squarks as the former ones
contribute with negative sign to βm2

2
. As we can see in the

right panel of Fig. 6 this condition translates into m0 ≃
3.3 TeV and m1=2 ≃ 5.3 TeV while at the matching scale
Q0 all the supersymmetric spectrum is in the interval
3–6 TeV.

2. Gauge mediated models

In this section we will apply the previous results to the
particular case in which supersymmetry breaking is trans-
mitted to the observable sector by gauge interactions
(GMSB). We will assume in particular the minimal
GMSB model whose main features we now summarize.
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FIG. 6 (color online). RGE running between M and Q0 of the supersymmetric spectrum for the case tan β ¼ 10, Xt ¼ 0 (left panel)
and Xt ¼ 2 (right panel) with universal boundary conditions.

5Third generation sleptons as well as first and second gen-
eration sfermions do not play any role in the RGE and thus their
values decouple from the present problem.
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Supersymmetry is broken, in a hidden sector, by a
spurion chiral superfield X ¼ Fθ2 which is coupled to a
set of pairs, Φi þ Φ̄i, of messenger fields, in vectorlike rþ
r̄ representations of the gauge group with the superpoten-
tial W ¼ P

iΦifλiX þMigΦ̄i.
Gauginos acquire a Majorana mass, by one-loop dia-

grams given by [20]

MaðMÞ ¼ αaðMÞ
4π

ΛG; ΛG ≃X
i

ni
λiF
Mi

¼ N
F
M

ð3:6Þ

where ni is the Dynkin index for the pair Φi þ Φ̄i,
6 and

N ¼ P
ini. For the last equality of Eq. (3.6) we are

assuming universal messenger masses as Mi ≡ λiM
(for ∀ i). Likewise supersymmetric scalars (squarks and
sleptons) acquire soft breaking squared masses through
two-loop diagrams as

m2
~f
ðMÞ ¼ 2

X
a

C
~f
a
α2aðMÞ
16π2

Λ2
S;

Λ2
S ¼

X
i

ni
ðλiFÞ2
M2

i
¼ N

F2

M2
ð3:7Þ

where C
~f
a is the quadratic Casimir of the representation to

which ~f belongs in the group Ga,
7 and again for the last

equality of Eq. (3.7) we are assuming universal messenger
masses. In fact for the case of universal messenger masses
the ratio Λ2

G=Λ
2
S ¼ N is given by the number of messen-

gers, however in more general cases (which can arise e.g.
for several X fields overlapping with the Goldstino field)

one can treat ΛG and ΛS as free parameters. The soft
breaking parameter At is not generated at one loop so we
will fix it as AtðMÞ ¼ 0 and will let it to develop at the
scale Q0 by the MSSM RGE running, which is equivalent
to a two-loop effect.
In Fig. 7 we are presenting two typical cases where

GMSB is consistent with the conditions imposed by
electroweak breaking for a 126 GeV Higgs mass. The
case tan β ¼ 15 is presented in the left panel and tan β ¼ 8
in the right panel. In both cases we have fixed ΛG ¼ 2ΛS
which corresponds to four messengers, N ¼ 4, in minimal
GMSB models. Both cases are, as we will see, consistent
with perturbative unification.
For the case tan β ¼ 15 in the left panel of Fig. 7 we get

ΛG ≃ 1.4 × 106 GeV,M≃ 3 × 108 GeV, and the scale of
supersymmetry breaking

ffiffiffiffi
F

p ≃ 107 GeV while the expan-
sion parameter F=M2 ≃ 10−3 is small, and the gravitino
mass is m3=2 ≃ 20 keV. Notice that m2

Hi
ðMÞ < m2

~Q
ðMÞ

althoughm2
i ðMÞ > m2

~Q
ðMÞ because of the contribution of

μ2 in m2
i . This case is perfectly consistent with perturbative

unification and the messengers change the value of the
gauge couplings at the unification scale by δα−1GUT ≃ −11.
Even if AtðMÞ ¼ 0 a nonzero (and negative) value is
generated at the scale Q0 such that Xt ≃ −1.8.
For the case shown in the right panel of Fig. 7 that

corresponds to tan β ¼ 8 we get the following values of
the parameters: ΛG ≃ 2 × 106 GeV, M≃ 1011 GeV,ffiffiffiffi
F

p ≃ 3 × 108 GeV with the expansion parameter
F=M2 ≃ 4 × 10−6 and m3=2 ≃ 20 MeV. This case is also
consistent with perturbative unification with a value of the
gauge couplings at the unification scale and the messengers
change the value of the gauge couplings at the unification
scale by δα−1GUT ≃ −8. Similarly a nonzero negative value of
Xt is generated as Xt ≃ −1.6.

