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ABSTRACT: We calculate the gauge terms of the one-loop anomalous dimension matrix
for the dimension-six operators of the Standard Model effective field theory (SM EFT).
Combining these results with our previous results for the A and Yukawa coupling terms
completes the calculation of the one-loop anomalous dimension matrix for the dimension-
six operators. There are 1350 C' P-even and 1149 CP-odd parameters in the dimension-
six Lagrangian for 3 generations, and our results give the entire 2499 x 2499 anomalous
dimension matrix. We discuss how the renormalization of the dimension-six operators,
and the additional renormalization of the dimension d < 4 terms of the SM Lagrangian
due to dimension-six operators, lays the groundwork for future precision studies of the SM
EFT aimed at constraining the effects of new physics through precision measurements at
the electroweak scale. As some sample applications, we discuss some aspects of the full
RGE improved result for essential processes such as gg — h, h — vy and h — Z~, for
Higgs couplings to fermions, for the precision electroweak parameters S and 7', and for the
operators that modify important processes in precision electroweak phenomenology, such
as the three-body Higgs boson decay h — Z ¢ ¢~ and triple gauge boson couplings. We
discuss how the renormalization group improved results can be used to study the flavor
problem in the SM EFT, and to test the minimal flavor violation (MFV) hypothesis. We
briefly discuss the renormalization effects on the dipole coefficient C,, which contributes
to p — ey and to the muon and electron magnetic and electric dipole moments.
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1 Introduction

The LHC experiments have recently found strong evidence for a scalar particle with mass
126 GeV, and properties consistent with the Higgs boson of the Standard Model (SM) [1, 2].
The absence of any clear evidence of new particles at energies up to several times the scalar
boson mass allows one to parametrize the effects of arbitrary new physics residing at en-
ergies A > v on physical observables at the electroweak scale in terms of higher dimension
operators built out of SM fields. Experimental measurements of the properties of the
scalar boson and other observables at the electroweak scale can then be used to constrain
or determine the coefficients of the higher dimension operators, and hence the effects of
arbitrary beyond-the-standard-model (BSM) theories with characteristic energy scale A in
a model independent way.

In this paper, we adopt the assumption that the scalar boson observed at LHC is
the SM Higgs boson, and that the Higgs mechanism generates the mass of the SM gauge
fields and fermions. Specifically, we assume that the observed scalar boson h is part of a
SU(2), doublet H with hypercharge yy = %, and that the electroweak SU(2); x U(1)y
gauge symmetry is a linearly realized symmetry in the scalar sector which is spontaneously
broken by the vacuum expectation value of H. These assumptions yield the simplest and
most direct interpretation of the LHC data, and the related experimental observations
from LEP and the Tevatron.! The SM effective field theory (SM EFT) based on these
assumptions consists of the SM Lagrangian plus all possible higher dimension operators.

The leading higher dimension operators built out of SM fields that preserve baryon
and lepton number are 59 dimension-six operators [8, 9]. It is important to keep in mind
that many of these operators have flavor (generation) indices. For m, = 3 generations,
the dimension-six Lagrangian has 1350 C' P-even and 1149 C'P-odd couplings, for a total
of 2499 hermitian operators and real parameters. The flavor indices obviously cannot be
neglected — there is no reason in general, for example, why the new physics contribution to
1 — ey should be the same as the new physics contribution to the muon magnetic moment.
Despite the large number of operators, it is important to realize that the SM equations of
motion (EOM) have been used extensively in reducing the operator basis. As a result, the
coefficient of a removed operator is distributed among the remaining operators.

!There are other alternatives being investigated, such as a nonlinearly realized SU(2). x U(1)y gauge
symmetry in the scalar sector with a light scalar h: see [3-7] and references therein.



In this work, we complete the full calculation of the 2499 x 2499 one-loop anomalous
dimension matrix of the 59 dimension-six operators in the operator basis of ref. [8, 9], includ-
ing flavor indices for an arbitrary number of generations n,. We present the gauge coupling
terms in the one-loop anomalous dimension matrix in this paper. Combined with our past
results [10-13], this gives the full one-loop renormalization group evolution (RGE) of the
dimension-six operators of the SM EFT. Having the full one-loop RGE of an independent
set of dimension-six operators in the SM EFT has the advantage that all physical effects
are included, and there can be no cancellation of terms between independent operators.

To precisely interpret any pattern of deviations of SM processes using higher dimen-
sional operators, one has to map the pattern of deviations observed at the electroweak
scale back to the scale A, where the BSM physics was integrated out of the effective field
theory. Due to operator mixing, the pattern of Wilson coefficients that are observed at the
low scale ~ mys is not identical to the pattern of Wilson coefficients at the matching scale
A. Our RG calculation determines all of the logarithmically enhanced terms in observables
at the renormalization group scale g = myg due to RG running from the high-energy scale
of new physics = A.

There are also other contributions from the finite parts of one-loop graphs at the low
scale y ~ mp, which we have not computed. For A ~ 1TeV, In(A?/m?%) ~ 4, so there
is a modest enhancement of the log terms over the finite terms. As experiments get more
precise, and the scale A is pushed higher, the log terms become even more important relative
to the finite terms. Nevertheless, the calculation of finite terms is important, and these
terms will eventually be required for a precise comparison of data with the SM EFT. The
anomalous dimensions can also be viewed as computing the In A/m g enhanced finite terms.
The anomalous dimension computation is easier because it can be done in the unbroken
theory, whereas the computation of finite terms needs to be done in the broken theory.

An important application of the SM EFT is to test the hypothesis of minimal flavor
violation [14, 15]. The dimension-six operators can have arbitrary flavor structure, and the
renormalization group equations derived in refs. [10-13] and in this paper give non-trivial
mixing between different particle sectors. MFV assumes that the only sources of U(3)% fla-
vor symmetry violation are the Yukawa coupling matrices Y, Y, and Y;. The SM respects
MFV by definition. Since MFV is formulated in terms of symmetries, it is preserved by
the RG evolution. If the dimension-six Lagrangian respects MFV, then the RG evolution
preserves this property.

The general dimension-six Lagrangian does not have to respect MFV, and RG evolution
then feeds non-minimal flavor violation into different operator sectors. By constraining the
parameters of the SM EFT, one can experimentally test the MFV hypothesis taking this
RG running into account. It is important to test MFV directly in a model-independent
way. The SM EFT provides a model-independent formalism to test the MFV hypothesis.

The outline of this paper is as follows. In section 2, we discuss our notation, and the
gauge coupling constant terms reported in this work. Some generalities about the structure
of the anomalous dimension matrix are given in section 2.1. Some interesting cancellations
are pointed out in section 2.3. A detailed presentation of the gauge coupling constant terms
in the RG equations of the dimension-six operator coefficients is relegated to appendix C.



Section 3 compares the standard operator basis of refs. [8, 9] with SILH operators [16]. A
brief discussion of MFV and its implications is given in section 4. Section 5 presents the
main applications of the SM EFT to phenomenology. We discuss the SM parameters at tree
level, and how their values are modified by the SM EFT dimension-six operators. In partic-
ular, we discuss the modifications to the Higgs mass and couplings, and to the gauge boson
masses. We also discuss the scale dependence of the dimension-six operators, and how
the dimension-six operators contribute to the running of the d < 4 parameters of the SM
Lagrangian. The complete expressions for the running of the gg — h, h = vy and h — v~Z
amplitudes are given in sections 5.8, 5.9, and 5.10, respectively. In sections 5.11 and 5.12,
we discuss the operators corresponding to the electroweak precision data (EWPD) param-
eters S and T, and operators modifying critical processes for precision electroweak phe-
nomenology, such as triple gauge boson couplings and the three-body decay h — Z £ ¢~.
In section 5.13, we discuss the dipole coefficients C,, which contribute to the decay u — ey
and to the muon and electron magnetic and electric dipole moments. We present our con-
clusions in section 6. The counting of parameters in £ is summarized in appendix A,
and the conversion of SILH operators to the standard basis is given in appendix B.

2 The anomalous dimension matrix

The complete list of 59 independent dimension-six operators is given in table 1. The
operators are divided into eight classes by field content and number of covariant derivatives.
The eight operator classes are 1 : X3, 2: H 3: H*D? 4 : X2H? 5:¢4?H?>, 6 : v>?XH,
7 : ?H?D and 8 : 9%, where X = GﬁwWJV,BW represents a gauge field strength, H
denotes the Higgs doublet scalar field, ¢ is a fermion field v = q,u,d,l,e, and D is a

covariant derivative. The dimension-six Lagrangian is
£ — Z C;Q; (2.1)
i

where the @); are the dimension-six operators of table 1 and the operator coefficients C;
have dimensions of 1/A?. The one-loop anomalous dimension matrix 7;; is defined by the
RG equation of the operator coefficients

dC;

C; = 167r2,u, 1

= ’)/Z‘jCj. (2.2)

The explicit RG equations are given in appendix C as differential equations, rather than
as elements of the matrix v. We will use 7;; to represent the 8 x 8 block form of the
anomalous dimension matrix, where the subscripts on ~ refer to the eight operator classes
i,7 =1,...,8. For example, 735 is the 2 x 3 anomalous dimension submatrix which mixes
the 3 independent class 5 operator coefficients into the 2 independent class 3 operator
coefficients (see table 1).

Although there are 59 independent operators, many of them have flavor indices which
take on ny = 3 values. Table 2 gives the number of C'P-even and C'P-odd coefficients for
each operator class. For ny, = 3, there are (107713 + 2n} 4 213n2 + 30n, + 72)/8 = 1350



C'P-even coefficients and (107n3 + 2n2 + 57n3 — 30n4 + 48)/8 = 1149 C'P-odd parameters,
for a total of 2499 parameters which need to be constrained by experiment. The counting
of parameters is summarized in appendix A.

