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bLaboratoire de Physique Théorique, Ecole Normale Supérieure,
24 rue Lhomond, F-75231 Paris cedex 05, France
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1 Introduction

Since its inception, the inflationary universe scenario [1] has widely come to be accepted as
one of the most promising phenomenological models of the early universe that successfully
accounts for the initial conditions of the hot Big Bang.1 However, the paradigm is not
without its conceptual [2, 3] as well as technical problems,2 and thus it is of more than
just academic interest to study the possibility of alternative cosmological scenarios. Notable
attempts motivated by string or M-theory towards this end include [4–19].

Recently, there have been some developments in a specific class of non-singular3 bounc-
ing string cosmologies [20–23], and in earlier emergent scenarios, see e.g. [24–26]. With
respect to the former, it has been realized [27, 28] that initial quantum vacuum fluctuations
that exit the Hubble radius during a matter-dominated contracting phase acquire a scale-
invariant spectrum of curvature perturbations on super-Hubble scales, representing a duality
of backgrounds that generates the same two point correlation functions [27]4.5

In order to propagate the initial spectrum of fluctuations in the contracting or emergent
phase on to the final expanding phase, it is necessary to understand their evolution at the
transition point. Note that this transition must involve new physics which violates the Null
Energy Condition (NEC). In the context of bouncing universes, the matching of fluctuations
between the phases was studied in a number of specific models in which the bounce was
obtained by introducing ghost matter [29, 30] (where stability issues for the background are
not considered) and ghost condensate [31–35] or Galileon [36–39] constructions (where meta-
stable violations of the NEC are possible). Additionally, other models consider modifying
gravity at high curvature scales such as in the non-local model of [40–42], in Hořava-Lifshitz
gravity [43, 44] or in mirage cosmology [45].

In all of these examples it was found that on large scales (length scales larger than
the time-scale when the new physics is dominant) the spectrum of the dominant mode of
fluctuations is unchanged across the bounce. On the other hand, it is known from studies
done in different contexts [46–49] that the transition can depend sensitively on details of the
background bouncing solution.

In this paper, we study the transition of fluctuations between the contracting and ex-
panding phases in cosmological backgrounds arising from specific string theoretic construc-

1We remark that operationally speaking, this means that among the parameters of the six parameter
Λ−CDM model which purports to account for most cosmological observations, the simplest models of inflation
typically account for one (the spectral tilt) and post-fit another (the amplitude of the primordial power
spectrum). In contrast, in certain examples of putative models where the universe bounces or is emergent,
the amplitude is also fixed by the characteristic scales of the underlying dynamics [17–19].

2A subset of which includes inflation’s sensitivity to its UV completion (see [123] for a discussion of the
pertinent issues). The so-called “eta” problem is but one facet of this, and although one can claim to have
addressed this up to some subset of corrections, the problem is expected to persist in all generality [124].

3By non-singular in the context of these works and what follows here, we mean that the energy density
(i.e. H2) remains finite in the Einstein frame, although the extrinsic curvature does jump, sourced by a
distributional source.

4Concerning emergent scenarios (by which we mean scenarios in which there is an initial quasi-static period
as postulated in “string gas cosmology” [4, 15, 16], see also [21]), it has been realized [17, 18] that thermal string
gas perturbations on a toroidal spatial background yield a scale-invariant spectrum of curvature fluctuations.

5These two scenarios hence become possible alternatives to cosmological inflation for producing the ob-
served inhomogeneities in the distribution of galaxies and anisotropies in the cosmic microwave background
temperature maps. The first, the “matter bounce” scenario, has as a distinctive prediction a special shape
of the bispectrum [125]; the “string gas cosmology” scenario predicts a slight blue tilt of the spectrum of
primordial gravitational waves, whereas standard inflation predicts a red tilt [126].
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tions [20–23] in which the bounce is mediated via a stringy S-brane. Our results show that
indeed a scale invariant spectrum of curvature perturbations can manifest at late times, given
vacuum initial conditions, in a stringy realization of the “matter bounce” scenario [27]. The
detailed manner however in which this happens crucially depends on the microphysical re-
alization of the S-brane as a space-filling condensate of non-trivial, massless thermal string
states, appearing at the instant the universe attains a critical maximal temperature, rein-
forcing the message of [46–49]. Our work thus lays the basis for studying the evolution of
cosmological fluctuations in general models in which the transition between the phases of
contraction and expansion is described by stringy S-branes.

Specifically, we will study scalar metric fluctuations (see [51, 52] for an in-depth survey
of the theory of cosmological fluctuations and [53] for an introductory overview). In both the
contracting and expanding phases of the induced cosmology, the gravitational potential Φ
obeys an equation of motion which for each Fourier mode, labeled by co-moving wavenumber
k, is a second order ordinary differential equation and hence has two linearly independent
solutions. In the expanding phase, the dominant mode is constant on super-Hubble scales6

and the second mode is decaying in time. In the contracting phase there is a growing mode
in time and a second constant mode.

In the case of the toy bouncing models mentioned above, it is found that on scales
much larger than the duration of the “new physics phase”, the coupling between the growing
mode in the contracting phase and the dominant mode in the expanding phase is highly
suppressed, leading to the conclusion that the spectrum of Φ at late times in the expanding
phase is determined by the spectrum of the constant mode in the contracting phase. As
shown by Durrer and Vernizzi [49] (see also [50]), in the case of an instantaneous transition
between contraction and expansion, the generalization of the Israel junction conditions [54]
to spacelike hypersurfaces [55, 56] implies that the coupling of the growing mode in the
contracting phase to the constant mode in the expanding period is not suppressed unless the
matching surface is a constant energy density surface. This result had important implications
for the transfer of fluctuations through examples such as an Ekpyrotic bounce. Simple four-
dimensional single matter component effective field theory analyses assumed a matching on
constant energy density slices [57–60] and obtained a deeply blue spectrum of final curvature
fluctuations starting from vacuum perturbations in the contracting Ekpyrotic phase7.

By contrast, in this paper we study the cosmology induced in a concrete string theoretic
construction [20–23] in which an S-brane mediates the transition between the contracting
and expanding phases. In these models, the S-brane is not located on a hypersurface of
constant energy density. Instead, it sits on a hypersurface of constant critical string-frame
temperature T̃ ≡ T̃c at which point a marginal operator on the worldsheet becomes relevant
and induces direct transitions between thermal winding and thermal momentum states, thus
interpolating between two different geometric phases of the underlying worldsheet CFT. In
the Einstein frame the hypersurface is not isothermal since the temperature T is dressed by
the dilaton field: T = T̃ eφ = T̃ gs, where gs is the string coupling. This yields to a new
kind of hypersurface where the combination Te−φ = T̃ has a maximal and constant value

6This is the case as long as there are no initial isocurvature perturbations.
7On the other hand, analyses taking the higher spacetime dimensional origin of the Ekpyrotic scenario

into account [127, 128] showed that the transition surface was not a constant energy density surface which
led to the conclusion that the final spectrum of curvature fluctuations was indeed scale-invariant, as argued
initially in [13, 14]. See also [129, 130] for recent discussions on the quantum nature of the fluctuations in the
Ekpyrotic models.
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T̃c. As we will shall see further, the precise properties of this isothermal hypersurface yield
an unsuppressed mixing between the spectrum of fluctuations of the growing mode of Φ in
the contracting phase with that of the constant mode of Φ in the expanding phase, which
translates at late times into a scale invariant spectrum for the curvature perturbation ζ.

The role of the S-brane is to glue the geometrical phases associated with the two dual
asymptotically cold regimes in a consistent way in the low energy effective theory, and as such,
provides the means to instantaneously violate the NEC [20–23]. The instantaneous nature
of this violation simply does not permit the time for any gradient instabilities to set in —
the microphysical realization of the S-brane as a space-filling defect that mediates the phase
transition between distinct geometric phases of the explicit underlying string construction
guaranteeing its consistency [20–23].

In what follows, we begin by reviewing the background string construction and its low
energy description at length, after which we consider perturbations of the system in longitudi-
nal gauge (see appendix C for a discussion of other gauge choices). We then consider matching
the perturbations across the S-brane, demonstrating that there is no thermal entropy pro-
duction by the fluctuations of the S-brane. We find that due to the specific properties of the
stringy S-brane, no isocurvature component is generated at the bounce and a scale invari-
ant spectrum for the curvature perturbation results at late times. After contextualizing this
calculation in the matter bounce scenario, we offer a summary and our concluding thoughts,
taking care to highlight the open issues confronting our model.

2 Background

2.1 Thermal duality and the origin of the stringy S-brane

We consider bouncing string cosmologies that are induced by specific weakly-coupled, ther-
mal configurations of N = (4, 0) superstrings [20–23] compactified to four dimensions. Com-
pactifications with less amount of (initial) supersymmetry could also be considered without
changing the main conclusions concerning the evolution through the bounce. In order to
study the thermodynamic properties of the system, we employ the Euclidean description
where the time direction is compactified on a circle of radius R. In addition to temperature,
non-trivial “gravito-magnetic” fluxes thread the Euclidean time circle, as well as internal
spatial cycles responsible for the (spontaneous) breaking of the right-moving supersymme-
tries [20–23, 61–64]. Effectively the fluxes suppress the exponentially growing density of
thermally excited oscillator states, curing the Hagedorn instabilities of the canonical ensem-
ble and restoring the T-duality symmetry along the Euclidean time direction. The one-loop
string partition function is finite for all values of the thermal modulus R, and it is invariant
under thermal duality:

Z(R) = Z

(
R2
c

R

)
, (2.1)

where the self dual, critical radius Rc is of order the string scale. In a large class of type II
superstring models, the critical radius attains a universal value, R2

c = α′/2 (corresponding
to the so-called fermionic point), irrespective of the dimensionality of spacetime.

A direct consequence of thermal duality is that the stringy system exhibits two asymp-
totically cold regimes, at R� Rc and at R� Rc, dominated by the light thermal momentum
and light thermal winding modes respectively. Each asymptotic regime gives rise to a local
low energy effective field theory description, associated with a distinct α′-expansion, with
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the inverse temperature β̃(R) being proportional to the period of the Euclidean time circle
or its dual respectively:

β̃ = 2πR as R� Rc , β̃ = 2π
R2
c

R
as R� Rc , (2.2)

where the tilde denotes quantities in the string frame. (Further on, untilded variables will
denote Einstein frame quantities.) As a result the temperature in these models never exceeds
a certain critical value, T̃c = 1/β̃(Rc) ∼ 1/2πRc, which the system attains at the self-dual
fermionic point.

In the regime of light thermal momenta, R � Rc, the partition function is dominated
by the thermally excited massless states and is given by [20]

Z

V
=

n∗σr
(2πR)3

+O(e−R/Rc) , (2.3)

where V is the volume of our three-dimensional spatial torus, which we can take to be
arbitrarily large; n∗ is the number of the effectively massless degrees of freedom and σr is
Boltzmann’s radiation constant. In the dual regime of light thermal windings, R � Rc, the
expression for the partition function becomes

Z

V
=

n∗σrR
3

(2πR2
c)

3
+O(e−Rc/R0) . (2.4)

In terms of the duality invariant inverse temperature β̃, eq. (2.2), the partition function in
both asymptotic regimes is given by

Z

V
=
n∗σr

β̃3
+O(e−β̃/β̃c) , (2.5)

leading to the characteristic equation of state of massless thermal radiation. The presence
of asymptotic supersymmetry in the right-moving string sector ensures that the partition
function, and so the resulting equation of state, can be well approximated with that of mass-
less thermal radiation up to temperatures close to the critical one [20]. In the neighborhood
of the self-dual point, the one-loop thermodynamical quantities acquire stringy corrections8,
including the precise relation between the inverse temperature and the radius of the thermal
circle, but the dynamics in the intermediate regime is dominated by genus zero condensates
that can materialize at the critical point.

Around the critical point R = Rc, additional thermal states characterized by both
non-trivial winding and momentum charges and masses

m2 =
1

4R2
c

(
Rc
R
− R

Rc

)2

, (2.6)

become light, giving rise to an enhanced SU(2)L gauge symmetry. Thus the intermediate
regime admits a well-defined description in terms of an [SU(2)L]k=2 worldsheet CFT, and
the effective thermal theory at the critical point is in terms of an SU(2) gauge theory with

8In the two dimensional hybrid models of [22] the equation of state is exactly that of massless thermal radi-
ation up to the critical temperature thanks to exact right-moving massive spectrum boson/fermion degeneracy
symmetry [62, 63].
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massless scalar fields in the adjoint representation. Each asymptotic thermal phase arises
as a spontaneously broken symmetry phase as we deform away from the fermionic extended
symmetry point.

Depending on the number of non-compact directions, the extra massless thermal states
induce a conical structure in the one-loop partition function or for one of its derivatives
as a function of R — with three non-compact spatial directions the partition function is
smooth but the fourth derivative of Z is discontinuous (as a function of R) — indicating a
non-trivial phase transition between the two asymptotically cold regimes as the temperature
varies. It turns out that the stringy transition at Rc can be resolved in the presence of
genus-0 condensates associated with the extra massless states, which mediate transitions
between purely thermal winding and purely thermal momentum states. In [20–23], it was
shown that the equations of motion at the critical point allow such condensates to be realized
via non-zero spatial gradients of the corresponding extra massless thermal fields, leading to
additional negative pressure contributions in the low energy effective action.

In the Lorentzian description, where the temperature becomes time dependent, these
contributions can give rise to a spacelike brane (S-brane) configuration, materializing along
a time slice at which the temperature reaches its critical value T̃c [20–23]. The brane has
finite but string-scale thickness in time, and hence in the low energy effective description,
we can treat it as a δ-function source (since resolving it would require probes with energies
that approach the cut-off of the effective theory). Since the brane is spacelike, its associated
energy density will vanish, but it will have negative pressure in the spatial dimensions. Away
from the δ-function source, the effective action is that of the usual low energy degrees of
freedom of string theory i.e. of dilaton-gravity coupled to a thermal gas of pressure p̃ and
energy density ρ̃. The S-brane can be viewed as the spacetime “defect” associated with the
transition between different geometrical phases of the underlying worldsheet CFT. In the
low energy effective theory, it evidently mediates a transition from contraction to expansion
by providing precisely the distributional surface energy momentum tensor required to satisfy
the Israel junction conditions [54].

In the adiabatic approximation, cosmological dynamics very different from the usual
point particle physics induced dynamics can be obtained. One possibility is a solution in
which the underlying thermal modulus R runs from 0 to ∞ [20–23]. Correspondingly the
(string frame) temperature grows from small values, reaching its maximal value, T̃c, and then
drops again to zero. At sub-critical values of R, the Universe is in a contracting phase, while
for R > Rc the Universe is expanding. At the critical value of R, the S-brane configuration
provides the violation of the NEC which induces a transition from contraction to expansion
(when the cosmology is viewed in the Einstein frame). The dilaton grows in the contracting
phase and undergoes an elastic bounce across the brane. In the expanding phase, it decreases
and asymptotes to a constant value in the future. Hence the dilaton attains its maximal value
at the transition point, as set by the brane tension [20–23]. If this critical value of the dilaton
is sufficiently small the perturbative analysis can be justified. Therefore, within the setup
of [20–23], a bouncing cosmology connecting two asymptotically cold phases results.