IV. CONCLUSIONS

The Standard Model is consistent with all present
experimental data including the recent measurements of
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FIG. 7 (color online). RGE running between M and Q0 of the supersymmetric spectrum for the case AtðMÞ ¼ 0 and tan β ¼ 15
(left panel) and tan β ¼ 8 (right panel) with gauge mediated boundary conditions.

6We are using a normalization where nSUðNÞ ¼ 1 for theNþ N̄
representation of SUðNÞ, nUð1Þ ¼ 6Y2=5, and α1 is the Uð1Þ
gauge coupling which satisfies the unification condition
αaðMGUTÞ ¼ αGUT.

7We are using a normalization where for SUð3Þ triplets,
C3 ¼ 4=3, for SUð2ÞL doublets, C2 ¼ 3=4, and C1 ¼ 3Y2=5.
In all cases Ca ¼ 0 for gauge singlets.
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the Higgs mass and its couplings to gauge bosons and
fermions. By the same token experimental data are putting
bounds on possible BSM physics whose aim is to solve
the SM hierarchy problem, i.e. to understand the hierarchy
QEW=MP ≃ 10−16, or equivalently the stability of the
electroweak vacuum. Even if no hint of new physics has
been found by the LHC (and even in the case that no
positive signal be found by the future LHC runs) still the
stability of the big hierarchy between the LHC energy scale
and the Planck scale (QLHC=MP ≃ 10−14) requires a
theoretical explanation, although theories aiming to explain
the little hierarchy (QEW=QLHC ≃ 10−2) do not receive
support from the experimental side. On the other hand the
paradigm of theories solving the hierarchy problem is
supersymmetry, which has roots in superstring theories
for which low-scale supersymmetry is not an essential
ingredient.
So a possible attitude (that we have adopted in this paper)

is to assume that supersymmetry is solving the big
hierarchy problem from QLHC=MP (which amounts to a
fine-tuning of one part in 1028) but perhaps not necessarily
the little hierarchy problem from QEW=QLHC (which
amounts to a fine-tuning of around one part in ten
thousand) and see what the present data are telling us
about the parameters of the supersymmetric theory.
Using then the measured value of the Higgs mass and

imposing the conditions for electroweak symmetry break-
ing we can obtain information on the scale of super-
symmetric parameters (Q0) and the conditions on how
the supersymmetric theory triggers electroweak breaking.
Moreover by making the mild assumption that the mass
parameters of both Higgs bosons unify at the scale at which
supersymmetry breaking is transmitted M we can obtain

rather general information on the latter, as we have
described throughout this paper. In models where the
former assumption on the Higgs boson mass at M is
not fulfilled the conditions should be accordingly modified.
Our analysis just reflects the present experimental

situation concerning the Higgs discovery and the non-
observation of any supersymmetric particle in the LHC7
and LHC8 runs. In the future, when the LHC13-14 run will
start in 2015, it might happen that supersymmetric signals
are found or that they are not. In both cases the present
analysis should be correspondingly constrained. In the case
where supersymmetric signals are found, they would give
information about our energy scale Q0 which in turn will
give indirect information about the scale at which super-
symmetry breaking is transmitted M. In the other case, in
which supersymmetric signals are not found at the LHC13-
14, the data will put a lower bound on the scale Q0 by
which also the scale M will be correspondingly con-
strained, suggesting that perhaps we will need a higher
energy collider to uncover BSM physics as the HE-LHC
(at 33 TeV) and VHE-LHC (at 100 TeV) [21].
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