Such a large number of terms makes the calculation of the complete anomalous di-
mension matrix a formidable task. In ref. [13], we began by computing the 8 x 8 one-loop
anomalous dimension matrix 44 for the class-4 Higgs-gauge operators X2H?, since these
operators contribute directly to the experimentally interesting Higgs production and decay
channels gg — h, h — v, and h — ~Z, which first occur at one loop in the SM. The
8 x 8 submatrix 44 has been subsequently verified by several independent calculations (e.g.
ref. [17]). In ref. [12], we calculated the A-dependent terms of the full anomalous dimension
matrix for vanishing gauge coupling constants, as well as the complete running of the SM
d < 4 parameters due to the dimension-six operators. The running of the SM parameters
resulting from the dimension-six operators is of order m?% /A%, which is of the same order
as the tree-level contribution of dimension-six operators. The Yukawa-dependent terms of
the anomalous dimension matrix for vanishing gauge couplings were computed in ref. [10].
In this paper, we complete the full calculation of the one-loop anomalous dimension matrix
of the dimension-six operators by computing the gauge coupling terms.

The one-loop anomalous dimension matrix has the usual 1/(1672) suppression of a one-
loop calculation. However, there are several anomalous dimensions with large numerical
factors. In ref. [12], for example, we found that

d
1672u—Cr = 108ACx + ... . 2.3
dp

Since m%, = 2\v?, the anomalous dimension coefficient is 108\ = 54m%{ /v? ~ 14, indepen-
dent of the normalization convention for the quartic coupling A. In the study of the Yukawa
coupling terms of ref. [10], the numerical factors were generally O(1). These Yukawa terms
give interesting nontrivial flavor mixing between the various operators. The gauge terms
calculated in this paper also contain several large coefficients. For example, the mixing of
the class 4 operators X2H? into the class 2 operator HY gives

d
16W2M@CH — —(48¢1 vt + 1297 95yH)Cri - - (2.4)

The lengthiest contributions to gauge coupling constant terms come from the well-
known penguin graph figure 1. The penguin graph itself is simple to compute. However,
there are 25 possible ¢* operators in the £(®) Lagrangian, and the penguin graph is propor-
tional to D, X*¥, which is replaced by a gauge current summed over all fermion and scalar
fields. The resulting four-fermion and fermion-scalar operators then have to be Fierzed to
the canonical operator basis, resulting in the bulk of the terms given in appendix C.

One finds a substantial amount of operator mixing in the SM EFT, and such mixing
affects observables measured at the electroweak scale in a manner which must be unraveled
to understand BSM theories. One of the consequences of this mixing is the propagation
of C'P violation through different sectors of the Lagrangian. For instance, dipole opera-
tors receive contributions from C'P violating class 4 operators (that enter, e.g., h — vZ



Figure 1. A penguin diagram. The solid square is a ¢* vertex from £, and the dot is a SM
gauge coupling.

at tree level), the latter are therefore subject to electric dipole moment constraints, see
section 5.13. On the other hand, it is already known [13] that mixing effects are relevant
for studies of h — 7.

2.1 The structure of ~;;

The complication of dealing with a large operator basis naturally leads to the desire to
simplify the calculation, or to look for hidden structure in the anomalous dimension matrix
to more easily understand the physics of the one-loop RGE flow. In ref. [12], we showed
that the structure of the anomalous dimension matrix can be understood using Naive
Dimensional Analysis (NDA) [18]. The argument is simplest using rescaled operators @Z
The rescaled operators @Z are given by ¢>X?3, HS, HYD? ¢>X2H?, yy?H3, gy>?X H,
Y2 H?D and 9%, where each gauge field strength X has been rescaled by a gauge coupling
g, and the chirality-flip operators ¢¥>H? and 2> X H, which change chirality by one unit,
have been rescaled by an additional Yukawa coupling y. The dimension-six Lagrangian can
be rewritten in terms of the rescaled operators and their corresponding coefficients @,

LO=3"CQ;=>CiQ: . (2.5)

The RG equations for the original and rescaled operator coefficients are given by

. ~ ~

C; = Yij Cj Ci= %‘ Cj (2'6)

where the one-loop anomalous dimension matrices «;; and 7;; are related to each other
by the rescaling factors and their derivatives. In ref. [12], we showed that the anomalous
dimension matrix 7 for the rescaled operators has entries proportional to

A nx y2 Ny 92 g
7 x (167r2> (16772> <167r2> , N =ny+ny+ny (2.7)

where N, the perturbative order of the anomalous dimension, is defined as the sum of the

number of factors ny of the Higgs self-coupling A, the number of factors n, of y?, and the
number of factors n, of g?. For the rescaled dimension-six operators, N ranges from 0 to



4. In ref. [11], we derived a general formula for the perturbative order N of the anomalous
dimension matrix 7;;,

N:1+w,~—w]~, (28)

where w; is the NDA weight of the operators @Q; in the it class [11]. The class 2 operator
@H has NDA weight wy = 2; the operators in classes {3,5,7,8} have NDA weight 1; the
operators in classes {4, 6} have NDA weight 0; and the class 1 operators have NDA weight
wy = —1. Using eq. (2.8), the possible coupling constant dependences of 7;; are obtained.
Our previous work calculated all anomalous dimensions with nontrivial n) and n, with
ng = 0. The present work completes the calculation of all terms with n, # 0.

Although the coupling constant dependence of the anomalous dimension matrix is
simplest for the NDA rescaled operators, the RGE in refs. [10, 12, 13] and in this work
are quoted in terms of the original unrescaled operators @); of refs. [8, 9]. The possible
entries of ~;; were classified in ref. [12] by studying all possible one-loop diagrams including
EOM terms. The classification is a bit subtle. The non-zero entries arise directly from
diagrams which contribute to a given term, but also indirectly via EOM. For example, the
H*D? — H*D? entry of the anomalous dimension matrix is computed from graphs with
one insertion of a H*D? operator, Quo or Qup, with 4 external H lines. These graphs
contribute to the 33 submatrix for the running of the coefficients Cyn and Cyp. The
graphs contributing to 33 also require a counterterm proportional to the EOM operator
Egn of ref. [12]. This operator can be eliminated in favor of other operators such as the
12 H?3 operators in the standard basis. Thus, the 733 graphs also contribute to the 7s3
submatrix via the EOM, even though they do not have any external fermion lines.

The NDA weights w; for the NDA rescaled operators @z of the eight operator classes,
and the coupling constant dependence of the allowed anomalous dimensions 7;; are shown
in table 3, with the operators ordered according to decreasing NDA weight. Now that the
entire matrix has been computed, we can compare with the classification of ref. [12]. The
cross-hatched entries in the table are anomalous dimension entries which could exist based
on the allowed diagrams, but which vanish by explicit computation. These entries vanish
because the relevant diagram vanishes, has no infinite part despite being naively divergent,
or, in some interesting cases, by cancellation between different contributions such as a di-
rect contribution to 7;; and an indirect contribution obtained by using the EOM. These
cancellations are discussed further in section 2.3.

The diagonal blocks in table 3 have N = 1 since w; = w;. Blocks one below the
diagonal have N = 0, whereas blocks one above the diagonal have N = 2, etc. When N
is less than 0, v vanishes, and we find that this is always the case. However, there are
many additional anomalous dimensions which vanish. Indeed, almost all of the N = 0
entries vanish. The notable exception of a N = 0 submatrix which does not vanish is
Y68 which mixes class 8 four-fermion operators 1* into the class 6 dipole operators ¥?X H
in violation of the general “no tree-loop mixing” claim of refs. [19-21]. Other examples
which violate no tree-loop mixing exist [22]. “Tree-loop” classification [23] of terms in an
EFT Lagrangian has limited usefulness, and does not apply in general when the UV theory
generating the dimension-six operators is itself an EFT, or is a strongly interacting theory.



Attempts to broaden this classification scheme in a very general manner relied critically
on the assumption of minimal coupling. However, in ref. [24], we showed that the concept
of minimal coupling is ill defined in general.

2.2 Checks of the calculation

The calculations in this paper are done in background field with gauge fixing parameter &,
and cancellation of ¢-dependence provides a check on the results. The gauge dependence
only cancels for gauge-invariant interactions, i.e. if the relations

Y =Yd+ YH, Yg = Yu — YH: Yi =Ye + YH; (2.9)

are satisfied. Although the expressions for the anomalous dimensions have been written in
terms of all six hypercharges, y; cannot be thought of as varying independently, but must
satisfy the constraints eq. (2.9). A check of the results that follows from custodial SU(2)
symmetry is discussed at the end of section 5.11.

The SM Yukawa couplings

['Yukawa = - HU&T [Yd]rs st + ﬁ”ﬂr [Yu]rs st + HTjéT [n]rs ljs + h.c. ; (210)

where 7, s are flavor indices and j is an SU(2) index, are only gauge invariant because
the 2 of SU(2) is self-conjugate, so that H; and ﬁj = ¢;sH" belong to the same SU(2)
representation. The SU(2) group cannot be generalized to a SU(N) group. While some of
the SU(2) group theory factors have been written as Casimirs such as c42 and cp2, the
results are only valid when they take on their SU(2) values c42 = 2 and cpo = 3/4.

The SU(3) results are written for an SU(/N,) theory. Anomaly cancellation does not
hold for the SU(N,)? x U(1)y anomaly for arbitrary N, but the results can still be useful
in other contexts for the SU(N,) anomalous dimensions. The SU(3) Fierz identity

TA T = L5 s — b4 (2.11)
aB o 9 ac A8 9N, aBOro
has been used to rearrange color indices and put operators into standard form. This
identity is valid for the fundamental representation of SU(N,), but is not valid for arbitrary
representations. Thus, the quadratic Casimir ¢ 3 is equivalent to (N2 —1)/(2N,.), and the
fermions must be in SU(N,) fundamental or anti-fundamental representations.

2.3 Cancellations

The one-loop anomalous dimension matrix does not contain all possible terms that can
arise from the allowed one-loop graphs and the EOM. In a few cases, the entries vanish
because the graph has no divergent part. An example from ref. [12] is the y* contribution
to yo7, or H® —¢? H? D mixing.

There also are a few cases with interesting non-trivial cancellations which arise when
different contributions to the same anomalous dimension are added together after using the
equations of motion. An example is the contribution of insertions of the C' P-even operators
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Figure 2. Graphs with insertions of the X3 operator which cancel after using the equations of
motion.