In [21] another class of non-singular string cosmologies was obtained. By utilizing
various fluxes in the effective gauged supergravity description at the extended symmetry
point, an “emergent” phase with constant string frame temperature T̃ , corresponding to R =
Rc, and constant string frame scale factor ã, but with growing dilaton can be supported. The
string coupling is very weak in the far past, and so this brany phase can last for a long period of
time. The regime terminates when the gauge condensates decay once the dilaton has reached

– 6 –
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a sufficiently large value, with the Universe entering in the phase R > Rc described above.
The transition surface can be again described by an S-brane configuration. In the Einstein
frame, the emergent phase describes a contracting Universe with increasing temperature.
In this paper however, we will focus on the analysis of the cosmological fluctuations in the
first cosmological scenario described above, deferring the analysis for the second interesting
possibility for future work.

2.2 Effective action gluing the dual regimes via the S-brane

We take note of the fact that the violation of the NEC responsible for the bounce follows
from the existence of the S-brane sources localized in time, associated to non-trivial spatial
gradients for the extra massless thermal scalars [20–23]. This phenomenon is independent of
the precise equation of state of the thermal system in the neighborhood of the critical point.
Therefore, in order to be quantitative in what follows, we shall approximate the thermal
system with that of massless thermal radiation up to the critical point.9

Since we are at weak string coupling and since the size of the spatial torus is much
larger than the string scale, it is possible to derive an effective action for the cosmological
dynamics which is valid both in the asymptotic radiation eras and also close to the critical
temperature. In the string frame and in the thin S-brane approximation, this action takes
the form [20–23]:

S =

∫
d4x
√
−g̃e−2φ

[R̃
2

+ 2∇̃µφ∇̃µφ
]
+

∫
d4x
√
−g̃ p̃−

∫
dβ̃d3ξ

√
γ̃ e−2φ κ δ(β̃−β̃c), (2.7)

where g̃ is the determinant of the string frame metric; R̃ denotes the corresponding Ricci
scalar and φ is the dilaton. The second term in the action represents the contribution of the
thermal string gas. In terms of the inverse temperature, the pressure is given by

p̃ =
Λ

β̃4
(2.8)

with Λ = n∗σr. The third term is due to the S-brane, which is localized at the spacetime
hypersurface on which the σ-model temperature is uniform, equal to its maximal (critical)
value: β̃ = β̃c. The coordinates on the S-brane surface are denoted by ξi; γ̃ is the determinant
of the induced metric

γ̃ab = g̃µν
∂Xµ

∂ξa
∂Xν

∂ξb
, (2.9)

with Xµ(ξ) being the embedding fields and κ the brane tension. Further on we present
a more convenient expression of the brane action by utilizing the thermal scalar potential
ψ [51, 65, 66], which will be useful for the study of cosmological fluctuations:

T̃ 2 = −g̃µν∂µψ∂νψ. (2.10)

The details of this potential formulation are covered in appendix A.
Based on the action above, we can obtain non-singular, homogeneous and isotropic

bouncing solutions [20–23], whose corresponding perturbations are to be analyzed in this
work. Working in conformal gauge, the background string frame metric takes the form

ds̃2
0 = ã2(τ)

[
−dτ2 + dx2

]
, (2.11)

9Justifiable in the low energy approximation, as any induced corrections to the effective action will be in
the form of higher derivative terms suppressed by appropriate powers of the cutoff, set by the string scale.
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where ã is the scale factor and τ is conformal time. Without loss of generality, we can in this
case identify the S-brane surface with the τ = 0 slice, at which the temperature reaches its
critical maximal value, T̃c, and in addition its first time derivative vanishes. The background
solutions (denoted by the subscript zero) for the temperature, scale factor and dilaton are
given by [20–23]:

ln

(
T̃c

T̃0

)
= ln

(
ã

ãc

)
=

1

2

[
η+ ln

(
1 +
|τ |
ξ+

)
− η− ln

(
1 +
|τ |
ξ−

)]
φ0 = φc +

√
3

2

[
ln

(
1 +
|τ |
ξ+

)
− ln

(
1 +
|τ |
ξ−

)]
, (2.12)

where the time scale ξ of the problem is set by the inverse of the brane tension κ,

ξ =
2
√

3

κãc
, ξ± = ξη± , η± =

√
3± 1. (2.13)

The tension, the critical temperature and the maximal value of the dilaton φc are related as
follows [20]

κ = 2
√

6Λ T̃ 2
c e

φc . (2.14)

In the neighborhood of the brane |τ | � ξ, the string frame metric is regular while the
dilaton exhibits (in the thin-brane approximation) a conical singularity:

ln

(
ã

ãc

)
=

1

4

τ2

ξ2
+O

(
|τ |3

ξ3

)
(2.15)

φ0 = φc −
√

3

2

|τ |
ξ

+O
(
τ2

ξ2

)
. (2.16)

The scale factor takes its minimal value ãc at the brane. Far from the brane |τ | � ξ, the
dilaton asymptotes to a constant, the temperature drops and the scale factor tends to infinity.

The thermal entropy in any co-moving cell of unit coordinate volume (physical volume
ãd−1), S0 = 4Λ(ãT̃0)3, remains constant, also across the bounce, and hence the minimal value
of the scale factor satisfies

ãcT̃c =

(
S0

4Λ

)1/3

. (2.17)

In particular ãc can be kept large in string units for large entropy S0, which is taken to be
one of the integration constants of the problem. The Ricci scalar (in string units) attains its
maximal value at the brane

R̃ = κ2/4 = O(g2
c ); (2.18)

the string frame metric exhibits no essential singularity. Both gs and α′ corrections remain
under control, provided that the critical value of the string coupling gc is sufficiently small.

To pass to the Einstein frame, we perform a conformal rescaling of the metric via the
dilaton field as follows

gµν = e−2φg̃µν . (2.19)

As a result, the Einstein frame inverse temperature β0 and scale factor a are dressed by the
string coupling,

β0 = e−φβ̃0, a = e−φã , (2.20)

and so they develop conical singularities, as inherited from the dilaton profile. The conical
singularities are resolved by the brane at T̃c, which supports the extra massless thermal states.
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2.3 Isothermal S-brane action

Before analyzing the fluctuations around the background solution, we must elaborate upon
the precise form of the S-brane action. In appendix A.2 we derive the isothermal S-brane
action in terms of the thermal potential ψ: T̃ 2 = −g̃µν∂µψ∂νψ (equivalently, in the Einstein
frame T 2 = −gµν∂µψ∂νψ). Its form is very elegant and suggestive:

SB = −
∫
dτd3xκ e−2φ

√
−det(g̃µν)

(√
−∂µψ∂µψ

)
δ(ψ − ψc)

= −
∫
dτd3xκ e−2φ

√
−g̃ T̃ δ(ψ − ψc) , (2.21)

where ψc ≡ ψ(π(~x), ~x) involves the time location π(~x) of the brane. In the Einstein frame,
the S-brane action takes the form

SB = −
∫
dτd3x

√
−g κ eφ T δ(ψ − ψc). (2.22)

It is interesting to note that this action is manifestly diffeomorphism invariant in the four-
dimensional sense, as well as being invariant under the rescaling of the thermal potential
ψ → λψ — the subsequent rescaling of the temperature, T → λT , cancelling in the rescaling
of the δ-function.

The contribution of the brane to the Einstein frame energy momentum tensor is given
by

[Tµν ]B =
2√
−g

δSB
δgµν

= −κeφ
(
gµν +

1

T 2
gµσgνω∂σψ∂ωψ

)
T δ(ψ − ψc). (2.23)

From this expression, we conclude that the brane stress tensor takes the form of a surface
“perfect fluid”

[Tµν ]B = pBg
µν + (pB + ρB)uµuν , (2.24)

with four-velocity given by

uµ =
∂µψ√
−∂νψ∂νψ

, (2.25)

as in the case of the bulk thermal string fluid. More importantly, the brane gives rise to
non-trivial, localized negative pressure with vanishing zero energy density

pB = −κeφ T δ(ψ − ψc), ρB = 0
(
p̃B = −κe−2φ T̃ δ(ψ − ψc), ρ̃B = 0

)
, (2.26)

even in the presence of fluctuations. Contributions to the entropy conservation law localized
at the brane vanish once the first time derivative of the dilaton reflects across the brane, as
we show in appendix A.4.

Converting the δ-function constraint on ψ into a δ-function constraint on τ ,

δ(ψ − ψc) =
1

|ψ′|
δ(τ − π) =

√
|g̃00|
T̃c

δ(τ − π),

where π(~x) is the location of the brane at ~x,10 we can recast the brane action in the string
frame in the following form:

SB = −
∫
dτd3x

√
g̃3 κ e

−2φ T̃

T̃c
δ(τ − π) , (2.27)

10We drop here quadratic terms in the spatial gradients of ψ which do not contribute to the equations of
motion for the metric and dilaton fluctuations at the linearized level.
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where g̃3 is the determinant of the spatial metric g̃ij . In the Einstein frame, the action is
given by

SB = −
∫
dτd3x

√
g3 κ e

φ T

Tc
δ(τ − π) . (2.28)

We are now ready to consider perturbations of the coupled string fluid/dilaton/S-brane action.

3 Perturbations

The analysis for the evolution of the curvature perturbations is most usefully carried out in
the Einstein frame, where the action takes the form

S =
1

2

∫
d4x
√
−g
[
R− 2∇µφ∇µφ

]
+

∫
d4x
√
−gΛT 4 −

∫
d4x
√
−g κ eφT δ(ψ − ψc), (3.1)

after we perform the conformal rescaling of the metric as in eq. (2.19). It is important to
stress that in the above expression, the Einstein frame temperature T is given in terms of
the thermal potential ψ as

T = β−1 =
√
−gµν∂µψ∂νψ. (3.2)

We are concerned here with linear cosmological perturbations around the homogeneous and
isotropic background defined in eq. (2.12). Our system has two matter components — the
thermal string fluid characterized by its temperature and the dilaton field. Therefore we
perturb the action to second order in the fluctuations around the background solution as:

gµν = g(0)
µν + hµν (3.3)

β = β0 + δβ (3.4)

φ = φ0 + ϕ . (3.5)

For a system with no anisotropic stress (as ours), it is convenient to parametrize the metric
fluctuations by introducing the gravitational potential Φ(x) [51–53]:

ds2 = −a2(1 + 2Φ)dτ2 + a2(1− 2Φ)dx2 . (3.6)

For a discussion of the derivation in different gauges, we refer the reader to appendix C.
The dilaton fluctuations are parametrized by ϕ(x), while fluctuations of the temperature
potential by σ(x):

ψ = ψ0 + σ. (3.7)

By utilizing the equations of motion of the metric gµν , the dilaton field φ and the thermal po-
tential ψ, it is straightforward to derive the equations of motion that determine the evolution
of the fluctuations around the background, away from the location of the S-brane: β̃ 6= β̃c.
Throughout prime superscripts will denote time derivatives and H = a′/a. The linearized
equations of motion for the fluctuations are given as follows.

Metric fluctuations:

∇2Φ− 3HΦ′ − 3H2Φ = −a
2

2
δT 0

0 (3.8)

∂i(Φ
′ +HΦ) =

a2

2
δT i0 (3.9)

Φ′′ + 3HΦ′ +H2Φ + 2H′Φ =
a2

2
δT ii . (3.10)
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Dilaton fluctuations:

ϕ′′ + 2Hϕ′ −∇2ϕ− 4Φ′φ′0 = 0 . (3.11)

Temperature fluctuations:

σ′′ − 1

3
∇2σ + 2

ψ′′0
ψ′0
σ′ − 2Φ′ψ′0 − 6Φψ′′0 = 0. (3.12)

The perturbed components of the energy momentum stress tensor are given in terms of Φ, ϕ
and σ by:

δT 0
0 = −δρ = 2Φ

φ′20
a2
− 2ϕ′

φ′0
a2

+ 12
Λ

β4
0

δβ

β0
(3.13)

δT i0 = 2∂iϕ
φ′0
a2

+ (ρ+ p)
∂iσ

ψ′0
(3.14)

δT ii = δp = −2Φ
φ′20
a2

+ 2ϕ′
φ′0
a2
− 4

Λ

β4
0

δβ

β0
(3.15)

δT ij 6=i = 0. (3.16)

Using the constraint equation relating the temperature in terms of the thermal potential
ψ, eq. (3.2), we can express the temperature fluctuations δβ in terms of Φ and σ

δβ

β0
= −δT

T0
= Φ− σ′

ψ′0
. (3.17)

The background thermal potential is given in terms of the background inverse temperature
and scale factor by

ψ′0 =
a

β0
=

(
S0

4Λ

) 1
3

, (3.18)

where S0 is the background thermal entropy. Since the latter is conserved, ψ′′0 = 0. The
entropy conservation law is nothing but the equation of motion for the thermal potential ψ.
Since ψ′′0 = 0, the temperature fluctuations propagate according to the relativistic diffusion
equation (see eq. (3.12)),

σ′′ − 1

3
∇2σ − 2Φ′ψ′0 = 0 . (3.19)

Considering only the very long wavelength perturbations, we may consistently neglect
spatial derivatives in the equations of motion. In this long wavelength limit, the equations of
motion simplify, yielding simple analytic expressions for the fluctuations. Indeed, taking into
account that the background solution for the dilaton satisfies φ′′0 + 2Hφ′0 = 0, it follows that
φ′0 ∝ 1/a2. Together with the fact that ψ0 is constant, this implies that the long wavelength
perturbations satisfy the following first order equations:

σ′

ψ′0
= 2Φ + cσ i.e.

δβ

β0
= −Φ− cσ , (3.20)

ϕ′ = φ′0(cϕ + 4Φ) , (3.21)

where cσ and cϕ are integration constants.

– 11 –



J
C
A
P
0
3
(
2
0
1
4
)
0
1
5

Both of these equations follow in a natural way from basic properties of the combined
dilaton/thermal gas system. Despite the dilaton motion and the presence of metric fluctua-
tions, the thermal entropy S is conserved, and so(

S

4Λ

) 1
3

=
a(1− Φ)

β
= constant. (3.22)

Introducing the time independent fluctuation cσ via(
S

S0

) 1
3

= 1 + cσ (3.23)

(where S0 = 4Λ(a/β0)3 is the background thermal entropy defined in eq. (2.17)), yields:

1− Φ =

(
S

S0

) 1
3 β

β0
=⇒ δβ

β0
= −(Φ + cσ) . (3.24)

Likewise in the long wavelength limit, the full dilaton equation

φ′′ +

(
3
a′

a
− N ′

N

)
φ′ = 0, (3.25)

where A = a(1− Φ) and N = a(1 + Φ), is integrable, giving

φ′ = C0 (1 + cϕ)
N

A3
= φ′0 (1 + cϕ + 4Φ) =⇒ ϕ′ = φ′0 (cϕ + 4Φ) . (3.26)

Here C0 is an integration constant associated with the dilaton background solution, φ′0 =
C0/a

2, while cϕ is the corresponding time independent fluctuation.
Combining the equations for Φ and ϕ (in the long wavelength approximation), and

thanks to the fact that the equation of state of the thermal fluid satisfies ρr = 3pr even in
the presence of fluctuations, we obtain the main equation of interest of this section concerning
the metric fluctuation Φ:

Φ′′ + 4HΦ′ + 2(H2 +H′ − φ′20 )Φ =
2

3
φ′20 cϕ. (3.27)

Denoting ε = ε(τ), the background solutions (2.12) can be written as follows:

φ′0(τ) = −ε
√

3 ξ

y2
=

√
3

2

[
1

τ + ε ξ+
− 1

τ + ε ξ−

]
(3.28)

H(τ) = ε

√
y2 + ξ2

y2
=

1

2

[
1

τ + ε ξ+
+

1

τ + ε ξ−

]
(3.29)

H′(τ) = −y
2 + 2ξ2

y4
= −1

2

[
1

(τ + ε ξ+)2
+

1

(τ + ε ξ−)2

]
, (3.30)

where we have introduced the convenient variable y whose relation to the background scale
factor a is given by

y2 =
(
|τ |+ ξ+

)(
|τ |+ ξ−

)
, y =

yc
ac
a, y2

c = ξ+ξ− = 2ξ2 . (3.31)
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eq. (3.27) then becomes

Φ′′ + 2
( 1

τ + εξ+
+

1

τ + εξ−

)
Φ′ − 2

( 1

τ + εξ+
− 1

τ + εξ−

)2 (
Φ +

cϕ
4

)
= 0 , (3.32)

which together with eq. (3.21) for ϕ are solved analytically in appendix B. The solutions can
be expressed in terms of three integration constants C1,2,3:

Φ = C1 ξ
2φ′0H+ C2 (1 + 4ξ2H′ )− cϕ

4
, (3.33)

ϕ = −C1 ξ
2φ′0

2 − 4C2 φ
′
0H(y2 − 2ξ2) + C3 . (3.34)

The coefficient C2 is not independent of the other integration constants, as follows from
the Friedmann equation (3.8) (and (3.13)). The latter is a first order inhomogeneous equation,
whose homogeneous part admits Φ1 = C1 ξ

2φ′0H as a general solution. What remains is to
find C2 such that

Φpart = Φ2 −
cϕ
4

= C2(1 + 4ξ2H′ )− cϕ
4

(3.35)

is a particular solution of the full equation. This constraint yields

C2 =
cϕ
4
− 2

3
cσ . (3.36)

In the expressions (3.33), (3.34) and (3.20) for Φ, ϕ and δβ, which are valid in the
long wavelength approximation, it is understood that the integration constants are space-
dependent functions. Moreover, two sets of integration constants must be introduced,
{c−σ , c−ϕ , C−1 , C

−
3 } and {c+

σ , c
+
ϕ , C

+
1 , C

+
3 }, in order to describe the fluctuations before and after

the S-brane, i.e. for τ < π and τ > π. It turns out that the S-brane imposes well defined
relations among the two sets. These relations turn out to be fundamental since they fix the
spectrum of fluctuations in the expanding phase in terms of the primordial fluctuations in
the contacting phase.

4 Matching the fluctuations

We are obliged to match the metric perturbations across the S-brane consistently with the
Israel junction conditions [54]. This implies [55, 56] that for the full solution, the induced
metric γab on the hypersurface defining the locus of points where the string frame tempera-
ture reaches its critical value, T̃ = T̃c, must be continuous across the bounce. The extrinsic
curvature must jump according to a surface tensor. The Israel junction conditions precisely
enforce Einstein’s equations on the gluing hypersurface, and require a surface energy momen-
tum tensor to compensate for the distributional jump in the Einstein tensor. In our model, the
S-brane provides us exactly with such a surface energy momentum tensor.11 Having satisfied
the necessary junction conditions for the background, we must do so for the perturbations.

11Specifically, the S-brane mediates the contracting and expanding phases with an instantaneous violation
of the NEC. Because this violation occurs over a time scale that approaches the cut-off of the low energy
effective theory, dangerous instabilities do not have time to develop and the system is evidently stable, as one
would expect given the underlying string theoretic consistency of the model.
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4.1 The equations of motion in the string frame

The junction conditions are more transparent in the string frame. As we are going to see,
the first time derivative of the dilaton jumps, while the string frame metric and its first time
derivative are regular. These follow from the gravitational and dilaton equations of motion in
the string frame. The metric in this frame (including the perturbations) takes the following
diagonal form

ds̃2 = −Ñ(τ, ~x)2dτ2 + Ã(τ, ~x)2dx2 . (4.1)

Using the fact that the equation of state for the thermal bulk fluid is ρ̃r=3p̃r, we obtain the
following equations in the long wavelength approximation.

Ñ -equation:

3

(
Ã′

Ã

)2

= 6
Ã′

Ã
φ′ − 2φ′

2
+ e2φÑ2ρ̃r . (4.2)

The trace equation (modulo the dilaton equation):

Ã′′

Ã
+
Ã′

Ã

(
Ã′

Ã
− Ñ ′

Ñ

)
=

2

3
φ′

2
. (4.3)

The φ-equation (modulo the trace equation):

φ′′ + φ′

(
3
Ã′

Ã
− Ñ ′

Ñ
− 2φ′

)
= −κ

2
Ñ

T̃

T̃c
δ(τ − π) . (4.4)

The dilaton equation in particular shows that the first time derivative of the dilaton is
discontinuous across the transition surface. The discontinuity is resolved by the presence of
the spacelike brane whose locus τ = π(~x) is defined via the equation β̃(π, ~x) = β̃c. The jump
in the time derivative of the dilaton is determined by the tension of the brane:

φ′(π−, ~x)− φ′(π+, ~x)

Ñ(π, ~x)
=
κ(~x)

2
. (4.5)

In the remainder of this section, all ~x-dependences are dropped for notational conve-
nience. The expressions of Ã , Ñ and β̃ in terms of ã, β̃0 and the fluctuations Φ, ϕ are
given by

Ã = eφA = eφ a (1− Φ) = ã (1− Φ + ϕ) , (4.6)

Ñ = eφN = eφ a (1 + Φ) = ã (1 + Φ + ϕ) , (4.7)

β̃ = eφ β = eφ (β0 + δβ0) = β̃0 (1− cσ − Φ + ϕ) . (4.8)

The second time derivative of Ã appears in the trace equation. Since there is no localized
contribution from the brane in this equation, Ã and its first time derivative must be continu-
ous across the brane. Because ã and its first time derivative are also continuous, the quantity
Φ− ϕ must be regular as well.
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The stringy isothermal constraint turns out to be crucial. The main observation is that
the conservation of the background thermal entropy, as well as the conservation of entropy
and energy in the full system (including the fluctuations), strongly constrains the fluctuations.
Recall that we introduced the constant (in time) fluctuation cσ to parametrize the difference
between the background thermal entropy and the full thermal entropy, eq. (3.23). Since both
S0 and S are conserved, we obtain the following relation between the full scale factor Ã and ã:

Ã(τ1) T̃ (τ1) = ã(τ2) T̃0(τ2) (1 + cσ), for any τ1 and τ2 . (4.9)

This relation provides an important constraint, which is not present in other brane mediated
bouncing models studied previously in the literature. Indeed, choosing τ1 to coincide with
the locus of the perturbed S-brane (τ1 = π) and τ2 = 0 (the S-brane locus in the absence of
fluctuations), we get

Ã(π) T̃ (π) = ã(0) T̃0(0) (1 + cσ) . (4.10)

What is particular for the isothermal stringy S-brane under consideration follows from the
existence of a maximal, critical temperature T̃c, which is attained both at the locus of the
perturbed S-brane as well as at the locus of the background brane: T̃ (π) = T̃0(0) = T̃c.
Eq. (4.10) then implies

Ã(π) = ã(0) (1 + cσ) . (4.11)

On the other hand, up to the linear order in the fluctuations, Ã(π) is given by

Ã(π) =
[
ã(0) + ã′(0)π

]
(1− Φ(0) + ϕ(0)) = ã(0)(1− Φ(0) + ϕ(0)) , (4.12)

where we used the property of the background ã′(0) = 0. Therefore, we obtain the relation
cσ = −Φ(0) + ϕ(0), which in turn yields

C3 = 3cσ − cϕ . (4.13)

It will be useful for later considerations to translate eq. (4.11) in the Einstein frame. To
this end, we introduce the coefficient CA:

A(π) = Ã(π)e−φ(π) = ãc(1 + cσ)e−φ(π) = ac(1 + cσ)e−φ(π)+φc ≡ ac(1 + CA) ,

i.e.

A(π) = ac(1 + CA) and eφ(π)−φc =
1 + cσ
1 + CA

. (4.14)

Another useful quantity, related to the locus π of the S-brane, is the coefficient Ca defined via

a(π) = a(0)(1 + Ca) i.e. y(π) = yc(1 + Ca) . (4.15)

The explicit values for CA and Ca in terms of the other fluctuations and π are determined
in the following section.

4.2 Junction conditions at the S-brane

As we already stated the junction conditions for the metric and the dilaton field are more
transparent in the string frame. The relevant quantities are the three dimensional spatial
metric with scale factor Ã and the dilaton field φ. We now display the junction conditions:

(i) Continuity of the metric: Ã(π−) = Ã(π+)
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(ii) Continuity of the time derivative of the metric: Ã′(π−) = Ã′(π+)

(iii) Continuity of φ: φ(π−) = φ(π+)

(iv) Discontinuity condition for φ′: [φ′(π−)− φ′(π+)] /Ñ(π) = κ/2.

The following comments are in order.

• Condition (i) and eq. (4.11) imply that

Ã(π−) = Ã(π+) = ã(0)(1 + c±σ ) i.e. c−σ = c+
σ := cσ . (4.16)

This result is very important since it shows that there is no entropy production by the
S-brane.

• Condition (ii) together with the fact that T̃ (π±) = T̃c, and also the fact that Ã must
take its minimal value without any discontinuity in its first time derivative (as follows
from the trace equation), imply a much stronger condition:

Ã′(π−) = 0 and Ã′(π+) = 0 . (4.17)

As we will see the constraints above determine Ca in terms of the other fluctuations.

• The continuity of φ at the locus of the brane fixes the maximal value of the string
coupling in terms of the fluctuations.

• Finally the discontinuity condition for the first time derivative of the dilaton is the only
non trivial junction condition at the S-brane.

First we show that Ca is determined by the requirement that Ã′(π) = 0, from which it
follows that

Ã′

Ã

∣∣∣
π

=
[
H(π) + φ′0(π)− Φ′(0) + ϕ′(0)

]
= 0 . (4.18)

Observe that the term H + φ′0 = ã′/ã at the locus of the S-brane is given in terms of Ca by
the expression

H(π) + φ′0(π) =
ε(π)

(√
(y2
c (1 + 2Ca) + ξ2)−

√
3 ξ
)

(1 + 2Ca) y2
c

. (4.19)

Since y2
c = 2ξ2,

H(π) + φ′0(π) =
ε(π)ξ

(√
3 + 4Ca −

√
3
)

2ξ2(1 + 2Ca)
= ε(π)

√
3

3ξ
Ca . (4.20)

Using the first order equation for Φ

Φ′ = −H 3y2 + 4ξ2

y2 + ξ2

(
Φ +

cϕ
4

)
+H 3C2 y

2

ξ2 + y2
,

and eq. (3.21), and taking into account the fact that at our level of approximation we may
set in these equations H = −φ′0, we obtain

− Φ′(0) + ϕ′(0) = −ε(π)

√
3

3ξ

(
Φ1(0) + Φ2(0) + 3C2

)
. (4.21)
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Combining the results above, we obtain the desired relation between Ca, C1 and C2:

Ca = Φ1(0) + Φ2(0) + 3C2 = −3

4
C±1 , (4.22)

and conclude that C−1 = C+
1 := C1.

The remaining constraint involves the first time derivative of φ at the S-brane:

φ′(π±) = φ′0 + ϕ′
∣∣∣
π±

= ∓
√

3 ξ(1 + cϕ)e2φ Ñ

Ã3

∣∣∣
π

=
∓
√

3 ξ

y2
c (1 + 2Ca)

(
1 + 4(Φ(0) +

cϕ
4

)
)
. (4.23)

Dividing by Ñ(π),
Ñ(π) = ãc (1 + 2Φ(0) + cσ) ,

we obtain:
φ′

Ñ

∣∣∣
π±

= ∓
(

1 + 3cσ − cϕ
)κc

4
, (4.24)

where we use the relation 3C2 − 3
4cϕ + 2cσ = 0, as imposed by the Friedmann equation.

Here κc is the value of the unperturbed brane tension. The tension of the perturbed brane
κ scales with the full string coupling eφ, as follows from the Friedmann equation (4.2) and
the matching condition (4.5). So κ becomes:

κ

2
=
κc
2
eφ0(π)−φ0(0)+ϕ(π) =

κc
2

(1− Ca + ϕ(0)) =
κc
2

(1 + C3). (4.25)

As shown in appendix A.4, there is no thermal entropy production when crossing the brane.
Using the constraints eq. (4.17), this translates into reflective boundary conditions for the
dilaton slope, φ′(π−) = −φ′(π+), thus imposing c−ϕ = c+

ϕ := cϕ (see eq. (A.43)). The

relation (4.13) implies C−3 = C+
3 := C3, consistently with the continuity condition (iii) of

the dilaton. Therefore, the matching conditions impose {c−σ , c−ϕ , C−1,2,3} = {c+
σ , c

+
ϕ , C

+
1,2,3}.