X3 to the anomalous dimension from the graphs shown in figure 2. The divergent part of
the first graph is proportional to

Ay = —ca29:Cw DFWL\ D, W — ¢4 393CaD* G\ D, G, (2.12)
The divergent part of the sum of the second and third graphs is proportional to
Ay = —igica2Cw D, HT' D, HW],. (2.13)

There is no gluon term, since gluons do not couple to the Higgs field. The divergent part
of the fourth graph is proportional to

Az = g%cAQCWD“WiVj{b” + g%cAnggD“Gﬁl,j{f”, (2.14)
where
_ 1 _
Ty wt T Ap pA
gt= D ey, Jpt =) 0T, (2.15)
h=q,l P=q,u,d

are the SU(2) and SU(3) fermion currents, respectively. The operator eq. (2.13) is equal
to gaca 2Cw Paw, where Pyyy is given in eq. (3.3). Integrating by parts, and writing the
commutator of two covariant derivatives as a field-strength tensor gives the identity

Pyw = —igaD, H' ' D, H W1r

. 1 1
= goji’ D"W,,, — ZgZ%HTHW,{VWW - §g1g2yHHTTI HW,, By, (2.16)
where
) <=
i = % (H' 71 DrH), (2.17)

is the Higgs doublet SU(2) current. The total is
Ay + Ag + Ag = —gaca 2Cw D* Wi, [DVWI o gzj}?}

— caggsCaD Gy [ DG — gt



1 1
— g2ca2Cw [4g%HTHWIfVWI“” + §glgngHT7JH WJVBW . (2.18)
Using the gauge field equations of motion
DLW = gy (i + 35 DG = ggjft, (2.19)

only the second line survives,
1 1
A; + Ao + Az = —gQCA’QCW |:4g%HTHWil,WIuV + igngyHHTTIH WJVB#V . (220)

The gluon term Cg cancels completely and most of the Cyy term cancels. There is a
residual contribution from eq. (2.20) to the anomalous dimension of Cgy and Crw g, the
coefficients of the X? H? Higgs-gauge boson operators. The graphs in figure 2 contribute to
the running of Crw and Crw g even though none of the diagrams have two external gauge
bosons and two external Higgs lines, the field content of X2H? operators. The cancellation
of C'¢ and Cy terms in various anomalous dimensions is the reason for the absence of
several terms in the last column of table 3.

The C; and Cp contributions to the anomalous dimension aEise from the same graphs
as in figure 2, with the insertions of the C'P-odd operators X X X. In this case, one
obtains eqs. (2.12) and (2.14) with D“Wlfy and D“Gﬁy replaced by D“WN/JV and D“éﬁy,
respfctively, and Eq. (2.13) with W;f,, replaced by W!{V The equations of motion for X are
DX, =0, rather than eq. (2.19), so naively there can be a difference between the OW,(?
and Cyy,¢ contributions to the anomalous dimension. However, the total sum A;+Ay+ A3 is

— 920A72CWD#W;5,\ [DVW] vA _ gszIpA - ggj}{)\ - CAg,QgCéD‘uéﬁ)\ [D,/GA vA _ g'g,j{;”\
1 = 1 =
— g2c42C5 [4g§HTHWJVWI“” + o192y H'T' H W,fVBW] : (2.21)

instead of eq. (2.18). The first lines in both eq. (2.18) and eq. (2.21), which would have
produced a difference in the CW,(? and Cy g contributions, are proportional to the gauge
field equations of motion (2.19) and vanish. Thus, the contributions to the anomalous
dimension from the C'P-odd coefficients CW, & are the same as the contributions from the
C P-even coefficients Cyy .

Another interesting cancellation occurs in the contribution of the 92X H dipole oper-
ators. The coefficients Ceyy, etc. of these operators will be denoted generically by Cyx,
where 1) = e,u,d. The dipole operators contribute to the running of ?H? coefficients
Cym, such as Cep, and to the running of V2> H?D coefficients Chy, such as Cye. The
anomalous dimension for the running of Cyg gets multiple contributions from Cyx and

;Z y Which arise from graphs with insertions of the 2 X H dipole operators and their her-
mitian conjugates. As above, the multiple contributions arise from using the EOM to bring
all divergences to the canonical basis. The total contribution of C;Z « to the running of Cy
cancels after using the hypercharge constraints eq. (2.9), even though individual contribu-
tions do not vanish. The contribution of Cyx to the running of Cyx does not cancel. The
total contribution of both Cyx and C’;Z y to the running of the 2> H?D coefficients Cry



exactly cancels, which is why there is no g?y? entry in the anomalous dimension 76 from
Y2 H?D-)?> X H mixing in table 3.

The contributions of the dipole operators and the gauge operators with X and X are
related by factors of 4. This simple factor follows from the complex self-duality of o*¥ Pg.
There is no ij) y contribution to the running C’w x, or to the runnings 0521 e C’éi; 4 and
C’l(j’(])u, which are the 1)* operators to which the dipole operators contribute.

The examples above indicate that the RG contribution of the dipole operators respects
holomorphy in Cyx.

2.4 Previous work

Several of the gauge coupling terms of the one-loop anomalous dimension matrix have
been calculated before. However, we emphasize that with the results reported in this work,
we have determined the complete one-loop anomalous dimension matrix for dimension-six
operators of the SM EFT for the first time.

Previous calculations of individual elements of the anomalous dimension matrix in-
clude the following works.? The anomalous dimension of Qg and Qs were determined
in refs. [25-27]. We agree with this result. Ref. [25] computed the anomalous dimension
of dimension-five and dimension-six operators in QCD. Parts of our calculation in which
the Higgs field can be treated as an external constant field agree with these results. The
renormalization of four-fermion operators has been studied for many years in the context
of the low-energy theory of weak interactions, and provides a check on the 1* —¢?* anoma-
lous dimension. The complete one-loop RGE of the operators in class 4 was calculated for
the first time in ref. [13]. Previously, some individual terms in this running result were
calculated in refs. [28-31], and these terms are consistent with our calculation. Ref. [19]
calculated the mixing of dipole operators Q,q, Quw and @Q,p with the combination of
Wilson coefficients Qrw, Qup and Qpwp that corresponds to h — vy, see section 5.9,
which corresponds to a set of entries in 4. We agree with these results. Ref. [32] reports
the running of the operators Q,x and Q.o due to the QCD coupling, which corresponds
to entries in 55 and v56. We agree with the diagonal running results of this paper.

The papers mentioned in the previous paragraph allow a relatively direct comparison
between results computed in the same operator basis. Many other results in the literature
are reported in a different basis, making a comparison difficult. Ref. [20] presents a few
terms in the anomalous dimension matrix without flavor indices (i.e. for ny = 1), and only
including the top Yukawa coupling. The exact translation between such partial results and
this work requires that a complete non-redundant operator basis be defined, which often is
not the case. Ref. [20] does not define such a mapping to allow us to compare our results
to the terms reported, see the next section for more discussion on this point. Nevertheless,
some other classic past results in refs. [33—46] overlap with some of the results presented
here, as do some more recent works [47-54].

2Due to the number of operators renormalized, and the fragmentary literature on the subject, we apol-
ogize in advance to authors whose works are overlooked in this discussion.
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3 SILH operators

A minimal basis of dimension-six operators is obtained by removing all redundant opera-
tors using the SM EOM. This paper uses the dimension-six operators @); of ref. [9] which
has no redundancies. It is a well-established result in quantum field theory that operators
which vanish by the classical equations of motion do not contribute to S-matrix elements
even at the quantum level [55], and so EOM can be used to simplify the effective La-
grangian. Formally, the redundant operators can be eliminated by a change of variables in
the functional integral. It is clearly a nuisance to use a redundant operator basis.

Including redundant operators introduces extra parameters in the Lagrangian which
can be eliminated by field redefintions, and do not contribute to any measurable quan-
tity [55]. This redundancy is not always obvious, since intermediate steps and partial
results can depend on the redundant parameters. It is only when the complete S-matrix
element is carefully computed that one sees that certain combinations of parameters drop
out due to the EOM. Redundant operators have led to enormous confusion in the literature
over many decades, for example, this was a source of significant confusion in the early days
of heavy quark effective theory. For this reason, when choosing a basis, it is advantageous
to not introduce redundant parameters.

Recently, some authors [20, 56, 57] have advocated using the “SILH-basis.” The def-
inition of this operator basis varies in the papers, and the original SILH paper [16] does
not define a complete basis. We will discuss the version presented in ref. [56]. The basis of
refs. [8, 9] contains nine C'P-even operators made out of only gauge and Higgs fields,

Qc, Qw, Qu, Quo, Qup, Qua, Quw, Qus, Quws- (3.1)

The SILH basis defined in ref. [56] contains 14 C'P-even operators made out of only gauge
and Higgs fields with the operator coefficients

¢y, ¢r, Cs, Cw, CB, CHW, CHB, E’y’ 697 C3w, C3G, Caw, C2B, CoG- (32)

The six operators Qg, Qw, Qu, Quo, Quc, @up coincide with the operators correspond-
ing to 3, Eaw, Cs, CH, Cg, Cy, Up to simple rescalings by couplings. In ref. [56], it is argued
that the three operators corresponding to Caw, ¢op and Cag can be removed by the SM
EOM in favor of other operators retained in the SILH operator basis. This removal leaves
five flavor-singlet operators®

Puw = —iga (D*H)F 71 (DVH) W!

wvo Pup=—1iq (DMH)T (DVH)B/UM

Pu = 22 (a1 D) (W], Py = 9 (Y DrH) (DB,
Pr = (2 DrH) (H Drm), (3.3)
in the SILH basis, instead of the three operators
Quw=H'HW, W!", Quwp=H'r HW.,B", Qup=(H'D'H)*(H'D,H), (3.4)

in the standard basis.

3The SILH basis operators are denoted by P; to avoid confusion with similarly labelled operators Q; in
the standard basis.
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Since eq. (3.3) has five operators, and eq. (3.4) has only three operators, two additional
operators from the standard @; basis can be eliminated if the operators in eq. (3.3) are
used instead of those in eq. (3.4). The five P; operators can be written in terms of the
standard basis @); using the equations of motion, and the conversion is given in appendix B.
The relations involve non-bosonic @); operators, a fact that is used in ref. [56] to remove
the lepton-Higgs operators Qgg and Qgg together with Qgw, Qrwp and Qgp in favor of
the 5 P; operators of eq. (3.3). However, only the flavor-singlet combinations

QW Q¥ (3.5)
pp pp

enter the relations in eq. (B.1). One can modify the singlet part of the coefficients of Qgg
and Q') by the shift

) S o 4 005, (36)

and absorb the change in the P; operator coefficients. The constants a(’3) can be chosen

to eliminate the trace eq. (3.5), or to set the electron operator Cl(qll) = 0, etc. However, the

ee
coefficients of the flavor non-singlet parts

1 1
ol - Lol off - Lo.cf) 3
rs g pp rs g pp

cannot be removed, and must be retained. Removal of the flavor-singlet portions of C’gl)
and Cg’l) makes the treatment of BSM flavor violation in the SILH basis cumbersome. Fur-
thermore, a careful and consistent treatment of EOM effects is necessary in all calculations
using the “SILH-basis,” otherwise the basis remains redundant.