For academic purposes we verify the discontinuity conditions for φ′ and A′ in the Einstein
frame. Dividing eq. (4.23) with N(π),

N(π) = ac(1 + CA)(1 + 2Φ(0)) = ac(1 + CA + 2Φ(0)),

we obtain:

φ′

N

∣∣∣
π±

= ∓
(

1 +
cϕ
2
− CA + 2Φ2(0)

)( ãc
ac

)
κc
4

= ∓
(

1 +
cϕ
2
− CA + 2Φ2(0)

) κc eφc
4

. (4.26)

In the Einstein frame, the S-brane contributions appear with an extra factor of the string
coupling eφ(π). Therefore, the relevant term involved in the matching condition is:

κ

2
[eφ(π)] =

κce
φ(π)−φc

2
[eφ(π)−φc ] eφc =

κc e
φc

2
(1 + 2C3) , (4.27)

imposing
cϕ
2
− CA + 2Φ2(0) = 2C3 =⇒ −CA + 4cσ − cϕ = 2C3. (4.28)

Given the definition of CA, it follows that

1 + CA = (1 + cσ)e−φ0(π)+φ0(0)−ϕ = 1 + cσ − C3 =⇒ CA = cσ − C3. (4.29)
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Using the value of CA, we obtain precisely the constraint already derived in the string frame.
The matching conditions for A and A′ follow from those of the dilaton and Ã.

For completeness, let us verify that the matching conditions are compatible with the
Israel junction conditions across the brane hypersurface τ − π(~x) = 0, in the Einstein frame.
The Israel junction conditions require that the induced metric on this hypersurface is con-
tinuous across it and that the extrinsic curvature jumps according to a surface tensor. In
longitudinal gauge and at long wavelengths (where we drop spatial derivatives) these condi-
tions become

gij(π+) = gij(π−) (4.30)

and

Kij(π+)−Kij(π−) =

(
(A2)′

2N

∣∣∣
π+
− (A2)′

2N

∣∣∣
π−

)
δij = −1

2
[T B]ij , (4.31)

where [T B]ij is the brane stress tensor (modulo the delta function):

[T B]ij = −κeφgij
∣∣∣
π
. (4.32)

The first condition is guaranteed by the continuity of the full Einstein frame scale factor A
across the brane (which follows from the continuity of the dilaton and the string frame scale
factor). For the second condition, we use the relation A = e−φÃ and the matching conditions
Ã′(π+) = Ã′(π−) = 0 to get that the l.h.s. is given by(

−φ
′A2

N

∣∣∣
π+

+
φ′A2

N

∣∣∣
π−

)
δij =

κeφ

2
gij

∣∣∣
π
, (4.33)

where we have used eq. (4.5). Evidently the requirement on the extrinsic curvature is also
satisfied. Since we verified the conditions for the full fields A and φ, the constraints on the
perturbations are also compatible with the analysis above.

It is important to notice that in the long wavelength approximation C1 is not restricted
by any matching condition at the locus of the S-brane, nor by the Friedmann equation. Its
role lies in the determination of π, otherwise it is arbitrary. Using the relation

y2(π) = (1 + 2Ca)y
2(0),

(
|τ |+ ξ+

)(
|τ |+ ξ−

)∣∣∣
π

= (1 + 2Ca)2ξ
2 , (4.34)

we can derive π in terms of Ca. At the linear level of the approximation we find (Ca = −3
4C1):

|π| = 2 ξ√
3
Ca = −

√
3 ξ

2
C1. (4.35)

4.3 Summary of the results

We derived the metric and dilaton fluctuations in analytic form:

Φ = C1 ξ
2φ′0H+ C2(1 + 4ξ2H′ )− cϕ

4
,

ϕ = −C1 ξ
2φ′0

2 − 4C2φ
′
0H(y2 − 2ξ2) + C3 . (4.36)

The coefficients C2 and C3 depend on the two independent parameters cσ, cϕ, while C1

determines the locus of the S-brane:

π = −ε(π)

√
3 ξ

2
C1, C2 =

cϕ
4
− 2cσ

3
, C3 = 3cσ − cϕ . (4.37)

– 18 –



J
C
A
P
0
3
(
2
0
1
4
)
0
1
5

These relations strictly restrict the strength of the fluctuations. To see this, it is useful
to express φ0 and H in terms of y and ξ, with ξãc setting the proper time-scale of the problem

1

ξãc
=
√

2Λ T̃ 2
c e

φc .

The maximal, critical temperature, T̃c, is of the order of the string scale Mstr, while Λ is
proportional to the number of the massless degrees of freedom, which is typically more than
103 in semi-realistic string models. Also eφc = gc is the maximal value of the string coupling,
which can be taken to be small (say in the range 10−4 < gc < 10−2) in order to ensure the
validity of string perturbation theory. The relation (T̃cãc)

3 = (T̃ ã)3 defines the entropy of
the cosmology, which is a conserved quantity. In any realistic model the entropy at late times
must be enormous. Since there is no extra entropy production in our cosmological model,
the entropy at T̃c must be very big. On the other hand the value of T̃c is fixed, and so it
implies that ãc (which is the minimal value for the scale factor) is very big in string units.
These observations show that the intermediate regime which includes the S-brane is short in
time: ∆tproper ∼ 2ξãc, which can be, depending on the value of the critical coupling, as small
as a few string lengths.

Let us examine in more detail the structure of perturbations and their evolution, in
terms of C1, cϕ, cσ, y and ξ:

Φ = −C1
ξ3
√

3(y2 + ξ2)

y4
+

(8cσ − 3cϕ)

3

(
ξ2(y2 + 2ξ2)

y4

)
− 2

3
cσ , (4.38)

ϕ = −C1
3ξ4

y4
− (8cσ − 3cϕ)

3

(
ξ
√

3(y2 + ξ2)(y2 − 2ξ2)

y4

)
+ (3cσ − cϕ). (4.39)

Some comments are in order:

(i) In the above expressions the variable y2 is bounded from below: y2 > 2ξ2. This
implies that the dangerous, growing fluctuation modes proportional to C1 and C2 in
the contracting phase are bounded. Their maximal values are reached at the S-brane
regime, where y2 ∼ 2ξ2.

(ii) The coefficients in front of the C2-growing modes are not independent but are correlated
with other parameters thanks to: 1) the thermal entropy conservation in the system
and 2) the energy conservation of the system (dilaton plus thermal fluid).

(iii) The continuity condition Ã(π+) = Ã(π−) implies c+
σ = c−σ = cσ. The continuity

condition for φ imposes C±3 = C3. The matching relation c±ϕ = cϕ follows from the
fact that there is no entropy production from the S-brane. Finally, the continuity of Φ
imposes that C±1 = C1. Therefore the long wavelength fluctuations are mirror reflective
across the S-brane.

(iv) The entropy and energy conservation laws lead to correlations among C2, C3, cϕ and cσ,
in accordance with the maximal temperature bound (imposing also y2 > 2ξ2). Their
explicit expressions show clearly that the growing modes proportional to C2, and also
C1, never dominate the system. Their magnitudes are always sub-dominant for y � ξ.
They become relevant around the S-brane regime, where their amplitudes reach those
of the constant modes.
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(v) Although the C2-growing modes are irrelevant away from the S-brane regime, their
presence is important closed to the S-brane regime. Their contribution is essential for
the realization of the matching conditions at the S-brane. These growing modes are
mixed with the constant modes at the locus of the S-brane.

(vi) The growing modes associated to C1 do not participate in the junction conditions at
the S-brane. However, C1 defines the time displacement of the S-brane.

(vii) The important output of our analysis is that the relevant primordial perturbations Φ
and ϕ in the contracting phase, which persist in the expanding phase after crossing the
S-brane are:

Φk = −2

3
cσ(k), ϕk = −cϕ(k) + 3cσ(k) . (4.40)

4.4 Curvature perturbation

Following [51–53], we define the gauge invariant quantity

ζ = Φ +
2

3

Φ′ +HΦ(
1 + p

ρ

)
H

= Φ +
HΦ′ +H2Φ

H2 −H′
, (4.41)

where ρ and p are the total energy density and pressure, which is equal to minus the curvature
perturbation on co-moving slices: ζ = −Rc. Using the latter expression, we can verify that
in the long wavelength limit, where we neglect spatial gradients, the Φ-mode proportional to
C1 does not contribute to ζ.

We now proceed to compute ζ in the thermal string gas/dilaton phase of the string
cosmology. Using the Friedmann equation (3.8), we obtain in the long wavelength limit

ζ = Φ− δρ

3(ρ+ p)
. (4.42)

Furthermore utilizing the expression for the total energy perturbation δρ, eq. (3.13), and
equations ϕ′ = φ′0(cϕ + 4Φ), δβ = −β0(Φ + cσ), we get

ζ =
1

ρ+ p

(
−2cϕ

φ′20
a2
− 12Λ

β4
0

cσ

)
. (4.43)

It is clear from this result that the continuity of the perturbations cϕ and cσ ensures the
continuity of the curvature perturbation across the S-brane.12

In order to isolate adiabatic perturbations from “entropy” perturbations, it is useful to
parametrize ζ in terms of the coefficient

Ce = 3cσ − cϕ (4.44)

and cσ. Notice that the matching conditions at the S-brane impose that Ce is equal to
the coefficient C3, which sets the asymptotic value of the dilaton fluctuation ϕ early on in
the contracting thermal string gas/dilaton phase (and also in the expanding phase at latter

12Note that ρ+ p (the total energy density of the string gas + dilaton fluid + its total pressure) is non-zero
at either side of the brane, and ζ is finite on both sides of the S-brane.
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times) — see eq. (4.13). This fact will have important implications on realizing the matter
bounce scenario in the following section. In terms of Ce and cσ, ζ is given by

ζ = −cσ +
2Ceφ

′2
0

3a2(ρ+ p)
= −cσ +

Ce

3 + 4
(
a
ac

)2 = −cσ +
Ce

3 + 4
(
T̃c
T̃

)2 . (4.45)

The last expression is in terms of the ratio of the temperature to the critical one in string
frame.

Thus when 3cσ = cϕ (Ce = 0), ζ = −cσ is conserved on superhorizon scales, the
characteristic behavior of the non-trivial adiabatic mode. In this case ζ = ζr, where

ζr = Φ− 1

3

δρr
(ρr + pr)

, (4.46)

which as in the case of any isentropic fluid is a conserved quantity on superhorizon scales on
its own. For “entropy” modes on the other hand, Ce 6= 0. When T̃ � T̃c, these modes are
suppressed by a factor (T̃ /T̃c)

2.
Our conclusion is that the primordial curvature perturbation which persists in the ex-

panding phase after the S-brane crossing is given by

ζk ' −cσ(k) . (4.47)

When C3 = 0, the above relation becomes an exact equality at long wavelengths. As we will
see in the next section, this curvature perturbation can acquire a scale invariant spectrum
from an initial matter-dominated phase of contraction.

5 Non-singular matter bounce scenario

In this section, we elaborate upon how the S-brane mediated bouncing cosmology discussed in
this paper can be used to provide an explicit non-singular realization of the “matter bounce”
scenario. First, we briefly compare the essentials of the matter bounce and inflationary sce-
narios, after which we remind the reader how a matter/radiation system in a contracting
universe can lead to a scale invariant spectrum of fluctuations which persists in the radia-
tion/dilaton era, during which at some point the S-brane condenses. We then conclude that
the late time power spectrum of curvature fluctuations is scale-invariant.

5.1 Matter bounce versus inflation

The hypothesis of the “matter bounce” scenario is that the universe begins large and cold,
after which matter-dominated contraction onsets during which all scales which are currently
observed in cosmic microwave background (CMB) exit the Hubble radius. In figure 1 we
provide a spacetime sketch of the matter bounce scenario, which represents an alternative
mechanism to inflation to generate cosmological perturbations [27]. The vertical axis repre-
sents cosmological time t and the horizontal axis, physical distances. The S-brane mediates
a bounce at tc, which can be chosen to be zero. Two length scales are indicated in figure 1.
First the physical wavelength λph = 2πa(t)/k of a fluctuation mode (solid line), second the
Hubble radius H−1(t) (dashed line), which is linearly decreasing in the contracting phase
and linearly increasing in the expanding period. It is important to stress here that since the
energy density at the bounce point is finite, the minimal value of the Hubble radius is non-
zero. This is a crucial property of our string cosmological scenario, which most other pre-Big
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Figure 1. Spacetime diagram (sketch) of the
matter bounce scenario. The vertical axis is cos-
mological time t, with tc = 0 indicating the
bounce point. The horizontal axis represents
physical length. The dashed line represents H−1

and the bold line is the physical wavelength of a
fixed comoving scale k.

t0

tR

tI

x

t

k

Horizon

Hubble radius

inflation

post inflation

teq

Figure 2. Analogous diagram for inflationary
cosmology, with ti denoting the beginning of the
inflationary phase and tR the end. The particle
horizon is the wide dashed curve.

Bang models do not possess. We compare the spacetime diagram of the matter bounce to
that of inflationary cosmology,13 sketched in figure 2, on which we depict in addition the
particle horizon (long dashed line) which expands exponentially during inflation.

Inflation is designed to solve the horizon, flatness and entropy problems of standard
cosmology. The horizon problem is addressed by the fact that the horizon becomes exponen-
tially larger than the Hubble radius during inflation. Conversely, the matter bounce scenario
does not have a horizon problem since the horizon is always much larger than the relevant
wavelengths.14

The exponential increase of the scale factor during the period of inflation dilutes spatial
curvature and thus accounts for the observed flatness of spatial sections, so long as the
spatial curvature during the pre-inflationary phase is not too large to prevent the onset of
inflation. The matter bounce scenario mitigates the flatness problem. Unlike in any pre-Big
Bang scenario with no period of inflation, the initial spatial curvature does not have to be
tuned to an extremely small value to explain the current data. Initial flatness constraints
at large radius in the contracting phase similar to the currently observed bounds on the

13To be concrete, we assume almost exponential expansion.
14Note, in particular, that in the case that the contracting phase extends to t = −∞, then the particle

horizon is infinite. Even if the contracting period is finite, the horizon is much larger than the Hubble radius.
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spatial curvature are sufficient. Furthermore, there is no entropy problem in any pre-Big
Bang scenario in which the universe starts out large.

The most striking success of inflationary cosmology concerns the prediction of an almost
scale-invariant spectrum of curvature fluctuations. However, as already realized a decade
before the development of inflationary cosmology [67, 68], sufficient conditions required to
obtain curvature fluctuations in agreement with observations (in particular with the observed
acoustic oscillations in the CMB angular power spectrum) is to have a primordial spectrum
of coherent scale-invariant adiabatic fluctuations on super-Hubble scales at the time when
the smallest observable scales enter the Hubble radius. To obtain this, it is necessary that
the Hubble radius in comoving coordinates H−1 decreases so that constant comoving scales
λ of interest emerge on sub-Hubble scales.