The lepton-Higgs operators Q%g and QS% can be removed completely if one assumes
completely unbroken U(3)® flavor symmetry of the UV theory, so that the coefficients of
these operators are unit matrices in flavor space. This assumption was explicitly stated in
the initial work of ref. [58] that identified this field redefintion, and it is also adopted in
refs. [20, 56, 57]. This assumption is stronger than assuming MFV, which only says that
the coefficients of the lepton operators is a function of YJY67 not that it is proportional to
the unit matrix. Ref. [20] computes a few of the anomalous dimensions in the case of a
U(3)® flavor-symmetric BSM sector, in an attempt to circumvent this difficulty. While the
assumption of flavor-symmetric BSM physics can be adopted, it limits the applicability of
the EFT. One of the important features of the SM EFT is that it can be used to test MFV,
but this is only possible if MFV is not put in by hand. Many SILH basis results cannot
be used to test MFV in a straightforward manner, since stronger assumptions than MFV
have already been built into the formalism.

In reducing the SILH operators to the operator basis of ref. [9], the EOM relations
in appendix B also include the SM dimension-four operator (HTH)?, which is the usual
M(H'H)? Higgs interaction term. This means that the connection of the two bases also
involves the redefinition of SM parameters. Explicitly, the RGE for the SM parameters also

— 12 —



have contributions from dimension-six operators, as pointed out in ref. [12]. These effects
are not taken into account in ref. [20] preventing a comparison of our results with ref. [20] A

Also note that ref. [20] advocates retaining redundant operators in intermediate steps of
the analysis. Retaining redundant operators in partial results for an anomalous dimension
matrix introduces spurious gauge and scheme dependence, see the discussion in ref. [12].
It is not defined in ref. [20] how the partial results for the anomalous dimension matrix
presented there can be converted to the full results valid for any BSM flavour structure.
This is another reason we cannot compare our results with the partial calculation in ref. [20].

4 Minimal Flavor Violation

The SM EFT provides a way to test the hypothesis of MF'V in new physics. The SM has
a U(3)® symmetry in the limit of vanishing Yukawa couplings under which

q — Ugq, I — Ul, u — Uyu, d — Uyd, e — Use. (4.1)

The MFV hypothesis [14, 15] is that the only source of flavor violation is the Yukawa
matrices, so that the full theory is flavor invariant if the Yukawa matrices transform as

Y, = UY. U], Yy — UgYaU], Y, = UY.U . (4.2)

If the new physics respects MFV, then the SM EFT derived from it also does. This
assumption severely restricts the dimension-six coefficients. The coefficients of the flavor
invariant operators in classes 1-4 can only depend on the flavor invariants®

Trf(YIYe),  Trf(Y)Ya YY), (4.3)

In an EFT setup, the dependence on such invariants can be absorbed into an effective
coefficient.
The 92 H? operators have coefficients
Can = | F(V{Ya, YY) Y]
rs r

L G = [fOYR YY) Y]] LG = sV Y]]

rs s s

(4.4)

s

where it is implicit that the above functions also can depend on the invariants of eq. (4.3).
For example, the quark functions can depend on the lepton invariant Tr f (YeTY;) and vice-
versa. Analogous formulae to eq. (4.4) hold for the ¥>X H dipole operators {Cey, Cep},
{Cuc, Cuw, Cup} and {Cyq, Caw, Cap}, respectively.

The 92 H?D operators have coefficients

) = [y yiv)] o = [roiva)

rs rs

r8s rs

4For an example of this effect, see section 5.5, eq. (5.34).

®In this section, f denotes an arbitrary function, and all the fs do not have to be the same. Some
U(1)s are anomalous, and one also can have dependence on certain combinations of det Yy, 4, and the 6
angles [59-61].
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rs S

Crru = abys + |Yu FYYa VIV Y] L Coa= ads + [Ya F(OVYa ViV Y]]

Crre = ads + Yo VIV Y] Crua = |Ya SV Ya YV Y]] o (45)
TSs rs s TSs
Again, dependence of the above functions of the invariants of eq. (4.3) is implicit.
Similar expressions hold for the 1% operators, with coefficients in flavor space which
are products of the cases considered above. As is well-known, one can make U(3)? rotations
to bring the Yukawa matrices into the form

Y, — diag(me,my,,m;), Yq— diag(mg,ms,mp), Y, — diag(my, me,me) K, (4.6)

where K is the CKM matrix. At this stage, the masslessness of neutrinos allows for the
diagonalization of Y, and the absence of flavor violation in the lepton sector. The intro-
duction of neutrino masses can be accomplished in the model-independent spirit of this
paper via the d = 5 Weinberg Operator. This operator is naturally suppressed by a scale
higher than A since it violates lepton number. Assuming this hierarchy of scales, the RGEs
of d = 5 and d = 6 operators are independent and the inclusion of neutrino masses is
orthogonal and does not affect the results presented here.

Since MFV is implemented as a symmetry which is respected by the SM Lagrangian,
the RG evolution of £(6) maintains MFV if the coefficients at scale A satisfy the MFV
hypothesis. In this case, the flavor structure of £ is the same as corresponding amplitudes
computed from loop graphs in the SM. However, it is important to emphasize that the
assumption of MFV does not imply that the coefficients of ?H?D and 1* operators
are proportional to the unit matrix, which is a stronger assumption that requires that
the functions f have a perturbative expansion in Y with small coefficients. In view of
eq. (4.6), this expansion in powers of Yukawa matrices can be justified for off-diagonal
elements inducing flavor violation, as customary, but not for the diagonal entry of the
third generation, see ref. [62] for some discussion on this point.

One of the important applications of the SM EFT is to test the hypothesis of MFV
in BSM physics in a model-independent way. Interestingly, the full SM RGE transfers
flavor violation in one set of operators to other operator sectors. Testing the consistency
of MFV in low-energy measurements, taking into account the full SM EFT, is important
for increasing our understanding of the flavor structure of new physics. A quick look at
the anomalous dimensions in refs. [10, 12] and appendix C should convince the reader that
any flavor ansatz not based on a symmetry will not be preserved by the RGE.

5 Phenomenology

In this section, we outline the generalization of the analysis of observables measured at
the electroweak scale from the SM to the SM EFT, and how the full one-loop RGE for
the dimension-six Wilson coefficients measured at a low scale ~ v can be used to obtain
the Wilson coefficients at the high scale A. An important point we emphasize is that if
constraints at the scale v are to be mapped to a high scale BSM theory, then all corrections
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of the order v?/(16 72A2%) in the SM EFT have to be included in the analysis. Otherwise,
the analysis is inconsistent.

Our aim is not to perform a precision analysis, but to simply outline some issues that
a precision Higgs and electroweak phenomenology program should take into account, and
how the one-loop RGE result aids in this program. Some aspects of how the SM EFT
modifies SM phenomenology have been discussed previously in refs. [20, 56, 63, 64] and
other works. However, many aspects of how the SM EFT affects precision predictions have
not been discussed in detail before, and we outline some of them below.

The Lagrangian of the SM EFT is

L=Lov+LO ... (5.1)

where the ... denote operators of dimension greater than six suppressed by additional
powers of A. The dimension-six terms £(® can be treated perturbatively, i.e. we only need
to include these to first order, since second-order contributions from £(® are as important
as first-order contributions from £®), etc. The SM Lagrangian is

1 1 1 —
Ly = —ZG;j‘VGAW - ngwaw — BB + (D,HYDIH)+ > iy
Y=qu,d,le
1 .\2 _ .. .
Y (HTH - 202) — [H“de ¢ + HYaY, q; + HYe Y, 1; + h.c.] : (5.2)

and £ is defined in eq. (2.1). We start by discussing the modification of the SM param-
eters at tree-level due to £(6).

5.1 Higgs mass and self-couplings

The dimension-six Lagrangian of the SM EFT alters the definition of SM parameters at
tree level in a number of ways. The operator Qi changes the shape of the scalar doublet
potential at order v2/A? to

V(H) =\ <HTH - ;&)2 —Cy (HTH)g, (5.3)

yielding the new minimum

(HTH) = § <1+3CH’UQ> _

v
E U%, (54)

on expanding the exact solution (A—+/A? — 3CyAv?)/(3Cx) to first order in Cp. The shift
in the vacuum expectation value (VEV) is proportional to Cyv?, which is of order v?/A2.
The scalar field can be written in unitary gauge as

1 0
"= V2 < [1+ chxin) b+ UT) ’ 9
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where

(5.6)

1 2 3CHU2
n = - = =|1
CH kin (CHD 4CHD> V7, uT ( + o)

The coefficient of h in eq. (5.5) is no longer unity, in order for the Higgs boson kinetic term to
be properly normalized when the dimension-six operators are included. The kinetic terms

£ = (D,H(D'H) + Cyn (HTH) 0 (HT H) + Cup (HTD“H> (HT D,ﬂ) . (5.7)
and the potential in eq. (5.3) yield®

_ 3C V2

L= 5 @) — P [02(0,)? + 20h(0,h)?] — Mo (1
v

+ 2cH,km> r:  (5.8)
T

5CHv? 5 1 15Cgv? 43 N
— 1— . —2 (1= 4 . b il
Avp ( 2\ +3CH,k1n> h 4)\ 2\ +4cpin | b +4CH'Uh +8CHh ,
for the h self-interactions. The Higgs boson mass is

3CH'I}2
2\

m% = 2\ (1 — + 2cH,kin> . (5.9)

5.2 Yukawa couplings

The definition of the fermion mass matrices and the Yukawa matrices are modified by the
presence of 12 H3 operators. The Lagrangian terms in the unbroken theory

L =— |:HTjdr [Yd]rs qjs + -fl“ﬂr [Yu]rs js + HTjér D/e]rs ljs + h0:| (510)
+ [C;;H (HTH) HYdqjs + CZpy (HTH) HY%,q;, + Cy (HU{) HYig, 1, + h.c} :
ST ST ST

yield the fermion mass matrices

v 1 N
Mol = (0l - 50°Cn ) o= (5.11)

in the broken theory. The coupling matrices of the h boson to the fermions £L = —hu) q+
. are

1 3 2 vk
Vol = 75 Wolss 1+ crianl = 50°Cn
1
= — [My],,[1 + caxn) — V*Cly, ¢ =u,de (5.12)
ur sr
and are not simply proportional to the fermion mass matrices, as is the case in the SM.
In general, the fermion mass matrices and Yukawa matrices will not be simultaneously
diagonalizable (these parameters have different RGEs), so that the couplings of the Higgs
boson to the fermions will not be diagonal in flavor due to terms of order v?/AZ.

5One can always replace v by vr in terms that depend on the £ coefficients, since the change is order
1/A%.
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5.3 Gp

The value of the VEV in the SM is obtained from the measurement of G in p decay,
p~ — e + Ve + v,. Define the local effective interaction for muon decay as

4
Lép = —5g (Zu " Prp) (€vuPrve) - (5.13)

The parameter Gp is fixed by measuring the muon lifetime. In the SM EFT,”

AGr _ 2 ( ) ®) L O
———=—=+|Cuy +Cy |=2(CH +C . (5.14)
\/§ ’U% peep eppe gj IIIIH

The Cj; terms are from the four-lepton interaction in £, and the Cl('?l) terms are from W
exchange, where one Wi vertex is from the QS? operator, and the other is the usual SM

vertex. There are contributions to pu decay from C' ;; , and C ;; with r # e, s # pu, as well
pers rsje

as from (LL)(RR) currents, but these do not interfere with the SM amplitude, and their
contributions to the muon lifetime are higher order in 1/A.

Similar expressions hold for other weak decay processes, and Gr in 7 decay, or in quark
decays, can differ from p decay due to the Cj and Cl(;’l) terms.

5.4 (Gauge boson masses and couplings

The definition of the gauge fields and the gauge couplings are affected by the dimension-six

terms. The relevant dimension-six Lagrangian terms are

LO=CycH HG;, G+ Cyw HYHW], W+ Cyp H' H By, B*+ Cyw g H' v HW /L, B*
+ CafAPCaR GlPaGSH + Cwe TR W WP w e (5.15)

In the broken theory, the X?H? operators contribute to the gauge kinetic energies,

1
4

1 1 1
+ 5@% Caw W, Wi + 51}% CrpB,,B" — 51)% CuwsWj,B" ,  (5.16)

1 1
Lo + LO =W W — w3 wi

L A 4 1 A A
S Wi WE = JW, B, B" — -G GW+§U%CHGGVG .

4w J

so the gauge fields in the Lagrangian are not canonically normalized, and the last term
in eq. (5.16) leads to kinetic mixing between W3 and B. The mass terms for the gauge
bosons from Lqy and £ are

1

1 1
L= —gooyWIW™F 4 —v7(gaW) — 1 B)* + T

1 8 U%CHD(QQW;:) — ngM)Q . (5.17)

The gauge fields need to be redefined, so that the kinetic terms are properly normalized
and diagonal. The first step is to redefine the gauge fields

Gi =G/ (14 Cucv?), W.=W[(1+Cuwv7), By=DB.(1+Cpgpv}). (518)

7

e and u are generation indices 1 and 2, and are not summed over.
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The modified coupling constants are

G3=093(1+Cucvy), Go=901+Cuwv}), G =0 (1+Cusvy), (5.19)

so that the products gg,Gl*j1 = §3g;j‘, etc. are unchanged. This takes care of the gluon terms.
The electroweak terms are

1 1 1 1 1_ _
L= —fw+ W — wag,, WA — 1B B = 5 (v¥Crws) Wi, B + 192 SUFWIW T
1 2

T

1
(92W —01B,)* + EU%CHD(EQW/E — 51B,)°. (5.20)

The mass eigenstate basis is given by [65]

Wl?j B 1 —%v% Cywn cosf sinf Z, (5.21)
B, —% U% Cuwn 1 —sinf cosf A, ’
where the rotation angle is
— 2 — 2
tanf = 2 + L Cuwn [1 - 912] ) (5.22)
g 2 92
so that
i 91 v} Go 922 — 01
sm@zﬁ 1+7f,2 ,QCHWB )
V917 + 9o 2 g1 92°+01
— 2 - -2 —2
cosd= e |1 DB ). (5.23)
Va2 4797 2 92 92"+ 01

The photon is massless, as it must be by gauge invariance, since U(1)q is unbroken.
The W and Z masses are

— 2.2
9o Up
Mg, =2"L
w 4 )
2 U% L 4 — 2, -2 Loy _
Mz = Z(gl +95°) + gUTCHD(gl +927) + SVr9192CHW B (5.24)

The covariant derivative is

D, =0,+i% 2 WITY + W, T7] +igz [Ts —5°Q] 2, +ieQ Ay, (5.25)

\f

where Q = T5 + Y, and the effective couplings are given by

_ 1
s_ _ 9192 [ _ MUTCHWB] =Gy sinf — 3 cos 0 g5 vh Cw b,
92

S S R 2

V92© + g1 +9

_ — 2, =2
/A 9192 € 91" 92" o
+g —_J192 20 = ———= |1+ —Fv3C )

92 91 2 THHWE sinGcosH[ 2919 roHwE
9 . 97 912 9192(92 - 917
5° =s8in“ 0 = — + g UrCHW B- (5.26)

922 +9.° (3.2 +9.%)
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The p parameter, defined as the ratio of charged and neutral currents at low energies [66], is

G202
9o My 1,
=z 2 =14+ 04 Cyp. 5.27

Measurements of the W and Z masses and couplings, and the photon coupling fix g, ga,
vy, Cgwp and Cyp. The couplings of the gauge bosons to fermions are also modified,
and a recent discussion can be found in ref. [67].

5.5 RGE for CH,CHDacHD

The discussion in sections 5.1-5.4 studied the impact of higher dimensional operators on
the measured SM parameters at tree level. The coefficients C'p, etc. of the higher di-
mension operators that enter the expressions are renormalized at the low scale, and are
related to the parameters at the high scale A by the RGE. As mentioned earlier, the RGE
contributions are the same as the log A/my enhanced contributions from the finite parts
of the one-loop diagrams.
The RGE for Cp, Cip and Cgg which enter the Higgs and gauge Lagrangian are

9 5 27
)
— 395 (491yH + 395 — 12)) Cyw — 6g192ym (491y7 + 95 — 4)\) Cuws

3
— = ((4yFg7 + 93)% + 8(g5 — 4giyE)A — 642%) Cp

Cp= (108)\ +6Y(S) — g%) Cr — 1297y% (49ivF + 95 — 4\) Cun

4
40 1692\
+ (93X — 120%)C + ? C}H) +16g3 Ac‘}fq) +8A(m1 +1m2)
—4 ([Y;YgT}/e]vaeH + 3[YdeYd]vadH + 3[YUYJYU]’(UUCUH + hC) , (528)
: 16 20
Cun= _?yfq g%—4g%—|—24)\+4Y(S)> Cro+2g2 0},}+2g2N cg) +35 ¢*y2 Cup

4
91 yi ( cYd CHd+Ye CHe+2yz C§2+2Ncyq0(1) + Ncyu0(1)> —2n3, (5.29)

tt tt

10 80
Cup=|-5v4 g} + 92 + 12X + 4Y(S)) Cup + — 91 y4 Cro

3 3
16g2yy (

_|_
+ =5 cychd+yecHe+2yzO}I}+2N0yq0§13+NcyuO§,’> 21, (5.30)

it 3
where 71 2,34 are defined in our previous paper ref. [10]. The precision electroweak param-
eter 1" is Cp, so these RGE are also used in section 5.11. Note that the dimension-six
operator coefficients from the operators in parentheses on the second lines of egs. (5.29)
and (5.30) drop out of the running of the combination (Cyg — Cup/4) appearing in cg iin-
The RGE for Cyw p is given in section 5.11.

The RGE in eqgs. (5.28)(5.30) depend on other coefficients in £(%). If the scale A is a
few TeV, the RGE can be integrated perturbatively, so that

1

Clu) ~ C(8) -

A .
——7cn m +... where C =, (5.31)
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and the ... are part of the leading-log series 7(2; In? A/u given by exact integration of the
RGE. The In A/p terms in eq. (5.31) must be the same as the In g terms in the finite parts
of the one-loop graphs. Thus the anomalous dimensions are another way of computing the
In A/p enhanced terms in the finite parts of the one-loop graphs.

56 h— ff

The decay of the Higgs boson into fermions is another important test of the symmetry
breaking structure of the SM. Define the effective coupling ), of the b quark to the Higgs
by Lyuk = =) h bb. The decay width is given by

ybmHN ( mg>3/2

h—Dbb
L(h—bb) = =——

, (5.32)

where all parameters are renormalized at p ~ mpyy.

In the SM, the effective coupling of the b quark to the Higgs field can be predicted
very accurately. The b-quark mass can be determined very precisely from global studies of
B — X v and X¢v [68], and then used to determine the b-quark Yukawa coupling at the
scale my using the SM RGE. The relation ), = v/2my/v between the Higgs coupling and
quark mass is modified in the SM EFT, and is given by eq. (5.12), with YV = [Va]w, and the
relation between v and G is modified as in eq. (5.14) due to tree level effects from £6),

The scaling of parameters from my to my is also modified. The dimension-six op-
erator contribution to the one-loop running of the effective coupling of the SM Higgs to
fermions is given in ref. [12]. We repeat the result for the down quarks here for the sake of
completeness.® The running of the Yy is modified by the terms

2
,udCL[Yd]rs ngQ [3CdH Cuo [Yd]rs—F CHD [Yalrs+[Yalre <C(1)+3C}I)> —Cifg[Yd]ts

* 1)* 8)x*
- [Yu]tscH#d —2 <c<q3, +epsC®) ) Yalip + Creag[Yelly + NCO [V,

sptr sptr ptrs ptsr
1)* *
T3 (Céu)qur CF3 Céu)qd> Y, ]tp} (5.33)
sptr sptr

These terms are of order v?/A?, and are just as important as the running of the Cyy g and
CH kin contributions in eq. (5.12), and must be included for a consistent calculation.