Figures 1 and 2 show that this condition is satisfied both in inflationary cosmology
and in the matter bounce scenario. In the case of inflation, the exponential increase of
spatial sections causes physical fluctuation modes λph to exit the Hubble radius H−1. In
the case of the matter bounce it is the contraction of space which leads to a decrease in
the comoving Hubble radius. A second requirement is that the fluctuations are not sourced
during the time interval in which the physical wavelength is larger than the Hubble radius.
In this case, the wave function of fluctuation modes is squeezed as required in order to obtain
acoustic oscillations in the CMB anisotropy spectrum. Thirdly, a mechanism is required to
produce an almost scale-invariant spectrum. In the case of inflationary cosmology it is the
time translation invariance of the inflationary phase which ensures this. In the case of the
matter bounce, as we will show in the following subsections, it is the specific growth rate
of super-Hubble curvature fluctuations during the matter-dominated phase of contraction
which transforms the initial vacuum spectrum into a scale-invariant one [27, 28].

5.2 Matter bounce plus S-brane scenario

The string cosmological model examined in this work must be completed in the low temper-
ature regime, in both the expanding and contracting phases. As shown in previous work in
the context of string models that exhibit spontaneous breaking of supersymmetry either via
geometrical or non-geometrical fluxes, during expansion the Universe gets attracted at lower
temperatures to radiation-like, intermediate regimes (ρtotal = 3ptotal) with the supersymme-
try breaking scale Msusy(t) evolving proportionally to the temperature T (t) along a critical
trajectory: T (t)/Msusy(t)=constant [69–78]. At sufficiently low temperatures, the supersym-
metry breaking scale gets frozen and the relevant moduli including the dilaton get stabilized.
The mass spectrum of the various moduli, including the no-scale modulus which controls the
susy breaking scale, depends on the pattern of supersymmetry breaking [79–83]. There are
moduli which acquire masses of the order of 〈Msusy〉 ∼ O(1)TeV, while other moduli typi-
cally get a mass of the order of 〈M2

susy〉/MPlanck ∼ O(10−3)eV. The light fields are those that
participate in supersymmetry breaking, such as the no-scale modulus (the superpartners of
the Goldstino combination). What is important for our purposes is that the dilaton acquires
a mass as a result of susy breaking, and either possibility can be realized. For instance, in
the breaking of susy via gaugino condensation [84–88] (for studies of moduli stabilization
in the context of string gas cosmology see [89–95]) the dilaton gets a relatively high mass,
mφ ∼ O(1)TeV, while in the cases of models where the supersymmetry breaking is based on
stringy versions of the Scherk-Schwarz mechanism [96–101], the dilaton acquires a very light
mass mφ ∼ O(10−3)eV.
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By requiring supersymmetry breaking and dilaton stabilization at lower energy scales,
the string bouncing cosmology can be connected to early and late epochs of matter dom-
ination, thus providing a non-singular realization of the matter bounce scenario. This is
because susy breaking generates particle masses such that at sufficiently low temperatures,
the universe enters a matter dominated era with equation of state p ' 0. The value of the
dilaton mass is crucial as it leads to constraints on the parameters cσ and cϕ controlling the
fluctuations in the contracting thermal string gas/dilaton phase. We focus on cases where
the dilaton acquires a mass of the order of O(1)TeV. We will comment on cases where the
dilaton participates in the breaking of susy (and thus acquires a very small mass) at the end
of this section, leaving a detailed study of the resulting spectrum of cosmological fluctuations
for this class of models for a future investigation.

Bearing this in mind, we turn towards considering the evolution in the expanding phase.
Once the temperature has dropped just below the dilaton mass, mφ ∼ O(1)TeV, the dilaton
starts to roll towards its minimum, radiating its kinetic energy, eventually undergoing damped
oscillations so that it rapidly freezes at its minimum. Thus the matter dominated era is
preceeded by a radiation era where the dilaton is frozen. Note that the long wavelength
fluctuations in this intermediate, radiation dominated phase are by default adiabatic since
the dilaton is fixed and a single fluid dominates the evolution.

By thermal duality symmetry, the cosmological regimes encountered in the expanding
phase should appear also in the contacting phase but in reverse chronological order. Hence we
begin with a large and asymptotically cold contracting phase where supersymmetry is broken,
massive fields dominate the background and the dilaton is fixed. This is the initial matter-
dominated phase of contraction. In this phase an almost pressureless hydrodynamical fluid
dominates the background and sources fluctuations. We denote its energy density by ρm and
its pressure by pm = wρm, where w is very small. There is also a subdominant radiation fluid
component (with equation of state ρr = 3pr) which becomes relevant at around the time of
equal matter and radiation denoted by τeq. The dilaton remains frozen at its minimum until
the Universe has heated to the temperature corresponding to the supersymmetry breaking
scale or the dilaton mass, whichever is earlier. The dilaton then becomes effectively massless
and thus dynamical and the description of the fluids given in the earlier sections become
applicable: the radiation dominated phase being admixed with the dynamical dilaton whose
dynamics become more and more relevant as the S-brane bounce is approached. Taking the
asymptotic value of the background dilaton field early on in the thermal string gas/dilaton
phase to be given by the value of the dilaton at its minimum imposes that the coefficient C3

vanishes, which in turn implies the relation

C3 = 0 =⇒ cϕ = 3cσ, (5.1)

with cϕ and cσ defined by eqs. (3.20) and (3.21). A consequence of this relation is that the
evolution of the long wavelength fluctuations during the thermal string gas/dilaton phase
including the transition to the expanding phase via the S-brane remains adiabatic through-
out. As we will show below, the coefficient cσ, which controls the asymptotic value of the
gravitational potential Φ, and hence the spectrum of curvature fluctuations will acquire a
scale invariant spectrum from the initial matter phase of contraction.

5.2.1 Initial matter phase of contraction

We can now proceed to study the evolution of fluctuations in the initial matter dominated
phase of contraction. As remarked earlier, in this phase the universe is dominated by a fluid
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with equation of state p = wρ, with w a small positive constant.15 The speed of sound, given
by c2

s = w is correspondingly also small. As discussed in appendix A, a convenient way to
describe the various states of the fluid matter is via a derivatively coupled scalar field ψm, in
terms of which the pressure is written as follows:

p = X
1+w
2w =

(
−1

2
∂µψm∂

µψm

) 1+w
2w

. (5.2)

The background scale factor scales with conformal time τ according to the relation

a ∝ |τ |
2

(1+3w) , (5.3)

while the background scalar potential (ψm)0 is homogeneous having time dependence only.
The fluctuations in the matter dominated phase are parametrized by the gravitational

potential Φ and the fluctuation of ψm, which we denote by δψm. In terms of these we
introduce the gauge invariant, canonical variable

v =
√
ρ,Xa

(
δψm +

(ψ′m)0

H
Φ

)
, (5.4)

whose modes satisfy the following equation of motion:

v′′k + ω2(k)vk = 0 , ω2(k) = c2
sk

2 − a′′

a
. (5.5)

Utilizing the expression for the background scale factor a, the frequency can be written as
follows,

ω2(k) = wk2 +

[
1

4
− ν2

]
1

τ2
with ν =

3

2

1− w
1 + 3w

. (5.6)

This equation admits exact solutions in terms of Bessel functions. The solution valid for all
wavelengths is given by

vk =
√
|τ |
(
B+Jν(

√
wk|τ |) +B−Yν(

√
wk|τ |)

)
, ν =

3

2

1− w
1 + 3w

, (5.7)

with B+ and B− time-independent constants.
At short wavelengths, where

√
wk|τ | � 1, the asymptotic behavior of the solutions

exhibits oscillatory behavior given by√
2

πcsk

[
B+cos

(√
wk|τ | − π

2

(
ν +

1

2

))
+B− sin

(√
wk|τ | − π

2

(
ν +

1

2

))]
, (5.8)

showing that both modes are canonically normalized when B+ and B− are k-independent
constants. This oscillatory behavior at short wavelengths occurs independently of the equa-
tion of state coefficient w. It also arises in situations where the speed of sound is slowly
varying with time, via the WKB approximation [51]. At short wavelengths the spectra of
these two v-modes behave like that of vacuum fluctuations, which is blue.

15Our analysis applies also in cases where the state equation coefficient w is slowly varying with time, via
the WKB approximation. For example, a “baryon”-matter/radiation plasma, where the matter fluid and the
radiation component do not decouple, gives rise to a situation where the coefficient w is slowly varying and
becomes very small in the matter dominated phase.
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At long wavelengths on the other hand,
√
wk|τ | � 1, the asymptotic behavior of the

Bessel functions leads to a power law behavior

vk ∼
√
|τ |

[
B+

Γ(ν + 1)

(√
wk|τ |
2

)ν
−B−

Γ(ν)

π

(√
wk|τ |
2

)−ν]
. (5.9)

Vacuum initial conditions for vk — that is, B± are k-independent constants — imply that the
mode proportional to B− gives rise to an almost scale invariant spectrum when ν ' 3/2−6w
with w small enough, while the B+ mode gives rise to a blue spectrum which is irrelevant on
super-Hubble scales.

Physically, this result can be understood as follows. The B− mode increases on super-
Hubble scales. Since long wavelengths spend more time outside the Hubble radius, small k
modes are boosted relative to large k modes, i.e. the spectrum reddens. What is particular
about a matter-dominated phase of contraction is that the growing B− mode scales as τ−1,
which is precisely the growth rate needed to convert the initially blue vacuum spectrum to a
scale-invariant one. Thus, at the end of the matter-dominated phase of contraction we have

vk ∼ −B−
Γ
(

3
2 − 6w

)
π

|τ |−1+6w

(√
wk

2

)− 3
2

+6w

, (5.10)

yielding a power spectrum

Pv(k, |τ |) =
k3

12π
|vk|2 ∼

2

3

Γ
(

3
2 − 6w

)2
π3w3/2

B2
−

(
csk|τ |

2

)12w

∼ B̃2

τ2

[
1 + 12 c2

s ln

(
csk|τ |

2

)]
,

(5.11)
which is independent of k up to small logarithmic corrections.

The almost scale invariant spectrum of the v variable in the matter dominated phase
of contraction will be inherited in the spectrum of curvature fluctuations in the “baryon-
radiation” plasma epoch that follows just after. In order to see this inheritance realized, it
will be more convenient to work in terms of the gravitational potential Φ. First we work
out the precise normalization of the Φk modes with respect to the co-moving wavenumber
k, which follows from vacuum initial conditions in the matter dominated era. In this regime
the Φk modes satisfy the following equation:

Φ′′k +
6(1 + w)

1 + 3w

1

τ
Φ′k + wk2Φk = 0, (5.12)

with the solution given in terms of Bessel functions

Φk =
1

|τ |α
(
C+Jα(

√
wk|τ |) + C−Yα(

√
wk|τ |)

)
, α =

1

2

5 + 3w

1 + 3w
= ν + 1. (5.13)

A very useful variable related to Φ is the Mukhanov variable u,

uk ≡
2Φk√
ρ+ p

(5.14)

which obeys a wave equation without friction term:

u′′k + ω2(k)uk = 0 , ω2(k) = wk2 +

[
1

4
− α2

]
1

τ2
, α =

1

2

5 + 3w

1 + 3w
. (5.15)
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This leads to the solution:

uk =
√
|τ |
(
C̃+Jα(

√
wk|τ |) + C̃−Yα(

√
wk|τ |)

)
, α =

1

2

5 + 3w

1 + 3w
. (5.16)

The time-independent constants C̃± are related to the B± constants [51]. Their precise
relation follows from the equation

cs∇2u = a
(v
a

)′
, (5.17)

which for short wavelenghts yields

− csk2

√
2

πcsk

[
C̃+cos

(√
wk|τ | − π

2

(
α+

1

2

))
+ C̃− sin

(√
wk|τ | − π

2

(
α+

1

2

))]
=

√
2

πcsk

√
wk

[
B+sin

(√
wk|τ | − π

2

(
ν +

1

2

))
−B− cos

(√
wk|τ | − π

2

(
ν +

1

2

))]
.

(5.18)

Using the fact that α = ν + 1, we obtain

C̃+ = −B+

k
, C̃− = −B−

k
. (5.19)

In contrast to the B± modes, the C̃± and C± modes acquire a k-dependence via a factor
of k−1. This fundamental relation between the modes of v and the modes of u (or Φ) is
universal, holding for any equation of state, as well as when the speed of sound varies slowly
enough (defined by the smallness of the parameter s = ċs/(Hcs)).

In the long-wavelength limit, the properly normalized uk modes behave as:

uk ∼
√
|τ |

[
C̃+

Γ(α+ 1)

(√
wk|τ |
2

)α
− C̃−

Γ(α)

π

(√
wk|τ |
2

)−α]
with α ' 5

2
− 6w . (5.20)

Therefore, the C̃− growing mode scales as k−7/2 with the co-moving wavenumber. This
precise scaling, following from the initial conditions in the matter dominated phase fixes
the k-dependence of the u (and also the Φ) modes for their subsequent evolutions. As we
demonstrate in the following subsection, the C̃− mode induces a scale invariant spectrum for
the coefficient cσ in the radiation phase which controls the constant mode of the curvature
fluctuation throughout the cosmological evolution, even after propagating across the brane
into the expanding phase.

5.2.2 Matter and radiation plasma

We proceed now to review the evolution of cosmological fluctuations during the contracting
matter/radiation era following [51, 52]. The background scale factor and energy densities are
given by

a(τ) = aeqχ(χ+ 2) , with χ ≡ τ

τ∗
, τ∗ =

τeq√
2− 1

(5.21)

ρm =
ρeq

2

(aeq

a

)3
, ρr =

ρeq

2

(aeq

a

)4
, τ∗ = −

√
24

ρeqa2
eq

, (5.22)
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where aeq and ρeq are the scale factor and total energy density at the time of equal matter
and radiation τeq (which in the contracting phase we take to be negative). The speed of
sound is given by

c2
s =

1

3

(
4ρr

3ρm + 4ρr

)
=

1

3

(
4

3χ(χ+ 2) + 4

)
. (5.23)

At early negative times, |τ | � |τeq|, when the matter fluid dominates, the speed of sound
tends to zero, while at times |τ | � |τeq|, it acquires the constant value of 1/3.

In order to relate the parameters of the initial matter dominated regime with the param-
eters of the matter/radiation plasma era, it is convenient to work with the gauge invariant
quantity ζ. In terms of the variable u, this quantity is given by

ζ = sign(H) θ2
(u
θ

)′
, where θ =

1√
3 a

(
ρ

ρ+ p

) 1
2

=
(χ+ 1)

aeq χ(χ+ 2)
√

3χ(χ+ 2) + 4
. (5.24)

The above expression for ζ is valid both at short and long wavelengths. We are interested to
examine the transition of ζ from the initial matter dominated regime to the radiation era, and
understand how the relevant modes behave at long wavelengths. To this end, it is sufficient
to consider the long wavelength solution, keeping however the leading k2-corrections via the
integral equation for u [51]:

uk = u0
k − k2θ

∫ τ dτ ′

θ2

(∫ τ ′

dτ ′′c2
sθu

0
k

)
, where u0

k = Ĉ−θ + Ĉ+θ

∫ τ dτ ′

θ2
. (5.25)

The k2-corrections turn out to be key for our considerations. Indeed neglecting them, one
would obtain

ζ0 = − Ĉ+ , (5.26)

without any dependence on the relevant Ĉ− mode of the matter dominated regime. Even
worse, the Ĉ+ mode is irrelevant on super Hubble scales as it gives rise to an ultra blue
spectrum. Therefore, the relevant contributions to ζ arise from the k2-terms, and more
specifically from terms proportional to the Ĉ− mode. Neglecting the irrelevant blue modes,
one finds that in the radiation dominated regime, ζ is given by:

ζ(τr) = k2Ĉ−

∫ τr

τm

dτc2
sθ

2 = −k2Ĉ− |τ∗|
∫ χr

χm

dχ c2
sθ

2 , (5.27)

where the limits of integration must satisfy the following inequalities: |τm| � |τeq| and
|τr| ≤ |τeq|, and so χm � 1 and χr ' 1. The lower integration limit ensures overlap of
the solution with that of the initial matter dominated regime (analyzed in the previous
subsection), implying that the scaling of the coefficient Ĉ− with k is the one determined by
the vacuum initial conditions. The smallness of cs in the matter dominated regime imposes
that |τm| � |τeq|. The upper limit is conveniently chosen to lie in the radiation dominated
regime, and provides the initial condition for the curvature perturbation for the subsequent
cosmological evolution.

As already demonstrated in section 4.4, upon taking into account that the coefficient C3

must vanish, from the onset of the radiation regime and during the subsequent cosmological
evolution, the curvature perturbation ζ remains constant and is equal to the fundamental
parameter −cσ. This parameter controls the evolution of the fluctuations at latter cosmolog-
ical times, even after the S-brane crossing to the expanding phase. The coefficient C3 is zero
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since the dilaton is frozen to its minimum during the radiation dominated era, before the
thermal string gas/dilaton fluid dominance. These considerations impose that −cσ = ζ(τr).
The scaling of the coefficient Ĉ− with the wavenumber k was determined in the initial matter
dominated regime and turns out to scale like k−7/2. This is the precise scaling needed to
render the power spectrum of ζk(τr), and hence the spectrum of cσ, scale invariant. Indeed,
the curvature perturbation at the onset of the radiation era is given by

− cσ(k) = ζk(τr) = Cζ k
− 3

2 , (5.28)

where the coefficient Cζ is k-independent, showing that the power spectrum of the curvature
perturbation cσ is scale invariant:

Pcσ =
k3

12π
|ζk(τr)|2 =

1

12π
|Cζ |2 . (5.29)

Therefore the scale invariant spectrum of the growing mode in the initial matter dominated
contracting phase is inherited by the constant mode of the curvature fluctuation through the
subsequent cosmological evolution and is preserved after the S-brane mediated bounce on to
the expanding phase. The above scaling property can also be found from the initial matter
dominated phase by noticing that in this regime,

ζk = −csθvk , (5.30)

which shows that the coefficient k2Ĉ− behaves as B−k
−3/2 (see eq. (5.10)).

We conclude this section with some remarks concerning the other class of string models
exhibiting spontaneous breaking of susy, namely models where the dilaton participates in the
susy breaking mechanism, and thus acquires a very small mass: mφ = 〈M2

susy〉/MPlanck ∼
O(10−3)eV. In this case the dilaton becomes effectively massless during the initial matter
dominated phase of contraction, and thus dynamical thereafter, giving rise to a non-zero
coefficient C3. As can be seen from eq. (4.45), for this case the long wavelength perturbation
ζ is not conserved during the thermal string gas/dilaton phase, implying the presence of
non-adiabatic, isocurvature modes. The contribution of these modes acquires its maximal
value at the S-brane, but it is negligible at lower temperatures, as it is suppressed by a
factor of (T̃ /T̃c)

2. There is however a very interesting, non-trivial effect in that the dilaton
admixture to the matter fluid causes the effective speed of sound to change, giving rise to a
tilt in the spectral index of curvature fluctuations. Qualitatively, this tilt, which depends on
the dilaton mass mφ, will appear as a violation of exact scale invariance for the spectrum.
The existence of such a tilt is supported by recent observational data. The complete analysis
of this case is rather involved, as it requires to investigate the cosmological fluctuations in a
three fluid system, however it would be very interesting to carry it out in order to compare
the predictions of the model for spectral index with the observational data. We plan to
quantitatively analyze such string models in future work.

6 Conclusions

We have studied the transfer of cosmological fluctuations through a stringy S-brane, which
mediates the transition between contracting and expanding cosmological phases related via
string thermal duality symmetry. The S-brane itself is a space-filling defect that interpolates
between the two dual geometrical phases of the underlying worldsheet CFT, and is sourced by
non-trivial thermal string states that become massless at a critical maximal temperature. As
we demonstrated in this paper, the energy density of the spacelike brane vanishes, even in the
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presence of metric and dilaton fluctuations, while the pressure along the spatial dimensions
is negative. Therefore, the brane provides the violation of the NEC needed to induce a
transition from contraction to expansion (in the Einstein frame). Since the S-brane has a
string scale thickness in time, it is realized instantaneously from the perspective of the low
energy effective theory.

The resulting spacelike hypersurface is distinct, and has not been considered previously
in the literature. It is defined as a surface of constant string frame temperature, with the latter
reaching its maximal value as imposed by the thermal duality symmetry of the underlying
string theoretic model. From the Einstein frame point of view, the S-brane surface is not
isothermal since the physical temperature is dressed by a non-trivial dilaton factor. It does
not correspond to a surface of constant energy density either. These properties turn out to
be crucial for the matching of cosmological fluctuations across the bounce. Two of our key
results is that there is no thermal entropy production during the stringy transition, and that
the dilaton field, including its fluctuation, is mirror reflective across the brane.

Working in longitudinal gauge, we followed the evolution of the gravitational potential Φ
and that of the dilaton fluctuation ϕ. A crucial property of the underlying string cosmological
background solutions is that the Einstein frame Hubble parameter H does not vanish at
the bounce (where the S-brane materializes). This is because the dilaton field has a non-
trivial kinetic energy density which is conserved as the dilaton bounces elastically across
the brane. This is another distinguishing feature of the string cosmological solutions under
consideration compared to other models in the literature. In each cosmological phase there
are two independent modes for the gravitational potential Φ and for the dilaton fluctuation
ϕ. In the expanding phase, the dominant modes of both Φ and ϕ at super-Hubble scales are
constant, while the sub-dominant modes are decaying in time. In the contracting phase there
are in addition to constant long wavelength modes, growing modes that become relevant as
the S-brane is approached. Due to the underlying thermal duality symmetry, the constraint
of a maximal string frame temperature and the conservation of thermal entropy, the growing
modes never become dominant. Their amplitudes are bounded never exceeding those of the
constant modes. This is in contrast to the situation arising in other pre-Big Bang proposals.

One of our main results is that both the constant modes and growing modes participate
in the junction conditions across the S-brane hypersurface. The fact that the string frame
temperature attains its maximal value at the bounce is crucial in implementing the junction
conditions consistently. We show that the junction conditions are compatible with the Israel
matching conditions in the Einstein frame. A very important consequence of our analysis is
that there is a non-trivial coupling between growing modes in the contracting phase and the
constant mode in the expanding phase that controls the strength of the late times curvature
fluctuation. This contrasts to what is obtained in toy models of non-singular bounces [29, 30,
43, 44] where one finds highly suppressed couplings. The important lesson we draw from our
work is thus that the details of how the transition between the contracting and expanding
phases is achieved is key to understanding how the cosmological fluctuations propagate from
one phase to the other. This sensitivity to the details of the mechanism which produces the
bounce is not unexpected since it was already identified in different contexts in [46–49].

Having in our disposal a non singular, bouncing string cosmology as well as having
correctly matched the cosmological fluctuations across the S-brane, we proceeded to consider
the realization of the matter bounce scenario within our stringy framework. To complete
the cosmological evolution at very low temperatures in both the contracting and expanding
phases, we needed to implement a supersymmetry breaking mechanism. To this end, we
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distinguish between two generic classes of models. In the first class the dilaton does not
participate in the susy breaking mechanism, receiving a relatively high mass of the order of
the susy breaking scale Msusy. In the second class, the dilaton is assumed to participate in
the susy breaking mechanism thus acquiring a characteristic mass of order M2

susy/MPlanck.
As a result prior to the contracting thermal string gas/dilaton phase, there is an earlier phase
in which supersymmetry is broken. In the cases where the dilaton acquires a relatively high
mass, the dilaton is frozen and masses are generated, yielding an initial matter-dominated
contracting phase with a subdominant radiation component that becomes relevant at a time
of equal matter and radiation. A consequence of dilaton stabilization with a mass of the
order of Msusy (and the matching conditions at the S-brane) is that the evolution of the long
wavelength perturbations during the subsequent thermal string gas/dilaton phase and on to
the expanding phase through the bounce is adiabatic.

To avoid gauge ambiguities we work in terms of the Mukhanov-Sasaki canonical variable
v. This variable inherits a scale-invariant power spectrum in the initial matter dominated
phase of contraction. We showed that this scale invariant spectrum is communicated to both
modes of the gravitational potential Φ in the contracting phase, at the onset of radiation
dominance. On scales of cosmological interest today, which have exited the Hubble radius
long before the supersymmetry restoring phase transition, the slope of the spectrum of both
modes is maintained, since all modes are evolving for the same amount of time in this phase
and the change in the amplitude only depends on the time interval spent in this phase.16

The matching conditions at the stringy S-brane then show that the scale-invariance of the
dominant mode of curvature fluctuations at late times in the expanding phase is inherited
from the spectrum of the two Φ-modes before the bounce.

Therefore the string bouncing cosmology considered in this work provides a successful,
non-singular realization of the matter bounce scenario. Another advantage of our scenario
compared to other bouncing models studied in the literature is that the bounce is not me-
diated by ad hoc new physics constructions such as ghost condensates or higher derivative
gravity actions. Furthermore, in the model studied in this investigation there is no dan-
ger of new unstable modes appearing in the bounce phase. This problem, stressed recently
in [102, 103] in the context of the “New Ekpyrotic scenario” [104] cannot arise in our setup17.

We take note of the potential issue of the instability of a contracting phase to the
growth of anisotropies — the famous BKL instability [105]. This is a problem faced in all
bouncing models known to us with the exception of the Ekpyrotic scenario [13, 14] and
models [106, 107] using an Ekpyrotic phase of contraction to supplement the matter bounce
scenario. The reason the latter models evade the BKL instability is that the field responsible
for the contracting phase has an energy density which blueshifts faster than the anisotropic
contributions to the energy density (which blueshift as∼ 1/a6), and so negates the influence of
the latter. In our model, we find ourselves in a marginal situation, wherein the dilaton kinetic
energy blueshifts identically to the contributions to the energy density from anisotropy. Thus
in addition, we have to assume that we have initial conditions such that the initial energy
density of the dilaton as we begin the radiation dominated contraction dominates that of any
initial anisotropies.

16Recall that the reason why a vacuum spectrum is converted to a scale-invariant one during the matter
phase of contraction is that long wavelength modes spend more time in this phase on super-Hubble scales
than short wavelength ones.

17It is worth while pointing out that this problem is not generic to all effective field theory bouncing models.
For example, the model of [106, 107] does not suffer from this problem.
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Even though we did not carry out a quantitative analysis for the cases with a very light
dilaton mass, we argued that the dilaton motion during the initial matter dominated phase
of contraction will produce a small violation to exact scale-invariance for the spectrum of
curvature fluctuations, or a tilt to the spectral index. A second effect is the generation of
initial “entropy” modes. One could worry that these modes could dominate the spectrum of
the final curvature fluctuations (in the context of inflationary cosmology this is the curvaton
mechanism [108–112]). However as we have seen in our work, the analysis of such modes in
the long wavelength approximation during the thermal string gas/dilaton expanding phase
reveals that at latter times their contribution to the curvature fluctuation is highly suppressed
by a factor of (T̃ /T̃c)

2.

The issue of obtaining a realistic spectrum that is not scale invariant is an interesting one.
Given the current CMB data from the South Pole Telescope [113], the Atacama Cosmology
Telescope [114] and the Planck mission [115], a small red tilt is strongly favored. Therefore
it is imperative to carry out the complete analysis of the light dilaton cases in order to
investigate whether its predictions can explain the observational data. However we believe
the correct perspective to have of the positive result of our investigation is that of a proof
of concept. With this, one could be emboldened to look for concrete constructions that can
more realistically model the late time universe in which we find ourselves.
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A Perturbing the string thermal fluid — the thermal potential approach

For a barotropic fluid (i.e. one for which ρ = ρ(p) alone), one scalar potential suffices to
determine the various states of the fluid. As demonstrated in [51, 65] and reviewed in [66],
any perfect fluid with the equation of state ρ = γp, with constant γ, can be modeled by the
action of a derivatively coupled scalar field ψ with action

S =

∫
d4x
√
−g
(
−1

2
∂µψ∂

µψ
) γ+1

2
. (A.1)
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To see this, we first consider the more general expression

S =

∫
d4x
√
−gP (X), with X = −1

2
∂µψ∂

µψ , (A.2)

the form of which has been invoked to model D-brane moduli dynamics [116], kinetic models
of inflation [117] and quintessence [118] as well as single field effective theories up to quartic
order in derivatives [119]. The equation of motion that results is

1√
−g

∂µ(
√
−gP ′gµν∂νψ) = 0, (A.3)

and the energy momentum tensor is given by

Tµν = gµνP + P ′∂µψ∂νψ . (A.4)

Comparison to the energy momentum tensor of an irrotational fluid

Tµν = gµνp+ uµuν(ρ+ p) (A.5)

implies

p = P , ρ+ p = 2XP ′ , uµ =
∂µψ√
−∂νψ∂νψ

, (A.6)

whence one straightforwardly sees that if P = X
γ+1
2 , then (A.6) implies that a fluid with

the equation of state ρ = γp is to be described by a derivatively coupled scalar field ψ, as
in (A.1). Furthermore, the equation of motion (A.3) implies that

Jµ = P ′
√

2Xuµ (A.7)

is a conserved current. Comparing with the continuity equation of a compressible fluid

∇µ(nuµ) = 0 , (A.8)

where n is the particle number density, we identify

n = P ′
√

2X =
ρ+ p√

2X
. (A.9)

Given that the thermal action

ST =

∫
d4x
√
−gΛT 4 (A.10)

describes a fluid with equation of state ρ = 3p, we conclude that
√

2X is to be identified
with the temperature. In other words we may introduce the thermal potential ψ in terms of
which the temperature is given by

T =
√
−∂µψ∂µψ , (A.11)

and the action

ST =

∫
d4x
√
−gΛ(−∂µψ∂µψ)2. (A.12)

Evidently the density n corresponds to the thermal entropy density

s =
ρ+ p

T
. (A.13)
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A.1 The temperature fluctuations away from the S-brane