The net effect of including the RGE in eq. (5.12) and eq. (5.33) is to introduce a shift
of the form

~ A2 N, 2\ 3/2
D(h — bp) = b EAN) ma <1 - 4m§> , (5.34)
8w my
where the running effects induced by new physics are included in AYy:
m2 my m3 my
AYy = SH jog (22 1 1og (1) Co. .
Vo= 152 108 ( - > Citgalos(— )¢ (5.35)

$Note that the usual one loop running of the SM parameters summarized in ref. [69-71] should be added
to this result for the full scale dependence of these effective couplings in the SM EFT.
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The expression for C] is obtained by setting » = s = 3 in the expression in square brackets

on the r.h.s. of eq. (5.33). The expression for Cs is

Cy = 2\/1%[1@]33 (OHD - iCHD> - Aic%g (5.36)
where the anomalous dimensions Cyry, Crp, and Cyp are given in egs. (5.29), (5.30) and
section C.5 respectively. Note that as we are considering A ~ TeV, the log enhancement
is modest and of about the same size for running from mj to myg and from A to mg. The
log(mg/my) contribution in eq. (5.35), and analogous terms in other amplitudes, have
been neglected in ref. [20], and need to be included for a consistent calculation including
1/A? RGE effects.

The discussion above also applies to Higgs decays into other fermions, such as ¢¢ and
7777, Using newly developed charm tagging techniques [72], it may be possible to measure
deviations in I'(h — ¢¢) at the LHC (see the discussion in ref. [73]).

There are also flavor-changing Higgs-fermion couplings from £(%, which contribute to
flavor-changing Higgs decays, such as h — bs. These do not interfere with the SM Higgs
amplitude, which is flavor diagonal, so the flavor-changing decay rates are order 1/A*. Nev-
ertheless, as the running of C.pr, Cypr and Cypr is not the same as the running of the SM
Yukawa couplings, searches for Higgs flavor violation is well-motivated. For some recent
work on this subject, see refs. [74, 75].

57 h— WW and h - ZZ

The h — WW and h — ZZ amplitudes receive direct contributions from £(®). The relevant

C'P-even Lagrangian terms are

1 v 4
L= (D,H)(D"H) — 1 (Wi, W' + B, B"),
+ Cuw Quw +CuQuB + CuwpQuwns + Cup Qup, (5.37)

which lead to the interactions

L= i?ﬂwh [(W,i)Q + (Wi)Q] (1 + crxin) + Caworh [(Wﬁy)Q + (Wiu)z] (5.38)

for the W, and

1 1
L= 1(?22 + 31 ) vrh(2,)? [1+ chyin + v7Chp] + §§1§2U%h(3u)2CHWB

7o 2C G,2C G1G,C 1
HW + oB + HWB _
92" + g1 2

(5.39)

for the Z.
A ratio of deviations in the SM gauge boson coupling to the Higgs, reported in [76], is
defined as

L'(h— WW) T(h— ZZ)sum
(h > WW)sy I'(h— Z2Z)

Awz = T (5.40)
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From egs. (5.38), (5.39), we see that cp xin cancels out in Ay z, but there are corrections
from the Higgs-gauge operators Cw, Cyp and Crwp. This correction depends on the
off-shellness of the W and Z, since it is proportional to the field-strength tensors, and thus
momentum-dependent. In the SM EFT, the ratio Ay depends on the £ parameters
Crw, Cgp and which are not custodial SU(2) violating, as well as Crw p and Cgp which
are custodial SU(2) violating. The couplings of the gauge bosons to fermions are also
modified. For a recent discussion on these corrections in this basis see ref. [67].

58 gg—h

The Higgs-gluon operators Q¢ and Q& contribute to the Higgs production rate via
gluon fusion. The £ contribution to gg — h is important because the SM amplitude
starts at one loop order, with no tree-level contribution. A similar enhancement of £(6)
corrections occurs for h — vy and h — vZ discussed in the next two sections.

Define 6,4 and €, by rescaling Cyg and Cp 5 by gs,

Che = ggcggg CH@ = gg‘%g. (5.41)

The scaling by g3 simplifies the RGE, and makes contact with the notation of refs. [13, 77]
which uses
ca > G
g = T9A2 g = T9A2 (5.42)
since a factor of —1/(2A2) was included in the normalization of the operators. The other
advantage of the rescaling is that the field and coupling constant renormalizations eq. (5.18)

and (5.19) cancel out.
The change in gg — h relative to the SM is given by [77]

2 2

n 167721)2(5;9

I9

olgg—h)  T(h—gg)
oM(gg — h) — TSM(h — gg)

167202 %,
19

~ ’1 + (5.43)

where I9 =~ 0.37 is the numerical value of a Feynman parameter integral [77, 78]. We have
neglected corrections from cpkin and the Yukawa couplings eq. (5.12) which are v?/A%,
but not enhanced by 1672. If g9 from BSM physics is loop suppressed as in the SM, then
these terms must be included.

The complete one loop RGE of 6, and %Zg are relatively simple,

Cog = <12A +2Y(5) - gg% - gg§> Cgg —2 ([Yd]wv%gg + Walwnuc + h.c.>
Cog = (m +2Y(5) - gg% - gg§> Cgg + 2 (i[Yd]wU%gg + iYuJwoGuc + h.c.) (5.44)
where
Cug = g “ug = g 49

— 22 —



are rescaled coeflicients of the color magnetic dipole operators, and
Y (S) =Tt [NY,Y, + NoYJ Yy + YJYE} . (5.46)

The Higgs-gluon contributions in the first term of eq. (5.44) were computed in ref. [13].
The only new contribution from the full RGE is the second term from the color dipole
operators which was also calculated in ref. [19] for the special case of no flavor indices, and
with only a non-zero top quark Yukawa coupling.

59 h— -~y

A very important process is h — ~y, which played a key role in the discovery of the SM
scalar. Again, it is convenient to define

1 1 1
€y = 5Caw + 5Cup — —Crawa, 5.47
g3 93 9192 (5.47)

in terms of which our previously defined coefficients [13, 77] are

c ~ c
Gy = —ﬁ, Gy = —#. (5.48)
The h — ~~ rate is
~ 2
D(h =) 1+ 8202, 2 8m202E,, (5.49)
SM(p — yy) — I I ’

where [7 &~ —1.65 is a Feynman parameter integral [77, 78]. Again, as in the gluon case,
we are dropping v2/A? that must be included if %~ from BSM physics is loop suppressed.

The effective amplitude is
Gy Fpyy FM hv (5.50)

where

e e
_ = 5.51
9 cos Oy g2 sin Oy ( )

are the definitions of e and 8y without a bar. These differ from the coupling constants in
eq. (5.19) (with a bar) at order 1/A2.
The complete one-loop RGE is

) 3 9 Cuwn
G = (122 = Z¢? — g2+ 2Y(9) | & 8\ — 642
vy < 291 292 + ( )) vy T ( 92) 9192

— 18¢2Cw + (4%617[3/(1]576 + 4‘57?'; [Ye]sr — 8(51;3[1@]37« + h.c.),

o 3 9 ~ C.
Gy =122 =02 — 22 +2Y(9) | & 8\ — 6g2) —HWE
Yy < 291 292+ ( )) W“‘( 92) 912

— 1892CW + (—42'%?2,[)/;[]“ — 42‘%75;2[}/;3]87‘ + 82(&7&1;3 [Yu]s’r + hC) (552)

— 23 —



The first line of each equation is the contribution from the 8 x 8 submatrix of Higgs-gauge
operators computed in ref. [13]. The second line gives the additional terms including all
59 operators. There are contributions from the triple-gauge operators

Qw = TEwlvwew ke, & = KW e win (5.53)

and the dipole operator coefficients defined in section 5.13.

This result is the first ¢ruly complete one-loop result of the RGE running of €.

510 h—~Z

The measurement of h — ~+Z at LHC has not yet reached the sensitivity required to
observe the SM rate [79, 80]. Nevertheless, this process is interesting in several BSM
scenarios because a suppression of BSM effects in h — v+, gg due to a pseudo-Goldstone
Higgs does not necessarily imply a suppression of BSM effects in h — v Z (for a recent
discussion see [81]). We define the effective Wilson coefficient in this case to be

1 1 1 1
tyz = ——Caw — ——Cup — < - ) Cuws 5.54
g 9192 291 293 >34

so that the modification of the decay rate is

9 2

871’2’1)2(5;2
4

L(h—~Z) ’1 N 82026, (5.55)

ISM(h > ~Z) 17

1% ~ —2.87 [77, 78], again neglecting v?/A? terms due to CH kin, €tc. and our previously
defined coefficients are

__©9z > _ Gz
Cg»yZ — —w7 Cg»yz — —W (556)

The one loop RGE results for the CP-even term

1
Gz = 5 o8¢ Oy sec HW{(Q cos 20w + 1) [YalwoCay + (2cos 20y — 1)[Ye]wo@ey

rw rw

— (4008 20w —1) [V Gy + h.c.}+2 <[Yd]m‘€dz+ [}g]wv%ez—2[yu]m<5uz+h.c.>

22 19

20
+ (12>\ +2Y(95) — 3 + ?6’2 sec? Oy — 362 csc? 9W> Crz

11
+ €2 (3 cos 20y — 10> csc by sec Oy €y, + e <3 sec Oy — % cot By csc 9W> Cw

C
+ (662 — 4e? csc? Oy + 4) cos 29W) csc By sec Oy HWEB. (5.57)

9192

The RGE for (ng is given by the substitution Y, — —iYy, €,z — ‘6:,2, Cry — ‘?o;jw,

Cw — C, and Cypwp — C as for the gg and ~+ amplitudes.

HWB’
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5.11 Electroweak precision observables

We are assuming A is parametrically higher than the EW scale v, so the usual S, T and U
parametrization [82-85] of the oblique electroweak precision data (EWPD) can be used. An
operator based analysis of EWPD was first developed in ref. [65]. The standard operator
based approach identifies the S parameter with the operator Q gw p, and the T' parameter
with the operator Qg p,

_ 16 7 v2

g1 92

S

Crawa, T = 270> <12 + 12> Cup . (5.58)
g1 92

Note that the experimental constraints on S,7T are inferred from measurements with
fermionic external states. These processes can have contributions from other higher di-
mensional operators. We assume, as is commonly done, that these other contributions are
small in writing eq. (5.58). A shift in the definition of v is order 1/A* for this expression,
and we neglect this effect. The U parameter corresponds to the dimension-eight operator
(HTWHYH)(H'W,, H), which we neglect. A fit that treats m;, = 126 GeV as an input
value [86] to EWPD finds S = 0.03£0.10 and 7" = 0.05£0.12 with a correlation coefficient
between S and T of 0.89.

S and T depend on Cywp and Cyp evaluated at the weak scale. The RG evolution
of Cyp is given in eq. (5.30), and the RG evolution of Cxw p is

) 4 19
Cowp = (4>\ +2Y(S) + ggg + 39%> Crws + 29192 (Caw + Cup) + 3g195Cw

+ g2 <S[Yu]vauB - S[Yd]vadB - [Ye]vaeB + hc)

+ 01 <5[YU]MC’UW + [Yd}wvcdw + 3[Yé]vaeW —+ h.c.) . (5.59)

The T parameter is usually interpreted as a measure of custodial symmetry violation,
whereas the S parameter is considered to be sensitive to the difference between the number
of left-handed and right-handed fermions. Interestingly, the SM EFT one loop RGE does
not mix the operators Cgwp, Cgp. However, this does not follow from custodial symme-
try. The SM violates custodial symmetry in g; interactions, and through mass splittings
of the SU(2)r doublets. If we take the limit Y; — Y, Y. — 0 and y4 — vy, then yg — 0
from eq. (2.9). In this limit, the standard model preserves custodial SU(2), as does the
RGE. This provides a non-trivial check of our results.

The consequences of the RGE for precision electroweak parameters was studied in
ref. [13]. The RGE allows one to compute the In A/mp contribution to these observables,
which was computed previously in the broken theory [28-30]. Our computation agrees
with their results for the terms they computed, but has additional effects (e.g. due to the
top quark Yukawa) which were not in the previous results.

5.12 Triple gauge boson couplings

Another promising source of information on EW interactions are triple gauge couplings
(TGC). For some recent studies on the phenomenology of these measurements see refs. [57,
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63, 87, 88]. Some of the scale dependence of the operators involved in this process (in
another basis) has been determined [89, 90]. In the basis used here, a operator that
contributes directly at tree level to TGC measurements is Q. (Other contributions come
about indirectly due to field redefinitions, or a redefinition of input parameters.) The full
RGE of the Wilson coefficient of the operator Qy has the simple form

Cw = (24 — 3bo2) g3Cw, or ,ui <C[;V> = 2443 <C‘§/) , (5.60)
du \ g5 95
where by 2 is the first coefficient in the go S-function. The triple gauge boson operators do
not mix with any other dimension-six operators. This multiplicative renormalization can be
largely understood using the results of ref. [11]. Consequently, TGC measurements provide
a relatively clean and important probe of this dimension-six operator which contributes at
tree level.

Recently, refs. [91, 92] have shown that the decay spectra of the three-body decay
h — V £* £~ are particularly rich sources of information on the possible effects of anoma-
lous couplings of the Higgs boson, and BSM contact interactions. The full decomposition
of the modification of the V £T ¢~ decay spectra in the operator basis used here was given
in ref. [67], which shows that the relevant terms depend on the coefficients Cy g, Cgp,
Caw, Cun, C}{l, C]?’ﬂ, Che, as well as the coefficient cp iy which only modifies the total
decay rate.

It has been argued that TGC measurements probe the same physics as h — V £ £~ de-
cays [57] in the SILH basis. This claim comes about by arbitrarily setting the operator Cyy,
which is present in the SILH basis, and in the analysis in ref. [57], to zero. This operator con-
tributes to TGC measurements, but not to h — V £ ¢~ decays at tree level. It is by using
this arbitrary choice that ref. [57] claims a strong relationship between these experimentally
measurable quantities. This makes the results in ref. [57] model-dependent, and not gen-
eral. For example, the exactly solvable model of ref. [93] produces Cy but no Higgs-lepton
operators. In the non-redundant basis of ref. [9], TGC measurements are also not related to
h — V £% ¢~ decays since the combination of Wilson coefficients that contribute to the two
processes is not identical. Measurable results are basis independent, and model independent
results do not arbitrarily set operators to zero, as was done in ref. [57]. We disagree with the
strong conclusions of ref. [57] which are stated as broad, model-independent, conclusions.

5.13 p — e~y, magnetic moments, and electric dipole moments

The lepton dipole operators
L=Cow lpao™es Tl HyW,, + Cep lraHao" €5 Hy By + h.c. (5.61)
s s

contribute to radiative transitions such as g — ey which is a remarkably clean window to
physics BSM. In the broken phase, eq. (5.61) gives the charged lepton operators

= % ﬂ‘gez e,0" Pres Zy, + h.c. (5.62)

L
ﬂrs

Gey €,.0"" Preg F/“, +
rs
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where r and s are flavor indices ({ec, ey, e-} ={e, p, 7}) and

1 1 1 1
(5@7 = —LeB — 7CeW CgeZ = ——LeB — 7CeW
rs g1 rs g2 rs rs g2 rs g1 rs
1 1 1 1
Ciy = —Cap — —Caw Caz = ——Cap — —Caw
rs g1 rs g2 rs rs g2 rs g1 rs
1 1 1 1
%u'y = —CyuB + 7CuW (guZ =——0yB + *CuW (563)
rs g1 rs g2 rs rs g2 rs gir rs

Cyuw has the opposite sign for u-type quarks in eq. (5.63) because of the opposite sign for
T3r. The RGE for ., is

. 1
Cey = {Y(s) +e? <12 — chc2 Ow + 1 sec? 9W> } Cey

1
+ 2%y [Yo Y ys + (2 — 2cos? 0W> (YY) pw@er + €2 (12 cot 20w ) €.z
TV ws

rs

+ (2sin Oy cos ) [YJY;]W‘@Z — cot GW[YJ]TS (CHWB + ZCHWB)

ws

3
+ 15[V ] O (5.64)

V™ lequ *
rsvw

8 ~ 5 ~
+ —¢? [YJ]TS (ng + icﬁw> + é? (cot Ow — 3 tan HW) [Yj]m (‘Kyz + i%,z)

The current experimental limit [94] on BR(u — e7) is 5.7 x 10712 from the MEG experi-
ment, which implies

v
Gy S 2.7 x 107* TeV 2 5.65
Ve i~ (5.65)
at the low energy scale p ~ my,.
The lepton Yukawa couplings are diagonal in the mass eigenstate basis, so the y — ey

transition amplitude depends on ey, 6.z and ¢ The bound eq. (5.65) implies

lequ®
o) <14 %1073 Tev—? (5.66)
€ pett

using the estimate In(A/m)/(16w2) ~ 0.01 for the renormalization group evolution, and
assuming that this term is the only contribution to %ey at low energies.
pe
The anomalous magnetic moment of the muon is

4mv

da, = — 7 Re‘fn (5.67)
which yields the limits
ICwp| S0.6TeV2, |4, <4TeV 2, ‘ZtRe Cl | <7Tev?  (5.68)
0 wptt

assuming that each of these is the only contribution to @ey.
L
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The bound on the electric dipole moment of the electron translates to the limits

’CHWB| S

<3x107* TeV~2,
(5.69)
using the recently measured upper bound [95], d. < 1.05 x 1072ecm from the ACME

collaboration, again assuming each of these terms is the only contribution.

251073 TeV2, ‘%}V) <2%1072 TeV~2, %Im Clequ

e eett

6 Conclusions

This paper completes the full calculation of the one-loop renormalization of the dimension-
six Lagrangian of the SM EFT. We present all of the remaining gauge terms in the 59 x 59
anomalous dimension matrix.

Many of the results are lengthy, but a few important cases such as gg — h, h — v
and h — vZ have simple RG equations which are given explicitly in this paper. We have
computed the modification of the Higgs mass, self-interactions, and couplings to fermions
and gauge bosons from £, The dimension-six terms change the relation between the
Higgs vacuum expectation value and G, and also contribute to the p parameter. The
RGE improvement of all of these relations is now known, and will be useful for future
precision studies of the SM EFT. A complete analysis of the SM EFT is a formidable task,
because £ has 2499 independent parameters.

We have also discussed how the SM EFT provides a model-independent way to test
the MFV hypothesis, and how the full SM EFT RGE mixes flavor violation between the
different operator sectors. A few applications of our results have been given in this paper.

Acknowledgments

This work was supported in part by DOE grant DE-SC0009919. MT thanks W. Skiba for
helpful conversations. RA and AM thank B. Shotwell, D. Stone, H.-M. Chang and C. Mur-
phy for useful discussions. We would also like to thank C. Zhang for pointing out a typo.

A Flavor representations and parameter counting

In this appendix, we briefly discuss the flavor representations of the operators, and the
parameter counting of table 2.

Operators in classes 1-4 have no flavor indices, and the counting is trivial.

Class 5 and 6 operator coefficients are ngy X ngy complex matrices M, in flavor space,
with ng complex entries. The real matrix elements give the nf] C P-even parmeters and the
imaginary matrix elements yield nf] C P-odd entries.

Class 7 operators, other than @Qp,q are hermitian, so their coefficients are ng, x ng
hermitian matrices H,s in flavor space, which can be written as H,; = S;s + 14,5, where
S is real-symmetric and CP-even with n, = ng(ng + 1)/2 parameters, and A is real-
antisymmetric and C'P-odd, with n, = ng4(ny — 1)/2 parameters. Qpyq, which is not
hermitian, is an ngy X ngy complex matrix with ng CP-even and ng C P-odd parameters.
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1:X3 p—

5:¢y°H h.c.