Perturbing the thermal action to second order, with hµν the metric perturbation and with
ψ = ψ0 + σ, results in

S
(2)
T = Λ

∫
dx4√−g

{(h2

8
−
hλβh

λβ

4

)
(∇µψ0∇µψ0)2 − hhµν∇µψ0∇νψ0∇κψ0∇κψ0

}
+ 2Λ

∫
dx4√−g

{
h∇κψ0∇κψ0∇µψ0∇µσ + hµλhνλ∇µψ0∇νψ0∇κψ0∇κψ0

}
+ Λ

∫
dx4√−g

{
hµλhκβ∇µψ0∇λψ0∇κψ0∇βψ0 − 4hµν∇µσ∇νψ0∇κψ0∇κψ0

}
+ Λ

∫
dx4√−g

{
− 4hµν∇µψ0∇νψ0∇κψ0∇κσ

+ 2∇µσ∇µσ∇κψ0∇κψ0 + 4∇µσ∇µψ0∇κσ∇κψ0

}
. (A.14)

The perturbed energy momentum tensor is obtained as

δTµν = δ
[ 2√
−g

gνλ
δST
δgλµ

]
= −h

2
Tµν + hνλT

λµ +
2√
−g

gνλ
δ2ST

δgλµδgκτ
hκτ +

2√
−g

gνλ
δ2ST
δgλµδψ

δψ

from which one can read off the components

δT 0
i = −4Λψ′40

a4

∂iσ

ψ′0
(A.15)

δT ii =
4Λψ′40
a4

( σ′
ψ′0
− Φ

)
(A.16)

δT 0
0 =

−12Λψ′40
a4

( σ′
ψ′0
− Φ

)
, (A.17)

with Φ defined as in (3.6). Furthermore, varying (A.14) to second order in the velocity
potential results in the relativistic diffusion of temperature inhomogeneities via

σ′′ − 1

3
∇2σ + 2

ψ′′0
ψ′0
σ′ − 2Φ′ψ′0 − 6Φψ′′0 = 0 . (A.18)

It helps to recast the above in more familiar terms by accounting for the definition of tem-
perature in terms of ψ, which perturbed to first order in the gauge defined by (3.6) implies

δT

T0
=
h00

2a2
+
σ′

ψ′0
= −Φ +

σ′

ψ′0
. (A.19)

Given (A.6) applied to our example with P = ΛX2 in conjunction with (A.19) implies

δT 0
i = −(ρ+ p)

∂iσ

ψ′0
(A.20)

δT ii = 4p
δT

T0
= −4p

δβ

β0
(A.21)

δT 0
0 = −12p

δT

T0
= 12p

δβ

β0
. (A.22)
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Although the latter two perturbed components of the energy momentum tensor may seem to
obviously result from perturbing (3.1) with respect to T , (A.20) is not so obvious. In order
to perturb a system it is important to identify the fundamental degrees of freedom that are
to be perturbed, and not the macro-states which describe equilibrium configurations of the
system. The thermal potential description correctly accounts for the propagating degrees of
freedom for a barotropic fluid.

A.2 The S-brane action in terms of the thermal potential

The scope of this section is to derive the exact functional form of the S-brane action in terms
of the full metric and the thermal potential ψ. The generic S-brane action is written in terms
of the induced metric γab:

γab = gµν
∂Xµ

∂ξa
∂Xν

∂ξb
, (A.23)

where the coordinates of the brane are denoted by ξa and Xµ are the spacetime embedding
fields: Xµ = Xµ(ξa). We can always choose a gauge where the spatial coordinates are
identified with those of the S-brane:

Xi := xi = δiaξ
a . (A.24)

Assuming that gµν is block-diagonal, gi0 = g0i = 0, the induced metric is given by

γij = gij + g00 ∂iX
0∂jX

0 . (A.25)

It is then clear that the function X0(xi) specifies the S-brane embedding into spacetime.
Our goal is to specify the functional form of the embedding which is relevant to the

isothermal surface. Notice that the determinant of γij is given by:

det(γij) = det(gij)
(
1 + g00 g

ij∂iX
0∂jX

0
)

= det(gµν)
(
g00 + gij∂iX

0∂jX
0
)

(A.26)

or

det(γij) = −det(gµν)
(
−g00∂0X

0∂0X
0 − gij∂iX0∂jX

0
)

= −det(gµν)
(
−gµν∂µX0∂νX

0
)
.

(A.27)
The expression above is written in the special frame where the time-direction is orthogonal
to the S-brane.

In order to make the derivation of the brane action SB more transparent, we first
examine the case of a conformally flat metric. In this case we may always decompose the
metric in terms of the time-like velocity uµ = (1, 0, 0, 0):

ds2 = e2ωηµνdx
µdxν = e2ω [−uµuνdxµdxν + (ηµν + uµuν)dxµdxν ]

= e2ω
[
−uµuνdxµdxν + ηijdx

idxj
]
.

In more general cases, the decomposition of the metric in terms of a generic velocity vector
and in terms of a three dimensional subspace orthogonal to uµ admits the following form:

ds2 = −N2ψµψνdx
µdxν + gijdx

idxj , uµ =
ψµ√
−ψµψµ

. (A.28)

In the case of interest, namely the isothermal S-brane, uµ is specified in terms of the thermal
potential ψ used to define the temperature:

T =
√
−ψµψµ ,
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where ψµ is given by
ψµ = ∂µψ =⇒ ∂µψ dxµ = dψ . (A.29)

Hence we can write the metric as follows

ds2 = −N2dψ2 + gijdx
idxj =⇒ X0 = ψ , (A.30)

showing that X0 (which defines the embedding of the S-brane) can be identified with the
thermal potential ψ. Utilizing this information, the S-brane determinant takes the following
form:

det(γij) = −det(gµν) (−gµν∂µψ∂νψ) = −det(gµν) T 2 . (A.31)

We are now in a position to express the action of the isothermal S-brane in very elegant
and suggestive form:

SB = −
∫
dτd3xκ e−2φ

√
−det(g̃µν)

(√
−∂µψ∂µψ

)
δ(ψ − ψc)

= −
∫
dτd3xκ e−2φ

√
−g̃ T̃ δ(ψ − ψc) , (A.32)

where ψc ≡ ψ(π(~x), ~x) involves the time location π(~x) of the brane. Written in the Einstein
frame,

SB = −
∫
dτd3xκ eφ

√
−g Tδ(ψ − ψc). (A.33)

The brane action is manifestly re-parametrization invariant in the four dimensional sense.

A.3 The S-brane fluctuations

Although the analysis that follows can be done in full generality, we restrict ourselves to
the case of the long wavelength approximation, where we neglect spatial gradients. In this
approximation, the relevant fluctuations are given in terms of the temporal displacement π
of the brane, as well as the dilaton and κ fluctuations. It is important to notice that there is
no contribution from the S-brane to the energy density even in the presence of fluctuations:
δρB = 0 . This follows from the fact that for the S-brane system γB = 0 so that

ρ̃B = γB p̃B = 0 and ρB = γB pB = 0. (A.34)

Furthermore, assuming a (block-)diagonal metric and in the long-wavelength approximation
the off-diagonal terms of the stress tensor can be set to zero. The remaining equations of
motion are the one for dilaton φ, the transverse part of the metric (parametrized in the
string frame by the scale factor Ã and in the Einstein frame by A = Ãe−φ) and that of ψ.
Concerning the φ and Ã equations, the pre-factor Ã3e−2φ is divided out; e.g. it has been
considered just before and after the locus of the brane. Thanks to the continuity conditions
for Ã and φ, the impact of their fluctuations is already considered in the bulk just before and
after the S brane.

The remaining terms needed to be specified are the ratios T̃ (π)/T̃c and κ/κ(0). The
first ratio is fixed to be unity by the definition of the isothermal S-brane: T̃ (π)/T̃c ≡ 1, and
determines the locus of the S-brane π. As shown in [20], the brane tension is determined
in terms of the extra stringy degrees freedom appearing when the temperature reaches its
maximal, critical value Tc. At this point κ is given by:

κ(π) = 2
√

6Λ T̃ 2 eφ(π) = κ(0) eφ(π)−φ(0) , (A.35)
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where κ(0) = κc is the tension associated with the background S-brane. Expanding around π,
and using eq. (4.15), we obtain the shift of κ in terms of the metric and dilaton fluctuations:

κ(π) = κc (1 + ϕ− Ca)
∣∣∣
π

= κc (1 + C3) . (A.36)

A.4 Entropy conservation in the combined system ST + SB

The remaining constraint concerning the S-brane comes from the equation of motion of the
temperature potential ψ. Away from the S-brane the thermal entropy is conserved. Also the
temperature fluctuations obey the state equation of the background

ρ̃T + δρ̃T − 3(p̃T + δp̃T )
∣∣∣
∓

= 0, (A.37)

before and after the S-brane. We would like to investigate the possibility of entropy produc-
tion after crossing the S-brane. This in principle can happen since the state equation of the
brane is different: ρB = 0. To answer this question, we consider the equation of motion of ψ:

δ(ST + SB)

δψ
= −4Λ∂µ(Ã3T̃ 3uµ) + κ

(
∂µ(Ã3e−2φ∆uµ)− uµÃ3e−2φ ∂µ∆

)
= 0, (A.38)

where we replace the δ-function by one of its smooth representations, ∆(ψ), in order to treat
possible ambiguities that may arise from the variation of the δ-function distribution. We
have also used

∂µψ
d∆

dψ
= ∂µ∆ and uµ =

∂µψ√
−∂νψ∂νψ

.

Therefore, the equation of motion of ψ gives rise to a global entropy conservation law, con-
cerning the combined system:

δ(ST + SB)

δψ
= −4Λ∂µ(Ã3T̃ 3uµ) + κ∆∂µ(Ã3e−2φuµ) = 0. (A.39)

The equation above can be integrated in the interval (π− = π− ε, π+ = π+ ε), where ε
is the width of ∆. In the long wavelength approximation where the velocity vector becomes
uµ = (1, 0, 0, 0), we obtain:(

4ΛÃ3T̃ 3
)
π−
−
(

4ΛÃ3T̃ 3
)
π+

= − κ

2 T̃c

[(
Ã3e−2φ

)′
π−

+
(
Ã3e−2φ

)′
π+

]
. (A.40)

The l.h.s. gives the difference of the entropy in the contracting phase (before the S-brane)
and the entropy in the expanding phase (after the brane). The r.h.s. is associated with
the entropy change produced by the S-brane. Utilizing the relation of the entropy with the
background entropy we have:(

4ΛÃ3T̃ 3
)
π−
−
(

4ΛÃ3T̃ 3
)
π+

= 4Λã3
c T̃

3
c

(
3c−σ − 3c+

σ

)
. (A.41)

Therefore the l.h.s. is proportional to the difference between the coefficients c−σ −c+
σ . However,

the existence of a unique maximal temperature T̃c together with the continuity condition
Ã(π−) = Ã(π+) imply that c−σ = c+

σ . In other words, there is no entropy production by
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the S-brane. Taking into account that Ã′(π−) = Ã′(π+) = 0, the brane contribution to the
entropy becomes

− κ

2 T̃c

[(
Ã3e−2φ

)′
π−

+
(
Ã3e−2φ

)′
π+

]
=

κ

T̃c
Ã3
[
φ′(π−) + φ′(π+)

]
. (A.42)

Therefore, the vanishing of the contribution of the S-brane to the entropy implies reflecting
conditions for φ′, and the equality of c±ϕ and C±3 — the latter follows from the continuity of
φ across the brane:

κ

T̃c
Ã3
[
φ′(π−) + φ′(π+)

]
=

κ

T̃c
Ã3

√
3

2|ξ|
(c−ϕ − c+

ϕ ) = 0 . (A.43)

B Derivation of Φ and ϕ

The goal of this appendix is to derive the analytic solutions for the metric and dilaton
fluctuations Φ and ϕ, eqs. (3.33) and (3.34) in the long wavelength approximation. The
starting point is the second order differential equation (3.32) for Φ, where ε = sign τ and y
is defined in eq. (3.31). Expressing Φ in terms of the function F ,

Φ ≡ F

y2
− cϕ

4
, (B.1)

and utilizing the explicit expressions (3.29) and (3.30) for H and H′, we obtain the following
equation for F :

F ′′ − 2

(
1

(τ + εξ+)2
+

1

(τ + εξ−)2
− 1

(τ + εξ+)(τ + εξ−)

)
F = 0. (B.2)

Notice that the expression multiplying F is nothing but the ratio H′′/H, and so,

F ′′ − H
′′

H
F = 0, (B.3)

implying the particular solution F = Ĉ1H, where Ĉ1 is an integration constant. To obtain
the full solution, we set F ≡ Hf giving us the following simple equation for f :

f ′′H+ 2f ′H′ = 0 =⇒ f ′ =
3C2

H2
=⇒ f = 3C2

∫
dτ

H2
. (B.4)

The last integral can be evaluated analytically. To this extend, it is convenient to convert it
into a y-integral, ∫

dτ (· · · ) =

∫
dy

yH
(· · · ) = ε

∫
dy

y√
y2 + ξ2

(· · · ) , (B.5)

and use the expression of H in terms of y. The integration is straightforward and leads

f = 3C2ε

(
1

3
(y2 − 2ξ2)

√
y2 + ξ2 − ξ2 y

2 + 2ξ2√
y2 + ξ2

)
+ Ĉ1 =

C2y
2

H
(
1 + 4ξ2H′

)
+ Ĉ1 . (B.6)
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Finally the full expression for Φ reads:

Φ = Ĉ1
H
y2

+ C2(1 + 4ξ2H′ )− cϕ
4
. (B.7)

Furthermore, utilizing the relation between the dilaton fluctuation and Φ, eq. (3.21), we
obtain:

ϕ′ = φ′0 4

(
Ĉ1
H
y2

+ C2(1 + 4ξ2H′ )
)
. (B.8)

To find ϕ analytically, it is convenient to use the expressions (3.28)–(3.30) for φ′0, H and H′
in terms of y, and convert the integral as in eq. (B.5) to get

ϕ = −ε4
√

3ξĈ1

∫
dy

y5
+ 4C2φ0 + 16C2

√
3ξ3

∫
dy

y5

y2 + 2ξ2√
y2 + ξ2

= −Ĉ1
φ′0
y2

+ 4C2φ0 + 16C2

√
3

(
ξ
√
y2 + ξ2

4y2
− ξ3

√
y2 + ξ2

2y4
+

1

8
L(y)

)
+ cst (B.9)

where

L(y) = ln

√
y2 + ξ2 − ξ√
y2 + ξ2 + ξ

= ln
|τ |+ ξ−
|τ |+ ξ+

= − 2√
3
φ0 + cst ,

as follows from the background expression (2.12) for φ0. Therefore, the term proportional to
φ0 cancels and we obtain

ϕ = −Ĉ1
φ′0
y2
− 4C2φ

′
0H(y2 − 2ξ2) + C3 . (B.10)

In the expressions (B.7) and (B.10) for Φ and ϕ, it is more appropriate to replace the terms
proportional to Ĉ1/y

2 with terms proportional to φ′0. It is also convenient to introduce the
dimensionless integration constant C1 by a suitable rescaling of Ĉ1 by ξ. Doing so we obtain
the final expressions (3.33) and (3.34) for Φ and ϕ in terms of the two fundamental functions
characterizing the background, H and φ′0.