Qa | [APCGGErGoH 3: H*D? v +7 ‘
ABC A Av (¥Bp (3C 2: H Qe (HTH)(lperH)
6 | I e, Qu | (HTH) Qun|  (HUE(H'H) Quar | (H'H) (g, H)

H % H qpu

Qu | KWW Quo | ()" (1r1D,m) || P

1 _
LIK vy e K Qan | (H'H)(qpd - H)
Qu | € WL WIPW,

4: X2H?2 6: 2 XH + h.c. 7:¢2H2D
<=
Que | HHHGAGY || Quv | (Lo" e, )T HW], W (H'i'D ) (1)
Que | HHHGAGA || Qup | (lyo"e,)HB,, @ | (HYDLH) (I, )
Quw | HHWLW™™ || Quc | (g0 T4u,)H G2, Qe (H'D  H)(@re,)
—~ <=
Quiw | HHHWLW™ || Quw | (@0 u, )T HWL, Q') (H'i'D ,H)(g7"q,)
QHB HTH B,U,I/Bl“/ QuB (qpo"u uT)HBMV Q(}?; (HH?{LH)( T ,Y,un)
Qus | HYHBLB™ || Qic | (Go™ TAd,)H G, Qru (HTi(BuH)(Up’Y”Ur)
Quws | HAHWL B || Quw | (G0 d,)r H W, Q1 (H'i'D ,H)(d"d,)
Quivp | HITTHWLB* || Qap | (40" d)H By || Qrrua + hec. | i(HT D, H) (a7 d,)
- 8: (LL)(RR)
8: (RR)(RR) -
—— Que Lyuly ) (Esyte
8: (LL)(LL) Q| Eruen)@rie) ] Gub)Erte)
_ _ Quu (Lpyuly) (UsyHus)
Qu (p'yu )( S’Yﬂlt) Quu ( p'YuuT)(US'VMUt) _ -
1) _ _ Qua (Lpvulr) (dsy*dy)
qq (Qp’}/uqr)( 7" qt) Qdd (dp’Yudr)(ds'Yudt) _ _
(3) u I _ - Qqe (Tpyuar)(€sy*er)
dq | (@ Yum @) (@77 r) || Qeu (epyuer) (Usy"ue) (1) ( V(eyhu)
B - qu QpVuQr ) (UsY" Uyt
Q| G @) || Qea | (Epvuer) (o dr) el
(3) I (1) _ - qu (QP’Y#T qr)(quYHT ut)
qu (p'Y;ﬂ' 1)@y 7" qr) Qud (Upyptur) (dsy*de) (1)
(8) _ A - A qu (qPPYM(JT)(dS'YMdt)
Qua | (Up YT ur)(dsy" T dy) @) |- A LA
qu (qP'YuT QT)(d AT dt)

8:(LR)(LR) +h.c.
QW (@ur)en(@dy)
QW | @T4u)ej(@TAdy)
Q.| @Been(au)
(7

U“”ut)

8: (LR)(RL) + h.c.
Quedq | (er)(dsqry)

)
Qlequ (izj;UHVeT)EJk

Table 1. The 59 independent dimension-six operators built from Standard Model fields which
conserve baryon number, as given in ref. [9]. The operators are divided into eight classes: X3, HS,
etc. Operators with +h.c. in the table heading also have hermitian conjugates, as does the 12 H2D
operator Q4. The subscripts p,r, s,t are flavor indices.
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Class Nop C P-even CP-odd
Ng 1 3 Ng 1 3
1 4 2 2 2 2 2 2
2 1 1 11 0 0 0
3 2 2 2 2 0 0 0
4 8 4 4 4 4 4 4
5 3 3n; 327 3n; 3 27
6 8 8n2 8 T2 8n2 8 72
7 8 Ing(Ing +7) 8 51 ing(Ing —7) 1 30
8:(LL)(LL) 5 ing(Tng +13) 5 171 Ing(ng —1)(ng +1) 0 126
8: (RR)(RR) 7 | &ng(2Iln)+2n;+3Ing+2) 7 255 £ny(2lng +2)(ng — 1)(ng+1) 0 195
8:(LL)(RR) 8 4nZ(nZ +1) 8 360 4nZ(ng — 1)(ng + 1) 0 288
8: (LR)(RL) 1 ny 1 81 ny 1 81
8: (LR)(LR) 4 4n 4 324 4n; 4 324
8: All 25 | Lng(107n3 +2n) +89ng +2) 251191| iny(107n) +2n) — 67n, —2) 5 1014
Total 59 |2 (107ng+2n5+213n7 +30n,+72) 53 1350|% (107ny +2n) +57ng —30n,+48) 23 1149

Table 2. Number of C'P-even and C'P-odd coefficients in £ for ng flavors. The total number of

coefficients is (1070} 4 2n3 + 135n2 + 60)/4, which is 76 for ny = 1 and 2499 for n, = 3.

IT0 HD?  y?H3 ¢2H?D o' |@2X2H? gy?XH |PBX3
Class 2 3 5 7 8 4 6 1
NDA Weight | 2 1 1 1 1 0 0 1
H° MR g2 A A% gt M2yt ME AR 0 | Mgt gf 0 AP
H*D? 0 | Avhet W y2 g2 0 4/ Wit 4
yy? H? 0 | At Avh gt AR A gt Rt gt Y
2H?D 0 2y W ANy A i 4
P! 0 0 0 S Vo B | 9*y° 4
g2X2H2 0 l 0 l 0 )\’ yQ, 92 y2 4
gy’ X H 0 0 1 1 1 g9 9%y 4
X3 0 0 0 0 0 1 0 g*

Table 3. Form of the one-loop anomalous dimension matrix 7;; for dimension-six operators @,
rescaled according to naive dimensional analysis. The operators are ordered by NDA weight,
rather than by operator class. The possible entries allowed by the one-loop Feynman graphs are
shown. The cross-hatched entries vanish.

The four-fermion operators in Class 8 are the only non-trivial case. The (LR)(RL)
and (LR)(LR) operators are not hermitian, and each has nj CP-even and ny C'P-odd
parameters, since the operator has 4 independent flavor indices. The (LL)(RR) operators
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are the product of L and R currents, each of which has n, CP-even and n, C'P-odd
components, for n? + n2 CP-even and 2n.n, C P-odd terms. The counting for (LL)(LL)
and (RR)(RR) operators when the currents are different, Qg s Qeus Qed, Qidﬁ)v is the

same as for the (LL)(RR) operators. The interesting case is for Qy, Qqé?’ » Quus Qaa
where the two currents are identical, so that all four flavor indices transform under the
same SU(ngy) flavor group. The operators transform as the 1+adj+adj+aa+35s where adj
is the adjoint representation, aa is the representation T[Eg}] antisymmetric in the upper and

lower indices, and $Ss is the representation T(( l)) symmetric in the upper and lower indices.”

The @aa representation vanishes for ny = 3. The singlet has one C' P-even parameter, the
adjoint has (ng — 1)(ng + 2)/2 C'P-even and ny(ny — 1)/2 CP-odd parameters, aa has
ng(ng — 3)(n§ +ng +2)/8 CP-even and ng(ng — 3)(ng — 1)(ng +2)/8 CP-odd parameters,
and Ss has ng(ng — 1)(ng + 1)(ng +2)/8 CP-even and ny(ngy — 1)(n2 + 3ny — 2) /8 CP-odd
parameters. The operator Q.. is a special case, because of the Fierz identity

(epyper)(Esyuet) = (Esyuer)(Epyuet), (A1)

which implies that the operator must be symmetric in the two e indices and in the two e
indices. This identity does not hold for the other fermions, because they have SU(2) or
color indices. Q.. transforms as 1 + adj + Ss because of the Fierz identity.

Adding up the individual contributions gives table 2.

B Conversion of P; operators to the standard basis

The equations of motion can be used to express the operators P; in the standard basis.
The identifications are

1 1 1 1
Pp=5yngiQuo +201ynQup + 547 [yngﬁ + YeQI;Ite +ygQY) + VuQrru +YaQua| -
tt

2 2
PWZ*Q%QHD — §9§m%{(HTH) +2957Qn + 192 [ 22 + qu?]]
tt tt
1
+ 293 <[ ]rsQuH + [ }rstH + [ eT]rsQeH + hC) ;
s
Pup= §Q1YHQHD +297yuQup — §YH91QHB - 19192QHW37

1 1 1
+ 59? [lequ +YeQue + qugﬁl + YuQHu + YdQHd] ;
tt tt tt tt tt

3 1 1 1 1,0
PHW:ig%QHD——g%m%,(HTH)2+2g§>\QH—ZQ%QHw—*YHglmQHWBJr*QS[ ( )+QHq]

2 2 4
+ %95 <[ ]rsQuH + [ }rstH + [ eT]rsQe?{;I + hc) y
=—-Quo —4Qup. (B.1)

9The relevant group theory results can be found, for example, in refs. [96, 97].

— 31 —



C Results

The renormalization group equations by operator class are given below. The complete RG
equations for the dimension-six operators are given by adding egs. (6.1)—(6.4) of ref. [12],
the equations in the appendices of ref. [10] and the equations given below. Egs. (4.3)—(4.5)
of ref. [12] give the renormalization group evolution of SM couplings due to dimension-six
operators.

The parameters 7;_5 are defined in the appendix of ref. [10]. Some equations use ¢p,
defined by

4 8
&= 3V (Cun+Cup)+ 3 QWCSI) +2qucCg;+yeC%e +yuNcCI%rtu +YchCI;Itd (C.1)
it tt

The other parameters are cao = 2, cpa = 3/4, casz = Ne, cp3 = (N2 —1)/(2N,) with
NC = 3, bO,l = —1/6 — ZOng/9, b(]’Q e 43/6 — 4ng/3 and bo,g =11 — 4ng/3.

c.1 X3

CG = (12¢ca,3 — 3b0,3)g32»CG C@ = (12ca,3 — 3b073)g§C§
CW = (IZCA’Q — 3b0,2)g§CW CW = (126,4,2 — 3()0,2) ggCW

Cc.2 HS

. 27 9 40 3 2
Cn= (—395—595> CH"’)\|:§QSCHD+(_69§+24Q%Y§1)CHD:| - (4y%g7 + 95)" Cup

+12X (3¢5Cuw + 491y4Crp + 29192y Crws) — (129193y5 + 993 ) Cuw

N———

16
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C.3 H*D?
. 16 20
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tt tt
4, 1 (1)
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. 80 9 10
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