C Equidilaton and equipotential gauges

For conceptual clarity (and with an eye on follow up investigations) one can consider deriving
our results in two other gauges that are naturally suggested by the relevant degrees of freedom
of the system. The first gauge in question gauges away the dilaton perturbation (“equidilaton
gauge”) and the other gauges away the thermal potential (“equipotential gauge”). Although
similar in spirit, neither gauge is equivalent to the more familiar comoving gauge of single field
scalar cosmology, as the two fluid nature of the system will always ensure a non-vanishing
momentum flux for a comoving observer.

We begin by making use of the ADM decomposition

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt). (C.1)
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Away from the S-brane, we can express the action of the string gas/dilaton fluid as the sum
of:

SG =
1

2

∫
d4x
√
h

[
NR(3) +

1

N
(EijEij − E2)

]
(C.2)

Sφ =

∫
d4x
√
h

[
1

N
(φ̇−N i∂iφ)2 −Nhij∂iφ∂jφ

]
(C.3)

Sψ = Λ

∫
d4x
√
hN

[
1

N2
(ψ̇ −N i∂iψ)2 − hij∂iψ∂jψ

]2

(C.4)

where

Eij = NKij :=
1

2

[
ḣij −∇iNj −∇jNi

]
, (C.5)

Kij is the extrinsic curvature of the foliation, and where indices are raised/lowered and
covariant derivatives defined with respect to the 3-metric hij .

Once we have fixed a gauge, we can solve for the shift function and the lapse vector and
substitute back into the action to obtain the action for the perturbations to a given order.
One only needs to solve for the constraints up to linear order in the perturbations to obtain
the action up to cubic order. This is because terms in the action that come from solving
the constraints to cubic order multiply the zeroth order constraint equations (which vanish
by the equations of motion), and those that come from solving the constraints to quadratic
order multiply the first order solutions to the constraint equations, and so also vanish [120].

C.1 Equidilaton gauge

Equidilaton gauge is defined as having foliated spacetime such that the dilaton fluctuations
have completely been gauged away. That is:18

φ(t, x) = φ0(t)

ψ(t, x) = ψ0(t) + σ(t, x)

hij(t, x) = a2(t)e2R(t,x)δij . (C.6)

In this gauge, the momentum and Hamiltonian constraint equations (to first order) become

∇i
[
N−1(Eik − Eδik)

]
= 4Λ

ψ̇3
0

N3
∂kσ (C.7)

R(3)

2
− 1

2N2
(EijEij − E2)− φ̇2

0

N2
− 3

Λ

N4
ψ̇4 = 0. (C.8)

Writing

N = 1 + α1

N i = ∂iθ +N i
T , w/∂iN

i
T ≡ 0 (C.9)

where α1, θ and N i
T are all first order quantities, we find the solutions

α1 =
Ṙ
H

+
2Λ

H
ψ̇3

0σ (C.10)

∂2θ = −∂
2R
a2H

+

{
3Ṙ

(
1 +

Λψ̇4
0

H2

)
− 6Λψ̇4

0

H

(
σ̇

ψ̇0

− Λψ̇4
0

H

σ

ψ̇0

)}
, (C.11)

18Note that there is no anisotropic stress in our system to linear order in perturbation theory.
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where ∂2 = ∂i∂i contains no factors of the scale factor. We substitute the above back into
the action, liberally integrate by parts and make use of the background equations of motion

3H2 = φ̇2
0 + 3Λψ̇4

0 , φ̈0 = −3Hφ̇0 , ψ̈0 = −Hψ̇0, (C.12)

which results in (after transforming to conformal time)

S =

∫
d4x

[
3

(
a2 +

Λψ′40
H2

)
R′2 − 3

(
a2 − Λψ′40

3H2

)
(∂R)2

]
+ 6Λψ′20

∫
d4x

[
σ′2 − 1

3
(∂σ)2

]
+ 2Λψ′30

∫
d4x

[
−6

σ′R′

H
+ 6R′σ Λψ′40

a2H2
+

2

H
∂R · ∂σ

]
, (C.13)

where we extract ψ′0 from the integrand as it is independent of time. The equations of motion
that result from the above are:

R′′ + 2HR′
(

1 +
Λψ′40
a2H2

)
− ∂2R =

4Λψ′40
a2

[
σ′

ψ′0
− Λψ′40
Ha2

σ

ψ′0

]
(C.14)

σ′′ − 1

3
∂2σ =

ψ′0
H

[
R′′ + 2HR′ − 1

3
∂2R

]
. (C.15)

In the long wavelength limit (C.15) integrates to

R′

H
=

[
σ′

ψ′0
− Λψ′40
Ha2

σ

ψ′0

]
+
Ked

Ha2
(C.16)

where Ked is an integration constant (the subscript denotes the gauge in which we have
defined it) and where we have used the fact that

a2H = Λψ′40 τ +Hca2
c , (C.17)

which follows from (Ha2)′ = Λψ′40 and determining the integration constant through back-
ground quantities at the critical temperature. In order to see the existence of two independent
solutions for R, we substitute the above into (C.14) to result in

R′′ + 2HR′
(

1− Λψ′40
a2H2

)
+

4Λψ′40
Ha4

Ked = 0. (C.18)

C.2 Equipotential gauge

Equipotential gauge is defined by the foliation that gauges away all thermal potential fluc-
tuations:

φ(t, x) = φ0(t) + ϕ(t, x)

ψ(t, x) = ψ0(t)

hij(t, x) = a2(t)e2R̃(t,x)δij , (C.19)

where we distinguish the variable R̃ from the variable R in equidilaton gauge, as they are
defined on different hypersurfaces. In this gauge, the momentum and Hamiltonian constraint
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equations become

∇i
[
N−1(Eik − Eδik)

]
= 2

φ̇0

N
∂kϕ (C.20)

R(3)

2
− 1

2N2
(EijEij − E2)− φ̇2

N2
− 3

Λ

N4
ψ̇4

0 = 0 (C.21)

α1 =
˙̃R
H

+
φ̇0

H
ϕ (C.22)

∂2θ = −∂
2R̃
a2H

+

{
3 ˙̃R

(
1 +

Λψ̇4
0

H2

)
− φ̇0

H
ϕ̇+ 3Λφ̇0

ψ̇4
0

H2
ϕ

}
. (C.23)

The quadratic action that results upon solving for the constraints is now

S =

∫
d4x

[
3

(
a2 +

Λψ′40
H2

)
R̃′2 − 3

(
a2 − Λψ′40

3H2

)
(∂R̃)2

]
+

∫
d4x a2

[
ϕ′2 − (∂ϕ)2 +

2Λψ′40
a2H2

φ′20 ϕ
2

]
+

∫
d4x φ′0a

2

[
−2

ϕ′R̃′

H
+ 6R̃′ϕ Λψ′40

a2H2
+

2

H
∂R̃ · ∂ϕ

]
. (C.24)

The equations of motion that result are

R̃′′ + 2HR̃′ − 1

3
∂2R̃ = −2

3
φ′0ϕ

′ (C.25)

ϕ′′ + 2Hϕ′ − ∂2ϕ− 2Λψ′40
φ′20
a2H2

ϕ =
ϕ′0
H

[
R̃′′ + 2HR̃′

(
1 +

Λψ′40
a2H2

)
− ∂2R̃

]
. (C.26)

In the long wavelength limit, we can immediately integrate (C.25):

R̃′ = −2

3
φ′0(ϕ+Kep) , (C.27)

which implies that (C.26) becomes

ϕ′′ + 2Hϕ′
(

1 +
φ′20
3H2

)
=

2

3

φ′20 Λψ′40
a2H2

(ϕ− 2Kep) , (C.28)

which can be written as

ϕ′′ − 2
H′

H
ϕ′ =

2

3

φ′20 Λψ′40
a2H2

(ϕ− 2Kep) . (C.29)

C.3 Relating the gauges and the meaning of isocurvature perturbations

One might ask, how these two gauges relate? In equidilaton gauge, we work in the slicing
where all dilaton fluctuations have been gauged away:

φ(t, x) = φ0(t) , ψ(t, x) = ψ0 + σ(t, x) (C.30)

whereas in equipotential gauge we work in a slicing where all thermal potential fluctuations
have been gauged away:

φ(t, x) = φ0(t) + ϕ(t, x) , ψ(t, x) = ψ0 . (C.31)
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Clearly the two slicings can be related by an infinitessimal time reparametrization

t̃ = t+ Π (C.32)

where the tilde’d time coordinate is that of equipotential gauge. From the transformation
of the metric under such a reparametrization, it is straightforward to show that starting in
comoving gauge with perturbations R and σ that under (C.32):

R → R−HΠ (C.33)

σ → σ − ψ′0Π (C.34)

ϕ → −φ′0Π , (C.35)

where the latter follows from the fact that we have now moved out of the slicing where the
fluctuations of φ vanish (in equidilaton gauge ϕ ≡ 0). If we identify this new slicing with the
equipotential slicing — where σ is gauged away to vanish — then this defines Π as

Π =
σ

ψ′0
. (C.36)

Therefore the dilaton fluctuation in this gauge is given by (C.35):

ϕ = −φ
′
0

ψ′0
σ (C.37)

and hence

ϕ = −dφ0

dψ0
σ . (C.38)

This expression highlights the physical meaning of an isocurvature perturbation — when
a fluid has two (or more) fluctuating components, if their background solutions are both
monotonic (i.e. they define equally good clocks), and if their parametric dependence on time
is not proportional to a constant, then the two describe independent fluctuations and are
thus non-adiabatic.

In addition, we can also perform an important consistency check — the action (C.13)
must therefore relate to the action (C.24) via the field redefinition

R = R̃ − H
φ′0
ϕ (C.39)

σ = −ψ
′
0

φ′0
ϕ , (C.40)

which follows from eqs. (C.33) to (C.37). It is straightforward though tedious to check that
this is indeed true.

C.4 Relation to the Mukhanov-Sasaki variable

In both gauges, we note that the quadratic actions for R and R̃ are identical, with isomorphic
interaction terms (the last lines of (C.13) and (C.24)). Since in both cases, the corresponding
variable R or R̃ is conserved in the absence of an isocurvature component, we see that
they both relate to the adiabatic mode. From this, we can easily construct the canonically
normalized action for the Mukhanov-Sasaki variable [121, 122]:

S
(2)
G =

1

2

∫
d4x

[
v′2 − c2

s(∂v)2 +
z′′

z
v2

]
(C.41)
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with
v = zR, or v = zR̃ (C.42)

depending on the slicing, and where

z = a
√

6

(
1 +

Λψ′40
a2H2

)1/2

=
aφ′0
H

(
2 + 6

Λψ′40
φ′20 a

2

)1/2

(C.43)

on either foliation. The latter relation compares familiarly with the analogous expression for
a single minimally coupled scalar field (z = aφ′0/H). The speed of sound is given by

c2
s =

1− Λψ′40
3a2H2

1 +
Λψ′40
a2H2

, (C.44)

which clearly interpolates between 1/3 ≤ c2
s ≤ 1 as the evolution moves from thermal string

gas domination (Λψ′40 /a
2H2 → 1) to dilaton domination Λψ′40 /a

2H2 → Λψ′4c /a
2
cH2

c , where
the latter can be made vanishingly small depending on the parameters of the problem (the
total entropy of the universe).

We can readily cast the second order action in terms of two canonically normalized
variables. From (C.13), we see that σ is only a trivial rescaling away from being canonically
normalized. Using (C.42) and (C.43), and defining

u := µ
σ

ψ′0
; µ =

√
12Λψ′20 , (C.45)

the canonically normalized action in equidilaton gauge is given by

S =
1

2

∫
d4x

[
v′2 − c2

s(∂v)2 +
z′′

z
v2

]
+

1

2

∫
d4x

[
u′2 − 1

3
(∂u)2

]
+ µ

∫
d4x

[
−u
′

H

(v
z

)′
+ u

Λψ′40
a2H2

(v
z

)′
+

1

3Hz
∂u · ∂v

]
. (C.46)

C.5 Relation to quantities in longitudinal gauge

In order to understand the results of the calculations in the main body of the paper performed
in longitudinal gauge, it is instructive to explicitly relate quantities in this gauge to either
of the gauges considered in this appendix. As exact expressions for the mode functions are
easiest to obtain in equidilaton gauge, we flesh out the relation between these two gauges.
We assert that the time reparametrization t→ t+ ξ0, with

ξ0 = −aθ (C.47)

where θ is defined by (C.11), such that

aθ = −R
H

+ ∂−2

{
3R′

(
1 +

Λψ
′4
0

a2H2

)
− 6Λψ

′4
0

a2H

(
σ′

ψ′0
− Λψ

′4
0

a2H
σ

ψ′0

)}

:= −R
H

+ ∂−2χ , (C.48)
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transforms equidilaton gauge into longitudinal gauge

ds2 = −a2(1 + 2Φ)dτ2 + a2(1− 2Φ)dx2 , (C.49)

where the gravitational potential Φ is given by

Φ = −H∂−2χ . (C.50)

Moreover, it is informative to see how the various perturbed quantities in equidilaton gauge
transformed under this gauge transformation. By (C.48) and (C.50) we see that

aθ = −R
H
− Φ

H
, (C.51)

and from (C.47), it is clear that moving out of equidilaton gauge, the scalar field now has a
fluctuation

ϕ = −φ′0ξ0 = aθφ′0 = −Rφ
′
0

H
− Φφ′0
H

(C.52)

or that the equidilaton curvature perturbation is given by longitudinal gauge quantities as

−R = Φ +
Hϕ
φ′0

, (C.53)

where the minus sign in front ofR is because of the convention defined in (C.6). Furthermore,
the thermal potential perturbation transforms as

σl = σed − ψ′0ξ0 = σed + ψ′0aθ , (C.54)

and so
σed
ψ′0

=
σl
ψ′0
− ϕ

φ′0
, (C.55)

where the subscripts ed and l denote the thermal potential fluctuation in equidilaton and
longitudinal gauges respectively. It is straightforward to check that under the identifica-
tions (C.53) and (C.55) that all of the equations of motion for the perturbations Φ, σl and
ϕ (3.8)–(3.12) follow from (C.14), (C.15) and the background equations of motion.
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